Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic...

92
Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY October 2001 c 2001 Massachusetts Institute of Technology. All rights reserved. Author ............................................................. Department of Electrical Engineering and Computer Science October 10, 2001 Certified by ......................................................... W. Eric L. Grimson Bernard Gordon Professor of Medical Engineering Thesis Supervisor Certified by ......................................................... Carl-Fredrik Westin Instructor in Radiology, Harvard Medical School Thesis Supervisor Accepted by ......................................................... Arthur C. Smith Chairman, Departmental Committee on Graduate Students

Transcript of Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic...

Page 1: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Semi-Automatic Medical ImageSegmentation

by

LaurenO’Donnell

Submittedto theDepartmentof ElectricalEngineeringandComputerScience

in partialfulfillment of therequirementsfor thedegreeof

Masterof Sciencein ComputerScienceandEngineering

at the

MASSACHUSETTSINSTITUTE OF TECHNOLOGY

October2001

c 2001MassachusettsInstituteof Technology. All rightsreserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Departmentof ElectricalEngineeringand

ComputerScienceOctober10,2001

Certifiedby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .W. Eric L. Grimson

BernardGordonProfessorof MedicalEngineeringThesisSupervisor

Certifiedby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Carl-FredrikWestin

Instructorin Radiology, HarvardMedicalSchoolThesisSupervisor

Acceptedby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Arthur C. Smith

Chairman,DepartmentalCommitteeonGraduateStudents

Page 2: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Semi-Automatic Medical ImageSegmentation

by

LaurenO’Donnell

Submittedto theDepartmentof ElectricalEngineeringandComputerScience

on October10,2001,in partialfulfillment of therequirementsfor thedegreeof

Masterof Sciencein ComputerScienceandEngineering

Abstract

Wepresentasystemfor semi-automaticmedicalimagesegmentationbasedonthelivewireparadigm.Livewire is animage-featuredrivenmethodthatfindstheoptimalpathbetweenuser-selectedimage locations,thus reducingthe needto manuallydefine the completeboundary. Standardfeaturesusedby thewire to find boundariesincludegray valuesandgradients.

We introduceanimagefeaturebasedon local phase,which describeslocal edgesym-metryindependentof absolutegrayvalue.Becausephaseis amplitudeinvariant,themea-surementsarerobustwith respectto smoothvariations,suchasbiasfield inhomogeneitiespresentin all MR images.Wehaveimplementedbothatraditionallivewire systemandonewhichutilizesthelocalphasefeature.Wehaveinvestigatedthepropertiesof localphaseforsegmentingmedicalimagesandevaluatedthequalityof segmentationsof medicalimageryperformedmanuallyandwith bothsystems.

ThesisSupervisor:W. Eric L. GrimsonTitle: BernardGordonProfessorof MedicalEngineering

ThesisSupervisor:Carl-FredrikWestinTitle: Instructorin Radiology, HarvardMedicalSchool

Page 3: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Acknowledgements

Thanksto everyonewhousedthesegmentationsystemfor their time,help,andfeedback.

A sincerethankyouto Dr. MarthaShenton’sSchizophreniaGroupat theSurgicalPlan-

ning Laboratoryof BrighamandWomen’s Hospital,for their trials of thesystem.Thanks

to Ola Cizsewski for thecaudatesegmentationsandherhelpful collaborationin develop-

mentof the system.Thankyou alsoto Dr. Jim Levitt, Kiyoto Kasai,ToshiakiOnitsuka,

andNatashaGosekof theSchizophreniaGroup.

Other membersof the SPL were very helpful in developmentand evaluationof the

system. Thanksto Dr. Ion-Florin Talos for the tumor segmentation,Arjan Welmersfor

feedbackon the earliestversionsof the system,Dr. Ying Wu for her ventriclesegmenta-

tions,andDr. BonglinChungfor thepulmonaryveinsegmentations.

Thankyou to Dr. JuanRuiz-Alzolaof theUniversityof LasPalmasdeGranCanaria,

Spain,for all of his help during preparationof the MICCAI paperbasedon this thesis.

Thanksto theRadiationOncology, MedicalPhysics,Neurosurgery, Urology, andGastroen-

terologyDepartmentsof HospitalDoctorNegrin in LasPalmasdeGranCanaria,Spain,for

their enthusiasticparticipationin evaluationof thesystem.

Specialthanksto Mark Andersonfor his experimentationwith thesoftware,feedback

on thesystem,andhelpkeepingtheslicerrunningat theSPL.

Thanksto Dr. Mike Halle of theSPLfor helpgettingstartedwith VTK anda tremen-

dousamountof diskspacefor slicerlogsandsegmentations.

Thanksto Dr. Ron Kikinis for feedbackandmany suggestions(someactuallyimple-

mented)for improvementof thesystem.

Thankyou to Dr. Eric Grimsonfor wonderfulproofreadingandinput on thethesis,as

well asencouragementduringmy first two yearshereat MIT.

3

Page 4: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Finally, thanksto Dr. Carl-FredrikWestinfor explanationsof local phase,greatideas,

excitementabouttheproject,anda tremendousamountof help.

Duringwork on this thesis,theauthorwassupportedby aRosenblithFellowshipanda

NationalScienceFoundationGraduateFellowship.

4

Page 5: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Contents

1 Intr oduction 11

1.1 MedicalImageSegmentation. . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Applicationsof Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 VolumetricMeasurement. . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 ShapeRepresentationandAnalysis . . . . . . . . . . . . . . . . . 14

1.2.4 Image-GuidedSurgery . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.5 ChangeDetection. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Difficulty of theSegmentationProblem . . . . . . . . . . . . . . . . . . . 18

1.4 OurMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Background: Curr ent Approachesto Medical Image Segmentation 22

2.1 “AnatomicalKnowledgeContinuum”of SegmentationAlgorithms . . . . . 22

2.1.1 No KnowledgeEncodedin Algorithm . . . . . . . . . . . . . . . . 22

2.1.2 Local IntensityKnowledgeUsedby Algorithm . . . . . . . . . . . 24

2.1.3 GlobalStatisticalIntensityKnowledgeUsedby Algorithm . . . . . 25

2.1.4 GlobalShapeAssumptionsUsedby Algorithm . . . . . . . . . . . 26

2.1.5 LocalGeometricModelsUsedby Algorithm . . . . . . . . . . . . 27

2.1.6 GlobalAnatomicalModelsUsedby Algorithm . . . . . . . . . . . 28

2.2 ImportantFactorsin ComparingSegmentationMethods. . . . . . . . . . . 29

2.2.1 SegmentationTime . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5

Page 6: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

2.2.3 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.4 GeneralityandApplicability . . . . . . . . . . . . . . . . . . . . . 31

3 Background: The Li vewireMethod 32

3.1 TheStepsof theLivewire Algorithm . . . . . . . . . . . . . . . . . . . . . 32

3.2 StepOne:Creationof theWeightedGraph. . . . . . . . . . . . . . . . . . 34

3.2.1 GraphRepresentation. . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Local ImageFeatures. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Local ImageFeatures:ImplementationDetailsfor Two Methods. . 39

3.2.4 Combinationof Featuresto ProduceEdgeWeights . . . . . . . . . 41

3.3 StepTwo: ShortestPaths . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Dijkstra’sAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 LiveWire on theFly . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Background: Local Phase 46

4.1 FourierPhase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Introductionto LocalPhase. . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 LocalPhaseof a One-DimensionalSignal . . . . . . . . . . . . . . . . . . 48

4.3.1 Definitionof LocalPhase. . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 PhaseMeasurementin OneDimension . . . . . . . . . . . . . . . 49

4.4 LocalPhaseof aTwo-DimensionalSignal . . . . . . . . . . . . . . . . . . 51

4.4.1 InterpretingtheLocalPhaseof aTwo-DimensionalImage . . . . . 51

4.5 Advantagesof LocalPhase. . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Phase-BasedUser-Steered ImageSegmentation 54

5.1 Phase-BasedLivewire StepOne:Creationof theWeightedGraph . . . . . 55

5.1.1 GraphRepresentation. . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2 Local ImageFeatures:EdgeDetectionUsingLocalPhase . . . . . 55

5.1.3 Local ImageFeatures:Directionality . . . . . . . . . . . . . . . . 63

5.1.4 Local ImageFeatures:Training . . . . . . . . . . . . . . . . . . . 64

5.1.5 Combinationof Featuresto ProduceEdgeWeights . . . . . . . . . 65

6

Page 7: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

5.2 Phase-BasedLivewire StepTwo: ShortestPaths . . . . . . . . . . . . . . . 66

5.3 Situationof Our Methodin the“KnowledgeContinuum” . . . . . . . . . . 66

5.3.1 KnowledgeEmployedBy Livewire andPhasewire . . . . . . . . . 67

5.3.2 Useof AdditionalKnowledge . . . . . . . . . . . . . . . . . . . . 67

5.4 SystemFeatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.1 UserInterfacefor ControllingFilter Parameters. . . . . . . . . . . 68

5.4.2 Filter Parameters:CenterFrequency . . . . . . . . . . . . . . . . . 68

5.4.3 Filter Parameters:Bandwidth . . . . . . . . . . . . . . . . . . . . 69

6 Analysis of Expert SegmentationsDoneWith Phasewire and Li vewire 75

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 StatisticalMeasures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 VolumeStatistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.2 Hausdorff Distance. . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 ExpertSegmentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.1 ControlledSegmentationExperiments. . . . . . . . . . . . . . . . 78

6.4.2 Comparisonof ManualandPhasewire TumorSegmentations. . . . 79

6.4.3 PulmonaryVeinSegmentations . . . . . . . . . . . . . . . . . . . 80

6.4.4 Repeatabilityof ThreeMethodson theTemporalPole . . . . . . . 81

6.4.5 FusiformGyrus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4.6 Thalamus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5 Discussionof SegmentationResults . . . . . . . . . . . . . . . . . . . . . 84

7 Discussion 85

7.1 IssuesandImprovementsto SystemFunctionality . . . . . . . . . . . . . . 85

7.2 Comparisonof theTwo Systems . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7

Page 8: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

List of Figures

1-1 Segmentationexample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1-2 Exampleof three-dimensionalsurfacemodels.. . . . . . . . . . . . . . . . 14

1-3 Shaperepresentationexample. . . . . . . . . . . . . . . . . . . . . . . . . 16

1-4 Surgical planningandnavigationusingsurfacemodels. . . . . . . . . . . . 17

1-5 Multiple SclerosisLesions. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1-6 Exampletumorsegmentation. . . . . . . . . . . . . . . . . . . . . . . . . 20

1-7 Surfacemodelscreatedfrom segmentationsdonewith Phasewire. . . . . . 21

2-1 Segmentationalgorithmsasthey lie onacontinuumof anatomicalknowledge. 23

2-2 Slicesfrom amedicalimagedataset.. . . . . . . . . . . . . . . . . . . . . 24

3-1 A weightedgraphexample. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3-2 Two methodsof aligninggraphandimage.. . . . . . . . . . . . . . . . . . 36

3-3 Livewire shortestpath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3-4 Onelocal neighborhoodfor computinglivewire features. . . . . . . . . . . 40

3-5 Shortestpathscomputeduntil reachingtheendpoint. . . . . . . . . . . . . 44

3-6 Shortestpathscomputedusingprior storedinformation.. . . . . . . . . . . 45

4-1 Basicsinusoids.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4-2 Localphaseof asinusoid.. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4-3 A simplesignal(top),andits instantaneousphase(bottom). . . . . . . . . 50

4-4 Localphaseon theunit circle. . . . . . . . . . . . . . . . . . . . . . . . . 52

4-5 Localphaseof anexampleimage. . . . . . . . . . . . . . . . . . . . . . . 53

5-1 Visualcomparisonof phaseimageandexpertsegmentation. . . . . . . . . 54

8

Page 9: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

5-2 Quadraturefilter orientations.. . . . . . . . . . . . . . . . . . . . . . . . . 57

5-3 Profileof lognormalfilter kernelshape. . . . . . . . . . . . . . . . . . . . 58

5-4 An examplequadraturefilter kernelin theFourierdomain. . . . . . . . . . 59

5-5 Fourexamplekernelsin theFourierdomain.. . . . . . . . . . . . . . . . . 60

5-6 Examplequadraturefilter pair. . . . . . . . . . . . . . . . . . . . . . . . . 61

5-7 Phaseangleasargumentof complex filter kerneloutput. . . . . . . . . . . 61

5-8 Phaseimagederivedfrom anMR scanof thebrain. . . . . . . . . . . . . . 62

5-9 Illustrationof insensitivity to changesin imagescale. . . . . . . . . . . . . 62

5-10 Certaintyimagederivedfrom anMR scanof thebrain. . . . . . . . . . . . 63

5-11 Window-leveling thedatabeforephasecomputationbetterdefinesbound-

ariesof interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5-12 Weightedgraphcomputedfrom areformattedsagittalneuralMR image. . . 66

5-13 Utility of bothimagefeatures. . . . . . . . . . . . . . . . . . . . . . . . . 67

5-14 Userinterfacefor PhaseWire. . . . . . . . . . . . . . . . . . . . . . . . . . 70

5-15 3D Slicerimagedisplayinterface,duringaPhaseWire editingsession.. . . 71

5-16 Effectof varyingthecenterfrequency. . . . . . . . . . . . . . . . . . . . . 72

5-17 Centerfrequency example. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5-18 Centerfrequency example,effectof a lowercenterfrequency. . . . . . . . . 74

6-1 A Venndiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6-2 A surfacemodelof theliver, createdfrom aphasewire segmentation,shows

well-definedsurfaceindentationsbetweentheliverandthekidney andgall-

bladder. Thesesurfacesaremarkedwith arrows. . . . . . . . . . . . . . . 79

6-3 ManualandPhasewire tumorsegmentation. . . . . . . . . . . . . . . . . . 80

6-4 Pulmonaryveinssegmentedwith Phasewire. . . . . . . . . . . . . . . . . . 81

6-5 Phasewire vs. Manualon partial-volumeborderpixels. . . . . . . . . . . . 82

6-6 Phasewire segmentationof thethalamus.. . . . . . . . . . . . . . . . . . . 84

9

Page 10: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

List of Tables

2.1 Divisionof segmentationalgorithmsby automaticity. . . . . . . . . . . . . 30

3.1 Prosandconsof situatinggraphnodeson pixel corners.. . . . . . . . . . . 35

3.2 Prosandconsof situatinggraphnodeson pixel centers.. . . . . . . . . . . 37

6.1 Selecteditemsloggedby the3D Slicer. . . . . . . . . . . . . . . . . . . . 77

6.2 Examplesegmentationsperformedwith Phasewire. . . . . . . . . . . . . . 78

6.3 Doctors’comparisonof Phasewire andManualsegmentationmethods.. . . 79

6.4 A tumorsegmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 Repeatabilityof threemethodson thetemporalpole. . . . . . . . . . . . . 82

6.6 Volumetricmeasuresfrom repeatedsegmentations. . . . . . . . . . . . . . 83

6.7 Segmentationof thefusiformgyrus. . . . . . . . . . . . . . . . . . . . . . 83

10

Page 11: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Chapter 1

Intr oduction

1.1 Medical ImageSegmentation

Medical imagesegmentationis the processof labeling eachvoxel in a medical image

datasetto indicateits tissuetype or anatomicalstructure.The labelsthat result from this

processhaveawidevarietyof applicationsin medicalresearchandvisualization.Segmen-

tation is soprevalentthat it is difficult to list the mostoft-segmentedareas,but a general

list would includeat leastthe following: thebrain, theheart,theknee,the jaw, thespine,

thepelvis,theliver, theprostate,andthebloodvessels[20, 39,35,18, 25].

Theinput to a segmentationprocedureis grayscaledigital medicalimagery, for exam-

ple the resultof a CT or MRI scan. The desiredoutput,or “segmentation,” containsthe

labelsthatclassifythe input grayscalevoxels. Figure1-1 is anexampleof a very detailed

segmentationof the brain, along with the original grayscaleimageryusedto createthe

segmentation.

The purposeof segmentationis to provide richer information than that which exists

in the original medicalimagesalone. The collectionof labelsthat is producedthrough

segmentationis alsocalleda“labelmap,” whichsuccinctlydescribesits functionasavoxel-

by-voxelguideto theoriginal imagery. Frequentlyusedto improvevisualizationof medical

imageryandallow quantitative measurementsof imagestructures,segmentationsarealso

valuablein building anatomicalatlases,researchingshapesof anatomicalstructures,and

trackinganatomicalchangesover time.

11

Page 12: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure1-1: Segmentationexample. A grayscaleMR imageof the brain (left) anda de-tailedmatchingsegmentation,alsoknown asa labelmap(right). Theprocedurefollowedto createthe segmentationwaspartially automated,but a large amountof humaneffortwasalsorequired.Thesegmentationwasinitialized usinganautomaticgraymatter/whitematter/cerebrospinalfluid segmenter, andthenindividual neuralstructuresweremanuallyidentified. This grayscaledatasetandsegmentationwereprovidedby Dr. MarthaShen-ton’sSchizophreniaResearchGroupattheSurgicalPlanningLabatBrighamandWomen’sHospital.

12

Page 13: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

1.2 Applications of Segmentation

Theclassicmethodof medicalimageanalysis,theinspectionof two-dimensionalgrayscale

imageson a lightbox, is not sufficient for many applications.Whendetailedor quantita-

tive informationabouttheappearance,size,or shapeof patientanatomyis desired,image

segmentationis often thecrucial first step. Applicationsof interestthatdependon image

segmentationincludethree-dimensionalvisualization,volumetricmeasurement,research

into shaperepresentationof anatomy, image-guidedsurgery, anddetectionof anatomical

changesover time.

1.2.1 Visualization

Segmentationof medicalimageryallowsthecreationof threedimensionalsurfacemodels,

suchasthosein Figure1-2, for visualizationof patientanatomy. Theadvantageof a sur-

facemodelrepresentationof anatomyis that it givesa three-dimensionalview from any

angle,which is an improvementover two-dimensionalcrosssectionsthroughtheoriginal

grayscaledata[10]. Surfacemodelscanbecreatedfrom segmenteddatausinganalgorithm

suchasMarchingCubes[26]. (Thoughthree-dimensionalmodelscouldbecreateddirectly

from grayscaledatausingMarchingCubes,the segmentationstepis usedto provide the

desireduser-definedisosurfacesto thealgorithm.)

1.2.2 Volumetric Measurement

Measurementof thevolumesof anatomicalstructuresis necessaryin medicalstudies,both

of normalanatomyandof variouspathologicalconditionsor disorders.This is an obvi-

ousapplicationof segmentation,sinceit is not possibleto accuratelymeasureanatomical

volumesvisually.

For example,in studiesof schizophrenia,volumemeasurementis usedto quantifythe

variationin neuralanatomybetweenschizophrenicandcontrolpatients.Areasof interest

in suchstudiesinclude the lateralventricles,structuresin the temporallobe suchasthe

hippocampus,amygdala,andparahippocampalgyrus,theplanumtemporale,andthecor-

puscallosum[27]. It is a time-intensiveprocessto obtainaccuratemeasurementsof such

13

Page 14: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure1-2: Exampleof three-dimensionalsurfacemodels,createdfrom segmenteddatausing the MarchingCubesalgorithm. Thesemodelswereusedin surgical planningandguidance.Eachimageis composedof five models:skin (light pink), neuralcortex (lightwhite), vessels(dark pink), tumor (green),andfMRI of the visual cortex (yellow). ThefMRI, or functionalMRI, showsareasof thebrainthatwereactivatedduringvisualactivi-ties(areaswhichshouldbeavoidedduringsurgery).

regions,asthecurrentmethodemploysmanualsegmentation.

Volumemeasurementis alsousedto diagnosepatients;oneexampleis in measurement

of theejectionfraction.This is thefractionof bloodthatis pumpedoutof theleft ventricle

of theheartat eachbeat,which is an indicatorof thehealthof theheartandits pumping

strength.To measurethe ejectionfraction, the blood in the left ventricleis segmentedat

differenttimesin thecardiaccycle.

1.2.3 ShapeRepresentationand Analysis

Variousquantitative representationsof shapeare studiedin order to mathematicallyde-

scribe salient anatomicalcharacteristics. The first step in creatinga representationof

anatomicalshapeis segmentation:intuitively, oneneedsto know the structure’s position

andthelocationof its boundariesbeforeits shapecanbestudied.

Oneexampleof a shaperepresentationis a skeleton,a constructwhich is similar to

thecenterlineof a segmentedstructure.Oneway to imaginea skeletonis the“brushfire”

approach:onethinksof simultaneouslylighting firesat all pointson theboundaryof the

14

Page 15: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

structure.Thefiresburninward,travelingperpendicularto theboundarywherethey started,

andthenextinguishwhenthey hit anotherfire. The connected“ash” lines left wherethe

firesextinguishis theskeletonof thestructure.

A richer shaperepresentationis the distancetransform,a function that measuresthe

distancefrom eachpoint in a structureto the nearestpoint on that structure’s boundary.

Thedistancetransformcanalsobeimaginedwith thepyrotechnicapproach:it is thetime

that the fire first reacheseachpoint in thestructure.Consequentlyit is consideredricher

thantheskeleton,sinceit containsmoreinformation.

Presumably, shaperepresentationswill becomeincreasinglyusefulin makingquantita-

tive anatomicalcomparisons.Distancetransformshaperepresentationshave alreadybeen

appliedto the classificationof anatomicalstructuresin a study that aimsto differentiate

betweenthe hippocampus-amygdalacomplexesof schizophrenicsandnormals[12]. An

exampleof grayscaleMR imagedataandtheshaperepresentationderivedfrom it for this

studycanbeseenin Figure1-3.

Shaperepresentationscanalsobeusedto aidthesegmentationprocessitself by provid-

ing anatomicalknowledge[24]. A generativeshapemodel,oncetrainedfrom apopulation

of shaperepresentations,canthenbeusedto visualizenew shapesaccordingto thelearned

modesof variancein the shapepopulation(allowing visualizationof “average”anatomy

andof themainanatomicalvariationsthatmayoccur). Then,at eachstepof thesegmen-

tation of new data,fitting the model to the currentmost likely segmentationcanprovide

anatomicalinformationto thealgorithm[24].

1.2.4 Image-GuidedSurgery

Image-guidedsurgery is anothermedicalapplicationwheresegmentationis beneficial.In

orderto remove brain tumorsor to performdifficult biopsies,surgeonsmustfollow com-

plex trajectoriesto avoid anatomicalhazardssuchasbloodvesselsor functionalbrainareas.

Beforesurgery, pathplanningandvisualizationis doneusingpreoperative MR and/orCT

scansalongwith three-dimensionalsurfacemodelsof thepatient’s anatomysuchasthose

in Figure1-2.

15

Page 16: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure1-3: Shaperepresentationexample.A segmentationof thehippocampus-amygdalacomplex (left), a 3D surfacemodelof thehippocampus-amygdalacomplex (center),andadistancemapusedto representthe shapeof the hippocampus-amygdalacomplex (right).[12]

Duringtheprocedure,theresultsof thepreoperativesegmentationmaystill beused:the

surgeonhasaccessto thepre-operativeplanninginformation,asthree-dimensionalmodels

andgrayscaledataaredisplayedin theoperatingroom.In addition,“on-the-fly” segmenta-

tion of realtimeimagerygeneratedduringsurgeryhasbeenusedfor quantitativemonitoring

of the progressionof surgery in tumor resectionandcryotherapy [33]. Figure1-4 shows

theuseof preoperativesurfacemodelsduringa surgery.

1.2.5 ChangeDetection

Whenstudyingmedicalimageryacquiredover time,segmentingregionsof interestis cru-

cial for quantitativecomparisons.TheMultiple SclerosisProjectatBrighamandWomen’s

Hospitalmeasureswhitematterabnormalities,or lesions,in thebrainsof patientssuffering

from MS. BecauseMS is adisorderthatprogressesover time,accuratetemporalmeasure-

mentsof neuralchangesmayleadto abetterunderstandingof thedisease.Thestatedgoals

of the MS projectareanalysisof lesionmorphologyanddistribution in MS, quantitative

evaluationof clinical drugtrials,andmonitoringof diseaseprogressionin individuals[16].

To this end,automaticsegmentationis usedto identify MS lesions,which appearasbright

regionsin T1- andT2-weightedMR scansof thebrain,asshown in Figure1-5. Thevol-

umeof suchlesions,asmeasuredfrom segmenteddata,hasbeenshown to correlatewith

clinical changesin ability andcognition[15, 14].

16

Page 17: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure1-4: Surgical planningandnavigationusingsurfacemodels.The“before” picture(top)showsseveral3D surfacemodelsusedin surgicalplanning,alongwith onegrayscaleslice from theMR scanthatwassegmentedto createthemodels.Thegreenmodelis thetumorthatwasremovedduringthesurgery.The“after” picture(bottom)shows animagethatwasscannedduringsurgery, at thesamelocationin thebrainasthetop image.Theyellow probeis agraphicalrepresentationof thetrackedprobeheldby thesurgeon.

17

Page 18: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

MS Lesions AutomaticSegmentation

Figure1-5: Multiple SclerosisLesions(seenasbright spots).Automaticsegmentationisusedto track diseaseprogressionover time. Imageswere provided by Mark Andersonof the Multiple SclerosisGroup at the Surgical PlanningLab at BrighamandWomen’sHospital.

1.3 Difficulty of the SegmentationProblem

Two fundamentalaspectsof medicalimagerymake segmentationa difficult problem.The

first aspectis theimagingprocessitself,andthesecondis theanatomythatis beingimaged.

The imagingprocess,for exampleMR, CT, PET, or ultrasound,is chosenso that its

interactionswith the tissuesof interestwill provide clinically relevant informationabout

thetissuein theresultingoutputimage.But this doesnotmeanthattheanatomicalfeature

of interestwill be particularlyseparablefrom its surroundings:it will not be a constant

grayscalevalue,andstrongedgesmay not be presentaroundits borders. In fact, the in-

teractionof the imagingprocesswith the tissueof interestwill often producea “grainy”

region that is moredetectableby the humaneye thanby evensophisticatedcomputeral-

gorithms. (This is dueto noisein the imagingprocessaswell asto inhomogeneityof the

tissueitself.) So simpleimageprocessing,suchasthresholdingor edgedetection,is not

generallysuccessfulwhenappliedto medicalimagesegmentation.

Thesecondfundamentalaspectthatmakessegmentationadifficult problemis thecom-

plexity andvariability of theanatomythatis beingimaged.It maynotbepossibleto locate

or delineatecertainstructureswithout detailedanatomicalknowledge. (A computerdoes

not approachthe expert knowledgeof a radiologist.) This makesgeneralsegmentationa

difficult problem,astheknowledgemusteitherbe built into the systemor providedby a

18

Page 19: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

humanoperator.

1.4 Our Method

In orderto combineoperatorknowledgewith computeraid,wechoseto implementasemi-

automaticsegmentationmethodcalledlivewire [1, 7, 8]. This type of segmentationtool

wasnotpreviouslyavailableto ourusercommunity, theresearcherswhoregularlyperform

manualsegmentationsat the Surgical PlanningLab at Brigham and Women’s Hospital

in Boston. To give an idea of the workload, it suffices to say that at any time during

an averageday at the Surgical PlanningLab, one can expect to find approximatelyten

peopleperformingmanualsegmentations.In many cases,manualsegmentationis used

to completea segmentationthatwasstartedwith anautomaticalgorithm,andthemanual

segmentationcanbecomethetimebottleneckin theimageprocessingpipeline.

Livewire is an image-featuredriven methodthat finds an optimal pathbetweenuser-

selectedimagelocations,thusreducingtheneedto manuallydefinethecompleteboundary.

To uselivewire,oneclickson theboundaryof interestin theimage,andthen,asthemouse

is moved, a “li ve wire” curve snapsto the boundary, aiding manualsegmentation.This

interactionis formulatedasadynamicprogrammingproblem:thedisplayedlivewire con-

tour is theshortestpathfoundbetweentheuserselectedpoints,wherethedistancemetric

is basedon imageinformation.

Theaimof thelivewireapproachis to reducethetimeneededto segmentwhile increas-

ing the repeatabilityof the segmentation.We have implementedboth a standardversion

of livewire, anda new versionwhich employs a uniqueimagefeature.In our implementa-

tion, which we call “phasewire,” we have investigatedlocal phaseasa featurefor guiding

the livewire [31]. Figure1-6 shows several stepsin performinga segmentationwith our

phase-basedlivewire. Modelsmadefrom segmentationsdonewith phasewire areshown in

Figure1-7.

19

Page 20: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure 1-6: Exampletumor segmentation. Stepstaken during segmentationof a tumor(locatednext to thetrachea,which is thedarkregion in theCT image).Thesegmentationbeginswith theupperleft image,andtheyellow pixelsrepresentmouseclicks.

1.5 Roadmap

Chapter2 begins with an overview of existing segmentationmethods. Next, Chapter3

givesanoverview of thelivewire algorithm,while Chapter4 explainstheconceptof local

phase. Then Chapter5 describesour systemin detail, and situatesit in the framework

introducedin the precedingchapters.Chapter6 describessegmentationresultsfrom the

method,with bothuserinteractionmeasuresandvolumetricvalidationmeasures.Finally,

Chapter7 presentsa discussionof thework.

20

Page 21: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure 1-7: Surfacemodelscreatedfrom segmentationsdonewith Phasewire. The topmodelis a tumor, while thebottomimageshowsaspine.

21

Page 22: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Chapter 2

Background: Curr ent Approachesto

Medical ImageSegmentation

In thischapter, wesetthestageby describingsomeof themainmethodsof imagesegmen-

tation in usetoday. We first describetheapproachesin orderaccordingto the amountof

knowledgethey employ. (We will situateour algorithmin this orderin Chapter5.) Then

wediscussfactorsthatareimportantwhenratingasegmentationalgorithm.

2.1 “ Anatomical KnowledgeContinuum” of Segmentation

Algorithms

This sectiongivesanalgorithmicoverview of themethods,situatingeachin a groupwith

otheralgorithmsthat usesimilar knowledgeto performsegmentation.A graphicalsum-

maryof thissectionis in Figure2-1,whichattemptsavisualpresentationof thealgorithms.

2.1.1 No KnowledgeEncodedin Algorithm

Manual Segmentation

Themostbasicsegmentationalgorithm,manualsegmentation,consistsof tracingaround

the region of interestby hand. This is donein eachtwo-dimensionalslice for the entire

22

Page 23: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Local Geometric Information

Global Anatomical ModellingNo Knowledge Shape Assumptions

Intensity Knowledge

mouse

0

’intelli’

Figure2-1: Segmentationalgorithmsasthey lie ona continuumof anatomicalknowledge,a graphicaldepiction.This figureplacescategoriesof segmentationalgorithmson a scaleaccordingto the amountof knowledgethey use. The left extremeside representszeroknowledge,while thefarright right representstheidealgoalof infinite knowledgeavailableto thealgorithm.

“stack” of slicesthatcomprisesa three-dimensionalmedicalimagevolume.

The manualsegmentationmethodis time-consumingandsubjectto variability across

operators,for exampleup to 14 to 22 percentby volumein segmentationof brain tumors

[19]. Consequently, manualsegmentationis generallyavoidedif a comparableautomatic

methodexistsfor theanatomicalregionof interest.However, despiteits drawbacks,manual

segmentationis frequentlyusedsinceit providescompleteusercontrolandall necessary

anatomicalknowledgecanbeprovidedby theoperator. Themanualsegmentationmethod

maybetheonechosenin regionswheremaximalanatomicalknowledgeis needed,suchas

whenlabelingcorticalsulci andgyri, or segmentinghard-to-seeregionssuchastheglobus

pallidus.

SimpleFiltering

Morphologicaloperationsinvolve filtering a labelmapsuchthat theboundaryof a labeled

region either grows (dilation) or shrinks(erosion). Sequencesof morphologicalopera-

tionscanaugmentmanualsegmentationby filling in smallholesor breakingconnections

23

Page 24: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure2-2: Slicesfromamedicalimagedataset.Only threesliceswereselectedfor display,but theentireimagevolumecontains124slices,each1.5mm thick. Manualsegmentationinvolveseditingoneach2D slicethatcontainsthestructureof interest.

betweenregions.

Thresholdingis anotherfiltering methodthat is usedto label voxels whosegrayscale

valuesarein a desiredrange.Oneof thesimplestsegmentationmethods,thresholdingcan

only beusedwhenthegrayscalevaluesin theregionof interestoverlapvery little with the

grayscalevaluesseenin thesurroundingimage.

2.1.2 Local Intensity KnowledgeUsedby Algorithm

In this sectionwe describealgorithmsthat uselocal grayscalevaluesin someway when

performingsegmentation.Thealgorithmsplacedin this category arequitedissimilar, but

havebeengroupedtogethersincetheirmainsourceof informationis grayscalevalues.

Li vewire

Livewire is an image-featuredriven methodthat finds the optimal path betweenuser-

selectedimagelocations,thusreducingtheneedto manuallydefinethecompleteboundary.

This interactionis formulatedasadynamicprogrammingproblem:thedisplayedlivewire

contouris theshortestpathfoundbetweentheselectedpoints,wherethedistancemetricis

basedon imageinformation. Theimageinformationusedby implementationsof livewire

hasincludedimagegradients,Laplacianzero-crossings,andintensityvalues[8, 29].

24

Page 25: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Mar ching Cubes

In MarchingCubessegmentation,isosurfacesarefound alonga chosengrayscalevalue,

essentiallyseparatingvoxels of a higher value from voxels of a lower value [26]. This

is accomplishedby an algorithm that placescubesconnectingthe voxel centers,and if

the isosurfacelies in the cube,it decideswhat type of local surfacepolygonshouldpass

throughthecube.Therearea limited numberof possiblesurfacetopologies,whichallows

this localapproachto rapidlyconstructa three-dimensionalpolygonalmodel.This typeof

segmentationis directly applicableto medicalimagedatawhenthe desiredstructurehas

veryclearandconstantboundaries,suchasbonein aCT image.

2.1.3 Global Statistical Intensity KnowledgeUsedby Algorithm

In thissectionwedescribealgorithmsthatuseglobalgrayscaleinformationwhenperform-

ing segmentation.

Expectation-Maximization (EM)

The EM algorithm is a methodfrequentlyusedin machinelearningto fit a mixture of

Gaussiansmodelto data. It is a two-stepmethodthat is applicablewhenonly partof the

datais observable.Thefirst step,expectationor E-step,assumesthatthecurrentGaussian

mixture model is correctand finds the probability that eachdatapoint belongsto each

Gaussian.Thesecondstep,maximizationor M-step,“moves” theGaussiansto maximize

their likelihood(i.e. eachGaussiangrabsthepointsthattheE-stepsaidprobablybelongto

it).

In EM segmentationof the brain [36], the knowledge,or model,canbe expressedas

“therearethreetissueclasses,graymatter, white matter, andCSF,” “tissueclasseshave a

Gaussianintensitydistribution” and“MR inhomogeneitiesareamultiplicativebiasfield.”

As appliedto imagesegmentation,the EM algorithm iteratively estimatesthe tissue

classassignmentsof the voxels (in the E-step)anda multiplicative biasfield (in the M-

step).Theoutputof thealgorithmis aclassificationof voxelsby tissuetypeandanestimate

of thebiasfield. As theEM methodusesprior knowledgeof thenumberof tissueclasses

25

Page 26: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

to segment,andcanbe initialized with a prior distribution on pixel class,it makesquite

sophisticateduseof grayscaleinformation.

2.1.4 Global ShapeAssumptionsUsedby Algorithm

In this section,“anatomicalknowledge” refersto a global assumptionmadeby the algo-

rithm that influencesthe type of shapesthat will be segmented. This is in addition to

knowledgeof grayscalevaluesor gradients,etc.,thatmaybeusedby thealgorithm. The

most-usedshapeassumption,which is usefulfor segmentingmany typesof medicaldata,

is thatanatomicalstructureswill havesmoothboundarieswithouthighcurvature.

In somecasesthis assumptionmay fail, suchas in vesselsegmentationwherehigh

curvatureis expectedaroundthe vesselandlow curvaturealongthe vessel.The original

assumptionhasbeenmodifiedto allow highercurvatureto remainaroundvessels,amodi-

ficationwhich introducesmoreknowledgeinto thealgorithm[25].

Segmentationalgorithmsusingthis typeof shapeknowledgeareknown asdeformable

models,andincludesnakesandlevel sets[5, 28, 23]. In thesemethods,thesegmentation

problemis formulatedasan energy-minimizationproblem,wherea curve evolvesin the

imageuntil it reachesthelowestenergy state.

Thesetypesof modelssubjectthecurve to externalandinternalforceswhich control

the evolution. The forcesrepresentthe two typesof knowledgeusedby the algorithm:

grayscaleand shape. The external forcesare derived from imageinformation, and use

knowledgesuchas “high gradientsare found along the borderof the region to be seg-

mented.” Theseexternal forcesarewhat causethe curve to stopevolving (for example

whenit reachesahigh-gradientborderin theimage).Theinternalforcescontroltheshape

of the curve usingthe knowledgethat “low curvatureandslow changesin curvatureare

expected”[28]. For a curve thatevolvesinward,thebasicinternalforcewould causeit to

haveaspeedproportionalto its curvature,whichwouldquickly smoothsharpcurveswhile

keepinglow curvatureregionsthesame.

26

Page 27: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Snakes

Snakes are two-dimensionaldeformablemodels,generallyrepresentedas parametrized

curves,that evolve in the planeof a grayscaleimage. Manualcurve initialization is fol-

lowedby curveevolutionuntil thesnakesettlesinto a low-energy state,at whichpoint it is

expectedto enclosethestructureof interestin theimage.

Level Sets

In level setmethods,thecurve to beevolvedis embeddedinto ahigherdimensionalspace.

Thenthe higher-dimensionalrepresentationis evolved insteadof the original curve. The

advantageof this approachis that topologicalchangesof the original curve canbe han-

dled,sincethesechangesdo not complicatethehigher-dimensionalrepresentation[5]. In

addition,this algorithmextendsto arbitrarydimensions.

For example,whensegmentinga2D image,the2D curve is embeddedin a3D surface.

Thesurfaceis generallyinitialized asthesigneddistancefunction from thecurve, which

meansthatpointson the curve have valuezero,pointsinsidethe curve arenegative, and

pointsoutsidearepositive.Thesevaluescanbethoughtof astheheightof thesurfaceabove

or below theimageplane.Consequently, thesurfaceintersectstheimageat thelocationof

thecurve. As thecurve is at height0, it is calledthezerolevel setof thesurface.

Thezerolevel setremainsidentifiedwith thecurveduringevolutionof thesurface.The

final resultof segmentationis foundby cuttingthesurfaceatheight0 to producetheoutput

curve in theimage.

2.1.5 Local GeometricModels Usedby Algorithm

A geometricmodeldescribesrelationshipsbetweenstructuresin an imagevolume. This

typeof informationis usedlocally to betterclassifyvoxelsin anextensionof EM segmen-

tation,asfollows.

27

Page 28: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Modelsof Local RelationshipsbetweenStructures

Onegeometricmodelof relationshipsbetweenanatomicalstructuresis known asa dis-

tancemodel. This type of modelencodesinformationsuchas“structureA lies about10

mm above structureB.” Sucha modelis createdby choosingprimarystructuresin a seg-

mentation(structureseasilyidentifiablebyautomatic,low-level imageprocessing)andthen

mathematicallydescribingtheir relationshipsto secondarystructures,which areharderto

detectautomatically[18]. Thefully-trainedmodelmaybeusedto createa statisticalprior

distribution on structure,expressingthe likelihoodthat thevoxel in a certainlocationwill

containa certainsecondaryanatomicalstructure. This prior distribution canbe usedto

initialize a statisticalclassifier, suchas the EM-MF (ExpectationMaximization-Markov

RandomField) segmenter, a noise-insensitive variantof the EM segmentationalgorithm

[18].

2.1.6 Global Anatomical Models Usedby Algorithm

Algorithms in this sectionuseglobal anatomicalinformationiteratively during execution

to improvetheclassificationof voxels.

Templates

A templateis aglobalanatomicalmodel,suchasananatomicalatlas,whichcanbefittedto

datato guidesegmentation.Theadaptive, templatemoderated,spatiallyvaryingstatistical

classification(ATM SVC) methodwarpsananatomicalatlasto thedataduringsegmenta-

tion [34]. Thenit createsdistancemapsfrom eachstructurein thewarpedatlas:thesemaps

basicallygive the likelihoodthat any voxel is part of a the structure.This informationis

usedto spatiallymodify thestatisticalclassificationthatis performed.

ShapeModels

Anotheruseof distanceis in thecreationof shapemodels.Shapemodelscanbecreated

from a training setof signeddistancemaps[24]. The modelsarederived from the data

usingPrincipalComponentAnalysis,or PCA,whichfindsthemeanshapeandtheprimary

28

Page 29: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

modesof variationof theshape.(In PCA,thetrainingsetis modeledasahigh-dimensional

Gaussian,whereeigenvectorsof thecovariancematrix aretheprincipalaxesof variation,

andeigenvaluesindicatehow muchvariationoccursalongthe axes[24]. Theseaxesare

alsoknown asmodesof variation.)

Thesigneddistancemapshapemodelis suitedto integrationinto a level setsegmenta-

tion methodsincetherepresentationof theshapeis thesameasthesurfacerepresentation

in thealgorithm.Botharesigneddistancemaps,wherethe0 level set(thesetof all voxels

with value0) is a smoothsurfacethatrepresentsthecurrentshape.

By addinganotherterm to the energy-basedevolution equation,the level setcanbe

pulled toward toward the currentbest-fit shapethat can be derived from the model. To

influencethelevel setevolution, thelocation(pose)of theshapeandthemostlikely shape

parametersmustbe estimatedat eachiterationof thesegmentationalgorithm[24]. Then

thesurfaceevolution is encouragedto evolve towardthis currentlymostlikely shape.

2.2 Important Factorsin Comparing SegmentationMeth-

ods

Whenevaluatingsegmentationmethodsfor a particularapplication,the following factors

areimportant.

� Runningtimeand/oramountof userinteraction

� Accuracy

� Reproducibility

� Generality/Applicabilityto theproblemat hand

We will discussthesefactors,with theaim of providing thenecessarybackgroundfor

evaluationandcomparisonof our algorithmlaterin thethesis.

29

Page 30: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Automatic RequiresInitialization Semi-Automatic ManualMarchingCubes Level Sets Snakes ManualEditingATM SVC LivewireEM PhasewireEM-MFLevel SetandShapeModel

Table2.1: Divisionof segmentationalgorithmsby automaticity.

2.2.1 SegmentationTime

The overall time to completea segmentationincludesthe runningtime of the algorithm

and/orthetime spentperforminginteractive segmentation.Thealgorithmsdescribedpre-

viously fall into four categories:automatic,automaticafter initialization, semi-automatic,

andmanualasshown in Table2.1.Thesemi-automaticalgorithmsareexpectedto takeless

time thana manualsegmentation,which maytake from minutesto daysdependingon the

numberof structuresandslices.Therunningtime of theautomaticalgorithmslistedis on

theorderof secondsto hours,dependingon thealgorithmandthemachineon which it is

run.

2.2.2 Accuracy

The accuracy of a segmentationalgorithm is generallyevaluatedby comparisonwith a

manualsegmentation,asthereis nogoldstandard.Ideally, all methodsshouldbeevaluated

for performanceon datafrom aphantomor cadaver, but this is not practical.Sotheexpert

manualsegmentationis comparedwith theoutputof thesegmentationmethod,oftenwith

volumetricmeasuresthat do not addressthe main questionof surfacedifferenceson the

boundaryof thesegmentation.

Thefollowing measurescouldbeusedfor evaluationof accuracy:

� Volume

� Histogrammingby intensityof pixels on edge,just inside,and just outsideof the

boundary

30

Page 31: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

� Overlapmeasures:fraction of pixels in structureA that arenot alsoin structureB

andviceversa,aswell asfractionof thetwo surfacesthatis commonto both

� Histogrammingof overlappingandnon-overlappingpixels

� Boundson distancebetweenthesegmentedsurfaces

2.2.3 Reproducibility

Reproducibilityrefersto theability of analgorithmor operatorto producethesameresults

morethanonce,or for differentoperatorsto producethe sameresult. This canbe eval-

uatedusing the samemeasuresasfor accuracy, except that insteadof comparingwith a

manualsegmentation,comparisonis donebetweensegmentationsthathave beenredone,

or reproduced.

2.2.4 Generality and Applicability

Generalityis considereduseful in a segmentationmethod,and the introductionof more

knowledgemaylimit generalityby reducingtheapplicabilityof a methodto varioustypes

of data.On theotherhand,if analgorithmexistswith beneficialknowledgeof thespecific

problemat hand,it will bepreferredfor theapplication.

31

Page 32: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Chapter 3

Background: The Li vewire Method

In this chapter, the Livewire methodis explainedin detail. We describethe stepsof the

algorithmanddiscussexisting implementationsof livewire. Then in Chapter5 we will

situateour systemin theframework introducedhere.

3.1 The Stepsof the Li vewireAlgorithm

Themotivationbehindthelivewire algorithmis to provide theuserwith full controlovera

segmentationwhile having thecomputerdomuchof thedetailwork [1]. In thismanner, the

user’s anatomicalknowledgecomplementsthe ability of thecomputerto find boundaries

of structuresin animage.

Initially whenusing livewire, the userclicks to indicatea startingpoint, andthenas

themouseis moved it trails a “li ve wire” behindit. Whentheuserclicks again,this live

wire freezes,anda new livewire startsfrom theclickedpoint. Imagesdemonstratinguser

interactionduringasegmentationwereshown in Chapter1 in Figure1-6.

Herewe first usean analogyto motivateintroductionof the detailsof the algorithm,

thenwe give an overview of its two steps. Thesestepsarethendiscussedfurther in the

remainderof thechapter.

In Livewire, the userdraws with a “sticky contour” that snapsto boundariesin the

image. This analogywith “stickiness”providesa perfectintuitive understandingof the

method.The“stickiness”of eachpixel in the imageis determinedby measuringits local

32

Page 33: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

imagecharacteristics.Thestickiestpixelsarethoseneara boundarybetweenstructuresin

the image. Thesepixels attractthe livewire. Consequently, whenthe userselectspoints

of interestfor segmentation,thecontouris drawn alongthe“stickiest” pixel pathbetween

them.

Continuingwith theanalogy, the livewire methodhastwo stepswhich canbethought

of asfollows:

� “Stickiness”step:Imageinformationis usedto assignstickinessvaluesto all points

in theimage.

� “Stickiest” step:A contouris drawn, alongthestickiestpossiblepaththatconnects

thetwo pointstheuserhaschosen.

Thelivewire algorithmworksby solvinga dynamicprogrammingproblem,thesearch

for shortestpathsin aweightedgraph.Thetwo mainpartsof thelivewire algorithmarethe

creationof aweightedgraphusingimageinformation,andthenthecalculationanddisplay

of theshortestpathsin thegraph[7, 29]. Returningto the“stickiness”analogy, but adding

the information that stickinessis really a costvaluein the weightedgraph,we have the

following asthetwo stepsin thelivewire method:

� “Stickiness” step: Image information is usedto assigncoststo all points in the

weightedgraph.

� “Stickiest” step:Thecontourfollows theshortest,or lowest-cost,pathin thegraph

thatconnectsthetwo pointstheuserhaschosen.

Thefirst stepemploys imagefiltering to extractfeaturesof interestin theimage,which

arethenpassedthrougha costfunctionto producegraphweights.Thelivewire methodis

traditionally driven only by imageinformation,with no explicit geometricconstraint,so

extractingknowledgefrom theimageis of primaryimportance.

The secondstepusesDijkstra’s algorithm,a well-known shortest-pathalgorithm, to

find shortestpathsin thegraph[6]. So each“sticky contour”drawn on the imageby the

33

Page 34: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

useris actuallya shortestpath,wherethedistancemetric thatdefines“shortest”is based

on imageinformation.

Now weproceedwith moredetailsfrom eachstep.

3.2 StepOne: Creationof the WeightedGraph

3.2.1 Graph Representation

Thefirst stepin thelivewire processis theconversionof informationfrom theimageinto a

weightedgraph.Thisallows(in steptwo) theapplicationof Dijkstra’sgraphalgorithmfor

findingshortestpaths.

A weightedgraphis anetwork of nodesconnectedby graphedges,whereeachedgehas

a weightassociatedwith it. Figure3-1 shows anexampleweightedgraph.Theweight,or

cost,is thepenaltyfor traveling from onenodeto anotheralongtheedge.Theshortestpath

betweenany two nodesis definedasthatpathwhichhasthelowesttotalcost(calculatedby

summingcostsalongall edgesin thepath).So,to go from thegreennodeat thebottomto

therednodein theupperright, therearetwo paths:onethatgoesdirectly, andanotherthat

travelsthroughthebluenode.Theshortestis thedirectonehere(totalcostof 4 asopposed

to 15).

Thegraphis essentiallyoverlaidon thegrayscaleimage,andtheuserdrawssegmenta-

tion pathsalongtheedgesof thegraph.Sothegraphedgesdefinethepossiblesegmentation

boundariesin theimage.

Thepurposeof theweightson thegraphis to definethecostto segment(travel) from

oneimagelocation(node)to another. Saidanotherway, theweightsarethe imageforces

thatattractthelivewire. Desirablesegmentationboundariesin theimageshouldcorrespond

to low weightsin the graph: from the user’s perspective, thesedesirableboundariesare

“sticky.”

The functionof the weightedgraphis now clear, but its physicallocationis not. The

weightedgraphcanbethoughtof asa latticethat lies on top of theimage,but how should

it be alignedwith the image?Shouldthe nodesbe pixels? Or shouldthe edgesbe pixel

34

Page 35: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

10

1

5

4

Figure3-1: A weightedgraphexample.Thenodesarethecoloredcircles,while theedgesarethearcswith arrows thatconnectthenodes.Eachedgehasa weight,or cost,numberbesideit. This is the cost for traveling along the edgein the direction indicatedby thearrow.

edges?Eitherapproachseemsto makesense.

Theproblemof aligningtheweightedgraphwith theimagedatahasbeenapproached

in two waysin the literature. Both methodsareshown in Figure3-2. The first way is to

placea nodeat eachcornerof eachpixel, andhave the graphedgesbe alignedwith the

“cracks” betweenpixels[7]. Our first standardlivewire implementationusedthis method,

andweencounteredprosandconsasdescribedin Table3.1.

Pros

Speed Fastshortpathssincethereareonly 4 neighborsfor eachnode.Smoothness Several(3) edgesarerequiredto encloseaprotrudingpixel.Subpixel Infinitesimallythin boundary.

Cons

Interaction Usernodeselection(of pixel corners)is ambiguous.Complexity Shortestpathenclosespixelsin thestructure.Complexity Must segmentclockwiseto know whichpixelsarein thestructure.

Table3.1: Prosandconsof situatinggraphnodesonpixel corners.

35

Page 36: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure 3-2: Two methodsof aligning the weightedgraphand the image. The dashedsquaresrepresentpixels in the image. The circles are graphnodes,andall edgesleav-ing thebluecenternodeshavebeendrawn. On theleft, thegraphis alignedwith theimagesuchthatthepixel cornersarethegraphnodes,andtheedgesseparatepixels.On theright,thegraphis alignedsothatnodesarein thecenterof eachpixel, andedgesconnectpixels.

Thesecondmannerof aligningtheweightedgraphwith theimagesis to treateachpixel

as a nodein the graph,and consequentlyplacethe graphedgesas connectorsbetween

pixels [29]. Table 3.2 lists the pros and consof this method,as experiencedwith our

implementationof phase-basedlivewire usingthis graphalignment.

In our application,the “path alongpixels” methodwasfound to be preferableto the

“path along pixel edges”method,primarily due to the easieruser interaction. In other

words,choosingapixel cornerasastartpointdoesnotmakemuchsenseto users,andthat

becameapparentin their commentsregardingthis implementation,suchas“it wasmore

difficult to handlethe“tail” of thelivewire.”

However, it is importantto note that when choosinga path along pixels, it may be

harderto definethe local boundarycharacteristics.This is becausea “pixel crack” may

betterdivide two dissimilar regions than a line of pixels, sincethe pixels are contained

within oneregion or another. So in factpixels thatshouldbelongto bothregionsmaybe

chosenaspartof the “boundaryline” of pixels. Thenwhentheboundaryline is included

in thefinal segmentedshape,it maycontainmorepixelsthandesired.

To get a visual ideaof the paththat is followed in the imageandgraph,graphedges

havebeendrawn overasegmentationin progressin Figure3-3. Thisfigureshowstheeight-

36

Page 37: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Pros

Interaction It is clearwhichpixel is chosenby theuser.Simplicity Labelingpixelsfor displayof thepathis straightforward.Simplicity Theusermaysegmentin any direction.Speed Eight neighborspernodedoesn’t significantlyslow shortestpaths.

Cons

Smoothness Only two edgesareneededto connectanerrantprotrudingpixel.Speed Filteringcanbeslower if it is donein eightorientations.Accuracy Theboundaryline mayincludepixelsfrom bothregions.

Table3.2: Prosandconsof situatinggraphnodeson pixel centers.

connectedversionwherethepathtravelsalongthepixelsin theimage.At thehighlighted

yellow endpoint,thepossiblefuturedirectionsthatthepathmaytake(all outward-traveling

graphedgesfrom theyellow node)areshown with bluearrows.

3.2.2 Local Image Features

The weightson eachedgein the weightedgrapharederived from somecombinationof

imagefeatures,wherean image“feature” is any useful informationthat canbe obtained

from the image. In otherimplementations,thesefeatureshave includedimagegradients,

Laplacianbinary zero-crossings,andintensityvalues[8, 29]. Generally, the featuresare

computedin aneighborhoodaroundeachgraphedge,transformedto givelow edgecoststo

moredesireablefeaturevalues,andthenlocally combinedin someuser-adjustablefashion.

Thepurposeof thecombinedfeaturesis edgelocalization,but individual featuresare

generallychosenfor their contributionsin threemainareas,which we will call “edgede-

tection,” “directionality,” and“training.” Wegivehereanoverview of theseareas,andthen

laterwediscussthespecificsof two implementationsof livewire-stylesegmentationtools.

37

Page 38: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure3-3: Livewire shortestpath. Thearrows representthegraphedgesfollowedwhencalculatingthis path.

EdgeDetection

Edgedetectionis fundamentalin the livewire segmentationprocess.Thegradient[8] and

the Laplacianzero-crossing[30], aswell our new feature,phase,areprimarily useful in

edgedetection.(More detailscanbefoundin Section3.2.3.) Thesefeaturesarethemain

attractorsfor thelivewire.

Dir ectionality

The overall summingof costsalong the pathwill prevent most incorrectlocal direction

choices,sincethey will lead to higher path cost in the end. However, this may not be

enoughto preventsmall incorrectsteps,especiallyin the presenceof noiseor nearother

attractivestructures.

Variousfeaturescaninfluencewhichdirectionthepathshouldtake locally. Directional

38

Page 39: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

gradientscomputedwith orientedkernels[8], or the“gradientdirection” featurebasedon

theanglebetweeneachpotentialedgedirectionandthelocal gradients[30], provide local

directioninformation.Detailsof thecomputationof thesefeaturescanbefoundin Section

3.2.3.

An interestingability of the livewire, if the directionof segmentationis known (i.e.

clockwise),is to distinguishbetweeninsideandoutsidepixels [8]. Consequently, instead

of beingattractedbyall areaswith gradientof X, thelivewirecanpayattentiononly to those

regionswith suchagradientwheretheinsideis, for example,brighterthantheoutside.This

ability of the livewire to orient itself is useful,especiallyin avoiding similar boundaries

with thereversedsense,thoughthedirectionalrestrictiononsegmentationcanbeconfusing

to users.

Training

This is theprocessby which theuserindicatesa preferencefor a certaintypeof boundary,

andthe featuresaretransformedaccordinglyto give low graphedgecoststo the regions

preferredby theuser. Imagegradientsandintensityvalues[8], aswell asgradientmagni-

tudes[30], areusefulin training.

3.2.3 Local ImageFeatures: Implementation Detailsfor Two Methods

Descriptionsof computingimagefeaturesfrom two publishedmethodsfollow.

Oriented Boundary Method

Theimplementationthatsituatesnodeson pixel corners(findspathsalong“pixel cracks”)

definestheneighborhoodshown in Figure3-4 [8]. This neighborhoodis usedto compute

featuresrelevant to thedarkgraphedgein thecenterof the two coloredpixels. Note that

this neighborhoodis rotatedfor all possibleorientationsanddirectionsof thegraphedge,

andthefeaturesarecomputedwith eachorientation.

Thefollowing featuresaredefinedin thelocal neighborhood,wherethelettersreferto

theintensitiesof thepixelsaslabeledin Figure3-4:

39

Page 40: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

� Intensityon the“positive” sideof theedge,wherepositive is definedrelative to the

localgradientdirection.This is p or q.

� Intensityon the“negative” sideof theedge,wherenegative is definedrelative to the

localgradientdirection.This is p or q.

� Variousgradientmagnitudefeatures,including:

��� ��������� � �� ��� ��������������������� � ����� �! "� �����#�$ "� �����%�! �� �&����('

� Orientation-sensitive gradientmagnitude,which basically multiplies the gradient

magnitudedefinedabove by �*) if the local gradientorientationdoesnot matchthe

neighborhoodorientation.

� Distancefrom boundarytracedon thepreviousslice.

t u

p q

v w

Figure 3-4: One local neighborhoodfor computinglivewire features[8]. Eachsquarerepresentsa pixel, andin this systemthegraphedgesarethe“cracks” betweenpixels. Sothedarkline separatingtheblueandgreenpixelsis anedgein theweightedgraph.

Theadvantageof theprecedingdefinitionsis that they areselective for boundaryori-

entation. This meansthat the algorithmcantell the differencebetweena boundarywith

40

Page 41: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

darker pixels insidethanoutside,andthereverse:a similar boundarywith light pixels in-

sideanddark outside. This, however, assumesthat the useris consistentlytracingeither

clockwiseor counterclockwise.

PathsAlong PixelsMethod

Thismethodis called“Intelligent Scissors,” andit alignsthegraphsuchthatthepixelsare

nodesin thegraph.Theimagefeaturesusedin this implementationfollow [29].

� LaplacianZero-Crossing:Thisbinaryfeatureis createdby convolutionwith aLapla-

ciankernel,andthenfor all neighboringpixelswith oppositesigns,thepixel closest

to 0 becomesthezero-crossing.

� GradientMagnitude: +-, .0/1 .0/2� GradientDirection:Smoothnessconstraintthatsaysthatthelink betweentwo pixels

shouldrunperpendicularto thegradientdirectionsatbothpixels.This involvesadot

productateachof thetwo connectedpixels,betweentheunit vectorperpendicularto

thelocalgradientandtheunit vectorrepresentingthedirectionof thegraphedge.

Theadvantageof this formulationis thatit includesanexplicit directionalsmoothness

constraint.But it doesnot differentiatebetweenboundaryorientations.

3.2.4 Combination of Featuresto ProduceEdgeWeights

Thetwo goalsin featurecombinationareto emphasizedesiredfeaturesandto control the

input to Dijkstra’s algorithm. The versionof Dijkstra’s algorithm that we implemented

needsboundedinput values,and in generalDijkstra’s algorithmcannothandlenegative

edgeweights,sotheconversionfromfeaturesto edgeweightsneedstohandlethesecriteria.

Severalmethodsin theliteraturehavebeenusedto transformfeaturesintoedgeweights.

Oneis to transformeachfeatureusinga function,for examplea Gaussian,whoseparam-

etersaresetsuchthat desiredfeaturevaluesareconvertedinto small values[8]. These

outputvaluesarethencombinedin a weightedsum,wheretheweightscontrol the influ-

enceof eachfeatureon thegraphweights.

41

Page 42: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Anothermethodis simplescaling,suchthat the featureimageis convertedto anedge

costimagewhosevaluesarebounded.Othervariationsareused,for examplean inverse

linearrampfunctionwill emphasizelow featurevalues,anda lookuptablecanbeusedto

applyarbitraryconversionsbetweenfeaturevaluesandedgecosts[30].

We investigatedGaussianmodels,simple scaling,inversionof featurevalues,anda

lookuptablefor combiningfeaturevaluesin our implementationsof livewire.

3.3 StepTwo: ShortestPaths

In thesecondpartof thelivewire algorithm,shortestpathsarefoundin theweightedgraph.

Thelivewire is definedastheshortestpaththatconnectsthetwo user-selectedpoints(the

last clickedpoint andthecurrentmouselocation). This secondstepis doneinteractively

so theusermayview andjudgepotentialpaths,andcontrol thesegmentationasfinely as

desired.

3.3.1 Dijkstra’ sAlgorithm

Dijkstra’s algorithmis usedto find all shortestpathsextendingoutward from thestarting

point [6]. In the standardDijkstra’s algorithm,shortestpathsto all nodesfrom an initial

nodearefound. Thealgorithmworksby finding pathsin orderof increasingpathlength,

until all shortestpathshave beenfound. Executionof the algorithm spreadsout like a

wavefront from the startpoint, looking at neighbornodesof thosenodeswhosepathhas

alreadybeenfound.

Eachnodegoesthroughtwo stepsin thealgorithm:first it is examined,astheneighbor

of a nodewhoseshortestpath hasbeenfound. It is then saved in a list of nodesthat

arepotentialcandidatesfor the “next shortestpath.” Also, its currentpathlengthandthe

neighborit wasfoundfrom aresaved.

Thenin thesecondstep,the “next shortestpath” (in increasingorderof pathlengths)

is found. Thenodewaiting in thelist (call this node3 ) thathastheshortestpathlengthto

theoriginal point is selected,andthis pathbecomesits shortestpath.Node 3 is now done

42

Page 43: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

andis removedfrom thelist. Thenits neighborsareexamined,andthepathto reachthem

is updatedif a shorterpathexiststhroughnode3 .

Becauseof themannerof executionof thealgorithm,andthefactthatall shortestpaths

arecomposedof subpathsthat arealsoshortestpaths,the path found for node 3 in the

secondstepis guaranteedto beoptimal(shortest).

A downsideof thisalgorithmin thecontext of imagesegmentationis thatshortestpaths

arefoundfrom theoriginalpointto all pointsin theimage.Thisdoesnotmakemuchsense,

asthe useris highly unlikely to segment,for example,from the centerof the imageto a

cornerin onestep.Sousingtheabovealgorithmasis wouldbecomputationallywasteful.

3.3.2 Li veWir eon the Fly

To reducethe amountof computation,first the exact amountof computationthat is nec-

essaryfor eachinteractionwith the usermustbe defined. The interactionwith the user

duringdrawing of onepathsegmentconsistsof onemouseclick to indicatethestartpoint,

followedby mousemovementindicatingasetof endpoints,andfinally anotherclick to in-

dicatethefinal choiceof endpoint.Soideally, computationshouldbeperformedto find the

shortestpathfrom theoriginal point to thefirst endpoint,andlongershortestpathsshould

becomputedonly asneededto reachadditionalendpoints.(Notethatsincepathsarefound

in orderof increasingpathlength,in orderto find apathof length 4 to thecurrentendpoint,

all pathsof length 564 mustbefoundfirst.) Thisalsoshouldbeinteractive: eachpathfrom

startto currentendpointmustbedisplayeduntil themousemovesagain,requestinganother

endpoint.

An existingalgorithmcalled“Li veWire on theFly,” doesthis: it computestheshortest

pathsfor only asmuchof the imageasnecessary[7]. It usesa modifiedversionof Dijk-

stra’s algorithmthatstoresnodescurrentlyunderinvestigationin a sortedcircularqueue,

and is able to stop executingwhen it reachesthe user-definedendpoint[7]. Computed

shortestpathinformationis retainedandre-usedwhentheusermovesthemouseagainto

chooseanotherendpoint.This is possiblebecauseof theclassiccharacteristicof Dijkstra’s

algorithm,thateachshortestpathis comprisedof prior shortestpaths.Figures3-5 and3-6

43

Page 44: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

cost = 2

cost = 1

cost = 3

cost = 4

Figure3-5: Shortestpathscomputeduntil reachingtheendpoint.Imaginethatthisdiagramoverlaysa medicalimage. Thediagramrepresentstheactionof thealgorithmasshortestpathsare computedin a region that “spreadsoutward” from a start point (blue) towardan endpoint(yellow). Beforereachingthe endpoint,all pathsof costlessthan4 mustbecomputed,andmultiplepathsof cost4 maybecomputedbeforetheendpointis found.Theinformationaboutthepathsin thegrayareais savedfor thenext interactionwith theuser,in Figure3-6.

arestylizeddepictionsof the algorithmin progress,displayingtwo stepsin shortestpath

calculationanddemonstratingthecachingof already-computedinformation.

44

Page 45: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

cost = 6 cost = 7

cost = 5

cost = 2

cost = 1

cost = 3

cost = 4

Figure3-6: Shortestpathscomputedusingprior storedinformation. Whenthe mouseismovedto thenew yellow endpoint,thealgorithmstartscomputingremainingpathsof cost4, basedon thecachedinformationfrom thegrayregion, andit will computepathsin theblue areauntil reachingthe endpoint. Whenthe endpointis reached,all pathsof costs5and6, andsomeof cost7, will havebeencomputed.

45

Page 46: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Chapter 4

Background: Local Phase

In this chapter, we give a theoreticaloverview of the conceptof local phase. This pro-

videsthebackgroundfor ourapplicationof localphaseto user-guidedimagesegmentation,

which is describedin Chapter5.

4.1 Fourier Phase

TheFourier transformof a signalcanbea complex signal. Thinking of theFourier trans-

form asa decompositionof thesignalinto sinusoids,themagnitudeof thecomplex signal

givestheamplitudeof thesinusoidof eachfrequency, while theargumentof thesignal,the

phase,describesthespatial(or time)shift thesinusoidundergoes.

Signalsthat areevenly symmetricaboutthe origin will have real Fourier transforms,

while signalsthathave anoddsymmetrywill have imaginaryFourier transforms.So the

cosinehasa real Fourier transform,which meansthat the argument,or phasespectrum,

mustbe 0 (or 7 ) for all frequencies.Similarly, the sinehasa purely imaginaryFourier

transformanda phaseof 798;: (noteit is a cosinephase-shiftedby 90 degrees).Sinusoids

thatareneitherperfectlyoddnorevenwill haveFouriertransformsthathavebothrealand

imaginaryparts,andtheirphasewill describetheirsymmetryabouttheorigin (for example,

moreoddthaneven,or viceversa).

Figure4-1 motivatestheintroductionof local phasewith plotsof two simplesinusoids

thatexhibit differentsymmetriesabouttheorigin, thesineandthecosine.

46

Page 47: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

0

0

0

0

Cosine Sine

Figure4-1: Basicsinusoids:the sineandcosine. The sine is a 90-degreephase-shiftedversionof thecosine.About theorigin, thecosineis evenly symmetricwhile thesinehasanoddsymmetry.

4.2 Intr oduction to Local Phase

The local phaseaimsto mimic thebehavior of theFourierphaseof a signal,localizedby

a spatialwindowing function. The similarity betweenlocal andglobal phaseshouldnot

betakentoo far sincethey areverydifferentconcepts.TheFourierphasedescribesspatial

relationsglobally, andthethelocalphasegivesasymmetrystatementaboutthesignalin a

certainposition.However, for asimplesignalsuchasasinusoidof acertainfrequency, the

local phasecoincideswith theFourierphase.

The local phaseof a sinusoidis shown in Figure4-2. At eachpoint, the local phase

value is equivalent to the Fourier phasethat would be calculatedif that point were the

origin.

We will continuedescribingthe local phaseasfollows. First we will definethe local

phasefor one-dimensionalsignals,thenwe describeanextensionto two-dimensionalsig-

nals.Wethenmotivatethisextensionby giving anexampleof thelocalphaseof asynthetic

image.Finally, wesummarizetheadvantagesof localphasefor imagesegmentation.

47

Page 48: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

−6 −4 −2 0 2 4 6−1

−0.5

0

0.5

1

−6 −4 −2 0 2 4 6−3

−2

−1

0

1

2

3

Figure4-2: Localphaseof a sinusoid.

4.3 Local Phaseof a One-DimensionalSignal

4.3.1 Definition of Local Phase

Thelocal phaseasusedin this projectis a multidimensionalgeneralizationof theconcept

of instantaneousphase,which is formally definedin onedimensionastheargumentof the

analyticfunction

<$= �?> ' , < �@> 'A��B <DCFE �@> ' (4.1)

where<$CGE

denotestheHilbert transformof<

[2, 3].

TheHilbert transformin onedimensionis aconvolution,definedas

<DCFE �@> ' , < �@> 'AHI� )7 > (4.2)

48

Page 49: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

[13].

So in the Fourier domainthe Hilbert transformbecomesa multiplication operation,

wherethesignfunctionmeansamultiplicationby thesignof thefrequency, whichis either

positiveor negativeone.

J CGE � �F' , J � �K'ML�B L�NOBQP 3 � �F' (4.3)

[13]

An analyticfunction,by definition,hasno negative frequenciesin theFourierdomain.

The formula for the analytic function in the Fourier domainis clearly just a removal of

negativefrequencies:

J = � �F' , J � �K'R��B J CGE � �F' , J � �K'0ST)G �NOBQP 3 � �K'VU (4.4)

This hastheeffect of doublingthepositive frequenciesandcancelingout thenegative

ones.This operationis not asdrasticasit appears,sincefor a real input signal,“chopping

off ” thenegative frequenciesdoesnotdestroy any information.This is becausefor signals

thatarepurely real in the spatialdomaineachhalf of the frequency spacecontainsall of

thesignalinformation[13].

4.3.2 PhaseMeasurementin OneDimension

Theanalyticfunction,asthenameimplies, is usefulin theanalysisof theoriginal signal.

Fromthe analyticfunctiononecanrobustly measurethe instantaneousamplitude,phase,

andfrequency of theoriginal signal[13].

� Theinstantaneousamplitudeis measuredastheamplitudeof theanalyticsignal.

� Theinstantaneousphaseis measuredastheargumentof theanalyticsignal.

� Theinstantaneousfrequency is therateof changeof theinstantaneousphaseangle.

For a puresinusoid,the instantaneousamplitudeandfrequency areconstant,andare

equalto theamplitudeandfrequency of thesinusoid.This is interestingbecausemeasuring

49

Page 50: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

theamplitudeW of theoriginal sinusoidwill give any numberbetween� W and W , while

measuringtheamplitudeof theanalyticsignalwill give thetrueamplitudeof theoriginal

signal. The instantaneousphaseof the puresinusoid,on the otherhand,is not constant:

it variesasthe local phaseanglechangesover eachperiodof the sinusoid. This givesa

sawtoothsignalasshown in Figure4-2.

The instantaneousphaseof a simpleone-dimensionalsignal is shown in Figure4-3.

This simplesignalcanbe thoughtof as the intensityalonga row of pixels in an image.

Notethat in this “image” therearetwo edges,or regionswherethesignalshapeis locally

odd,andthephasecurvereactsto each,giving phasevaluesof 798;: and � 798;: . Oursystem

usesthesephasevaluesto indicatethe presenceof anatomicalboundaries,or desireable

contoursfor thelivewire to follow.

−pi

−pi/2

0

pi/2

pi

Figure4-3: A simplesignal(top),andits instantaneousphase(bottom).

This examplealsoshows the global aspectsof the local phase:sinceit is measured

within a window, it is affectedby nearbyvariationsin thesignal. Consequentlytheeffect

of theedgesin thesignalin Figure4-3 is seenalsoin theneighborhoodof theedge,giving

thephasea smoothslopethroughout.

50

Page 51: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

4.4 Local Phaseof a Two-DimensionalSignal

The extensionof the above definition of local phaseto two or higherdimensionsis not

straightforward,becausethereis nocleardefinitionof negativefrequency in morethanone

dimension.Wedescribethetwo-dimensionalcasehere.

In two dimensions,a referencedirectionmaybe chosenin the Fourier plane,andthe

local phasecanbecomputedalongthatdirectionexactlyasdescribedfor onedimensional

signals.This approach,however, will not suffice becausewe areinterestedin a statement

abouttheoverall symmetrythatis not limited to only onedirection.

To provide rotationalinvariance,the orientedfilter kernelsusedin estimationof lo-

cal phasehave a X!Y N / angularfunction assuringevencoverageto the Fourierplanewhen

summed.Thisallowscomputationof thephasein any directionandin addition,estimation

of thelocalorientationof imagefeatures,with afixednumberof filter kernels[22, 17,13].

Alternativemethodsto estimatelocalphasein onedimensionincludefor exampleusing

Gaborfilters or first andsecondderivativeGaussianfilters [37]. Extendingthesemethods

to higher dimensions,althoughconceivable, is not straightforward. Challengesinclude

optimal cancellationof negative frequencies(sincetheoddandevenpartsof thesefilters

arenot relatedthroughtheHilbert transform),andobtainingrotationalinvariance(which

canbeproblematicsincetheangularfilter shapeis dictatedby thefilter creationprocess).

4.4.1 Inter preting the Local Phaseof a Two-DimensionalImage

The local phaseof an imagedescribeshow evenor odd thesignalis in a window around

eachpixel. Consequently, structuresof interestsuchaslinesandedgesin theimagecanbe

detectedanddifferentiated.Thelocal phaseof linesandedgescanbevisualizedon a unit

circle wheretheprototypicalstructuresof phaseZ , / 7 , 7 , and�/ 7 aredrawn alongsidethe

circle[13]. Thisrepresentationof phaseis shown in Figure4-4,where / 7 and�/ 7 represent

edgesof differentorientations,while Z and 7 representdark or light lines. Intermediate

phasevaluesgive thelocalbalancebetweentheclosesttwo prototypestructures.

Edges,or transitionsbetweenlight anddarkin theimage,areoddfunctions,sothey are

expectedto have phasethat is a multiple of / 7 . Conversely, lines,beingevenfunctions,

51

Page 52: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

O

Figure4-4: Localphaseontheunit circle[13]. Notethatany combinationof line andedge,light or dark,canberepresentedasanangle.

shouldhave phasevaluesnear Z or 7 . Figure 4-5 shows the local phaseof a synthetic

exampleimage.It is clearfrom thefigurethatlocalphaseisaveryreasonableedgedetector,

which is adesirablepropertyin guidanceof interactivemedicalimagesegmentation.

4.5 Advantagesof Local Phase

Thelocalphasehasseveraladvantagesin thecontext of imagesegmentation:

� The local phaseis invariant to signal intensity. (This is becauseby definition the

phaseandmagnitudeof a complex numberareseparate,so themagnitudedoesnot

affect thephase.)Consequently, linesandedgescanbedetectedfrom smallor large

signalvariations.

� Thelocalphasegenerallyvariessmoothlywith thesignal[13].

� Local phasecanprovide subpixel informationaboutthelocationof edgesin theim-

age.(As Figure4-5shows,thephasevaluessurroundinganedgereflectthenearness

of theedge.)

� Phaseis generallystableacrossscales[9].

52

Page 53: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure4-5: Localphaseof anexampleimage.Theimageon theleft wasfilteredto extractlocalphaseinformation,whichis shown in theimageontheright. (Wegiveadescriptionofthefiltersusedin Chapter5.) In thephaseimage,valuesfrom Z to [ / aredark,while valuesof [ / to 7 arebright. Here,thephaseasshown in Figure4-4hasbeen“folded upward” suchthatall edges( � [ / and [ / ) havephaseof [ / .

53

Page 54: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Chapter 5

Phase-BasedUser-Steered Image

Segmentation

Figure5-1: Visual comparisonof phaseimageandexpert segmentation.Fromthe left, agrayscaleimage,thematchingexpertsegmentation,thephaseimage,andanoverlayof thephaseimageon thesegmentation.

54

Page 55: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

In this chapterwe describeour systemusingtheframework introducedin theprevious

chapters.Thefirst partof thechapterexplainsour algorithmin thecontext of thelivewire

overview presentedin Chapter3. Herewealsodescribeouruseof localphaseasanimage

feature,extendingconceptsintroducedin Chapter4 [31].

Thesecondpartof thechaptersituatesour algorithmin the “KnowledgeContinuum”

presentedin Chapter2. Finally, the third part of the chaptergivesdetailsof the system

featuresanduserinterface.

5.1 Phase-BasedLi vewireStepOne: Creationof theWeighted

Graph

5.1.1 Graph Representation

Thephase-basedlivewire situatesgraphnodeson pixel centers,andtheshortestpathsare

foundalongpixels. This methodof graphalignmentwaspreferredby userssinceit pro-

vided intuitive userinteraction.Theothermethod,situationof graphnodeson pixel cor-

ners,wasmoredifficult to usesinceeachmouseclick neededto defineapixel corner, which

introducedambiguity(sinceeachpixel hasfour corners).More informationaboutgraphs

usedin livewire waspresentedin Chapter3.

5.1.2 Local Image Features:EdgeDetectionUsingLocal Phase

Computationof local phasein two dimensionsis anextensionof theone-dimensionalin-

stantaneousphasedefinedin Chapter4 to two dimensions[13]. We usea setof oriented

filters,known asquadraturefilters, in computinglocal phase.Eachfilter definesawindow

of interestin boththespatialandfrequency domain(which impliesthat thekernelshould

bedesignedto capturethefeaturesof interestin thedata).Theamplitudeof thefilter out-

put is a measureof the signalenergy in the window of the filter, while the argumentof

thefilter’s output,or thephase,givesa statementaboutlocal signalsymmetrywithin the

window.

55

Page 56: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Wecomputetwo featuresfor inputto thelivewiring process.Thefirst is thelocalphase,

andthesecondwecall certainty, sinceit expresseshow certainwearethatanedgeexistsin

a particularimagelocation.Thecomputationof both imagefeaturesis describedin detail

in thefollowing sections.

Filter Kernelsin the Fourier Domain

The quadraturefilters aredesignedin the Fourier domain,whereeachfilter is limited to

half of the planein orderto filter out the negative frequencies.(Negative frequenciesin

two dimensionsaredefinedrelative to a referencedirection[13], which in this caseis the

orientationdirectionof the filter. The importantpart is that eliminatingany half of the

frequency domainallows oneto producetheanalyticsignal.Sothenany furtheractionof

thefilter is actuallyfiltering theanalyticsignal.)

We currentlyemploy four orientedfilters in computationof local phase.Thoughit is

not necessaryto usethat many filters to computelocal phase,the four filters have nice

propertiesfor computinginformation about local orientation. Exploiting this would be

interestingfor futurework.

Thefilters areorientedto provide evendirectionalcoveragein theplane,asshown in

Figure5-2. For eachfilter kernel,thenegativehalf-planeis on thefar sideof a line drawn

perpendicularto thereferencedirection. (This soundsconfusing,but is moreobviousthat

theleft half of theplaneis darkwhenweshow afilter kernelin Figure5-4.)

Thequadraturefiltersaredesignedwith a radialfrequency functionthatis Gaussianon

a logarithmicscale:\ �@] ' ,6^0_a`b cedgfihGj

flk(mon foprqqtsvu(5.1)

where] E is thecenterfrequency and w is thewidth athalf maximum,in octaves.This func-

tion is plottedin Figure5-3 for wx,�: and ] E ,y[� . Thepurposeof this kernelshapeis to

filter theanalyticsignal,keepingthelow-frequency signalof interestwhile attenuatingthe

higherfrequency componentswhich arepotentiallynoise.Thecenterfrequency basically

definesthesizeof theimageeventsthatcanbeobserved,while thebandwidthcontrolsthe

specificityto thatsizeof event.

56

Page 57: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure 5-2: Quadraturefilter orientations. Theseorientationsare the samein both thespatialandFourierdomains.Oneof theorientedkernelsis shown in Figure5-4.

Onefilter kernelis shown from abovein Figure5-4. In thiscolormap,warmcolors(the

redandmaroon)indicatelargervaluesthancoolcolors(thebluebackground).An example

setof four kernelsin theFourierdomaincanbeseenin Figure5-5.

We have found that, in addition,multiplying the lognormalfunction by a X$Y N / radial

functionwindow in thefrequency domainforcesthe“positive-frequency” tail smoothlyto

0 to avoid anabruptcutoff at theedgeof thekernel.This reducesringing artifactsarising

from the discontinuityat 7 whenusingfilters with high centerfrequenciesand/orlarge

bandwidth.

Filter Kernelsin the Spatial Domain

The filter kernelsarepurely real in the Fourier domain,which meansthat in the spatial

domainthey musthave an even real componentandan odd imaginarycomponent[13].

Consequently, eachkernelproducesapair of orientedkernelsin thespatialdomain,where

the even-shapedkernelwill be sensitive to even events(for example,lines) andthe odd-

shapedkernelwill besensitiveto antisymmetriceventssuchasedges.SeeFigure5-6 for a

filter pair.

In contrastto Gaborfilters, thesefiltershavezeroresponsefor negativefrequenciesbe-

causethelognormalfunctiondoesnot havea tail thatcrossesinto the“negative-frequency

half plane.” This ensuresthat the odd andeven partsconstitutea Hilbert transformpair

57

Page 58: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

0 0.4 pi 0.8 pi 1.2 pi 1.6 pi 2 pi0

0.2

0.4

0.6

0.8

1

Figure5-3: Profileof lognormalfilter kernelshape,asdescribedin Equation5.1. Valuesof w",z: and] E , [ � wereusedto generatethis curve.

(usingthedefinitionof theanalyticsignal)which makesthefilters ideal for estimationof

local phase[22].

Computation of Local PhaseFeature fr om Filter Output

Our goal is to detectboundariesin a medicalimagein orderto aid segmentationbetween

anatomicalstructures.This “boundarylocation” informationwill thenbecomeinput to the

livewire semiautomaticsegmentationtool. Thelocal phaseis our primaryfeature,serving

to localizeedgesin theimage:thelivewire essentiallyfollowsalonglow-costcurvesin the

phaseimage. The phasefeatureis scaledto provide boundedinput to the shortest-paths

search.

Thelocalphaseof animagedescribeshow evenor oddthesignalis in awindow around

eachpixel. Oneway to imaginethis is by thinking of a complex kernelpair in thespatial

domain,andrealizingthatthephaseis theargumentof theoutput.Consequentlythephase

anglemeasureshow much the odd (imaginary)kernel respondedversusthe even (real)

kernelin theneighborhood.SeeFigure5-7.

For input to theshortest-pathssearch,at eachvoxel we mustproduceonenumberthat

representsits “goodness”asa boundaryelementwith respectto the segmentationtaskat

hand. Consequently, it is necessaryto combinethe information from the four oriented

58

Page 59: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure5-4: An examplequadraturefilter kernelin theFourierdomain.Theothersarethesamebut orientedalongtheotherdirectionsthatwereshown in Figure5-2. This imageislikeabird’s-eye-view whencomparedto Figure5-5.

filter kernelsin orderto produceonephasevalueper pixel. We do this by summingthe

outputsof theeven(real)kernelsandsummingtheabsolutevaluesof theoutputsof theodd

(imaginary)kernels.Thenthephaseis computedastheargumentof thesummedcomplex

outputvalueat eachpixel. (This is thearctangentof theimaginarypartdividedby thereal

part,asshown in Figure5-7.)

Theabsolutevalueof theresultfrom theoddkernelsis usedto avoid pathologicalcan-

cellationof edges,whichis importantasweareprimarily interestedin theedgeinformation

from theoutput. The“pathological” (but actuallycommon)casewould bewhenanedge

is orientedsuchthatsomekernelsmeasureaphaseof approximately798{: andotherkernels

measure� 798;: . Sinceeithervaluerepresentsan edge,we first take theabsolutevalueof

theoddfilter outputsto avoid cancellationin thesum.

Figure5-8 showsaphaseimageandtheoriginal imagefrom which it wasderived.

Multiscale PhaseStability

In thissetof experiments,weshow thestabilityof phaseinformationacrossdifferentscales

[9]. The input to thequadraturefilters wasblurredusinga Gaussiankernelof variance4

pixels.Figure5-9demonstratestherobustnessof phaseinformationto changesin scale,as

59

Page 60: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

0

20

40

0

10

20

30

400

0.2

0.4

0.6

0.8

1

0

20

40

0

10

20

30

400

0.2

0.4

0.6

0.8

1

0

20

40

0

10

20

30

400

0.2

0.4

0.6

0.8

1

0

20

40

0

10

20

30

400

0.2

0.4

0.6

0.8

1

Figure5-5: Four examplequadraturefilter kernelsin theFourierdomain.

60

Page 61: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

05

1015

2025

0

5

10

15

20

25

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

05

1015

2025

0

5

10

15

20

25

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Figure5-6: Examplequadraturefilter pair in the spatialdomain. This filter kernelpairis oneof four orientedpairsusedon our data. The filter kernelon the left hasan evensymmetry, andthefilter kernelon theright hasanoddsymmetry. Thetwo kernelstogetherform a complex filter kernelpair, with the even kernel being the real part, and the oddkernelbeingthecomplex part.

Odd Filter Response

Phase Angle

Even Filter Response

Figure5-7: Phaseangleasargumentof complex filter kerneloutput. Thephasemeasuresthelocal relationshipbetweenoddnessandevenness.

61

Page 62: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure5-8: Phaseimagederivedfrom anMR scanof thebrain.

thetwo segmentationsarequitesimilar. Theleftmostimageis theoriginalgrayscaleandits

segmentation,while thecenterimageshowstheresultof Gaussianblurring. Therightmost

imagedisplaysthesegmentationcurve from theblurredimageover theoriginal imagefor

comparison.

Original Image GaussianBlurredInput Overlayof Segmentation

Figure5-9: Illustrationof insensitivity to changesin imagescale:initial image,resultofGaussianblurring, and overlay of secondsegmentation(doneon the blurred image)oninitial image.Note thesimilarity betweenthesegmentationcontours,despiteblurring theimagewith a Gaussiankernelof four pixel variance.

Computation of Certainty Feature fr om Filter Output

The phaseimage(Figure 5-8) is noticeablynoisy outsidethe brain: sincephaseis not

sensitive to signal magnitude,thereis phase“everywhere”in an image. To reducethis

62

Page 63: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure5-10: Certaintyimagederivedfrom anMR scanof thebrain.

effect, we canalsousesignalenergy informationderived from the magnitudeof the odd

(imaginary)filter outputs.(Notethattheodd-shapedfiltersaretheonesthatshouldreactto

edgesin theimagesincetheirshapematchestheshapeof anedge.)In imageregionswhere

theoddfilter outputmagnitudeis large,theenergy of thesignalis high,which impliesthat

thephaseestimatein thatregionhashigh reliability, or certainty.

We definethe certaintyusingthe magnitudefrom the odd quadraturefilters, mapped

througha gatingfunction. Thegatingfunction clampsthe uppervaluesthe certaintycan

take on, to avoid overly biasing the segmentertoward strongedges. By inverting this

certaintymeasure,sincehigh certaintyimplieslow cost,it canbeusedasa secondfeature

in the livewire costfunction. One“certainty” image,which shows how confidentwe are

that thereis anedgeat a particularlocationandat a particularscale(centerfrequency), is

shown in Figure5-10.

5.1.3 Local Image Features:Dir ectionality

Currently, we do not employ a specificfeaturethat influencesthe local directionthat the

livewire pathshouldtake. We plan in the future to investigateuseof local directionality

informationthatcanbeobtainedfrom thequadraturefilters.

63

Page 64: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

5.1.4 Local Image Features:Training

Severalfeaturesof oursystemallow theuserto input moreinformationaboutthestructure

of interest,in orderto instructthewire to performasdesired.

Feature SizeSelection

The first systemfeatureis the ability to selectthe imagefeaturesizeof interest. This is

importantsinceedgesexist at many scalesin the image,andthe centerfrequency of the

filters controlsthe scaleat which edgeswill be detected.To this end,a menufor small,

medium,andlargefeaturesizes,asdescribedin Section5.4.2,wasaddedto thePhasewire

module.

Window Leveling BeforePhaseComputation

Thesecondfeatureallowstheuserto intuitively selectthegrayscalerangeof interestin the

databy window-leveling theimages.

Originally wecomputedphasedirectlyfrom thegrayscaledata.However, dependingon

thelocal shapeof theimagesignal,thephaseedgedid notalwaysalignwith theperceived

boundaryin theimage.In orderto concentrateonly on thegrayscalerangeof interest,we

begancomputingphasefrom window-leveledimages.Window-leveling removesuninfor-

mative regionsof thegrayscalehistogram,andthusboth thephaseandcertaintyfeatures

arecomputedfrom betterinformationthanif theoriginal grayscaleswereusedfor input.

In Figure5-11theeffectof window-levelingon thecombinedphase/certaintyimageis

shown. The gray-whitematterboundariesof interestaremoremarked in the imagethat

wascomputedfrom window-leveleddata.

PhaseSelection

Thethird featureallows theuserto follow alongphasevaluesthatarehigheror lower than

[ / . Theeffectof this is to segmentmoretowardlight regions,or moretowarddarkregions.

It is similar to anerosionor dilation of theboundary.

64

Page 65: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure 5-11: Window-leveling the databeforephasecomputationbetterdefinesbound-ariesof interest.Theleftmostimageis theoriginal grayscale(displayedafterthewindow-leveling operation).The imageon the far right wascomputedfrom window-leveleddata,while the centerimagewas computedfrom raw data. (Note that in theseimagesdarkregionsare“attractive” to thelivewire.)

5.1.5 Combination of Featuresto ProduceEdgeWeights

WeinvestigatedGaussianmodels,simplescaling,inversionof featurevalues,anda lookup

tablewhencombiningfeaturevaluesin our two implementationsof livewire.

Thefinal Phasewire implementationusesa weightedcombinationof thephasefeature

andtheclamped,invertedcertaintyfeature.Beforesumming,the featuresarescaledand

convertedto integervaluesto provideboundedintegerinput to theshortestpathsearch.In

the Advancedpart of the userinterface,it is possibleto changethe relative weightingof

thefeaturesin thesum.

In Figure5-12wedisplayanexampleof thecombinedphaseandcertaintyinput to the

shortest-pathssearch.Thedarkregionsin theimagerepresentphaseof 798;: or � 798;: , and

areattractive to thelivewire. Notethatin theupperleft of theimage,in theanteriorregion

of thebrain,thereis someintensityinhomogeneity. As thelocalphasefeatureis insensitive

to this, in theright-handimage,thereis decentelucidationof local imagestructurein this

area.

A demonstrationof the utility of the two featuresin segmentationis given in Figure

5-13.

65

Page 66: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure5-12: Weightedgraphcomputedfrom areformattedsagittalneuralMR image.Theimageon the left is a reformattedgrayscaleslice throughthe original dataset,while theimageon the right wascomputedin the Slicer asa combinationof phaseandcertaintyinformation. In this case,thedarkestregionsin thephaseimagecorrespondto 8 � 798{:of phase,which is anedgein theoriginal image.

5.2 Phase-BasedLi vewireStepTwo: ShortestPaths

We usethe algorithm“Li ve Wire on the Fly” asdescribedin Section3.3.2 in Chapter3

[7]. This methodis fasterthanthestandardapplicationof Dijkstra’s algorithmwhich en-

tails computingshortestpathsfrom theinitial point to all pointsin theimage.Insteadthis

methodcomputesshortestpathsfor asmuchof the imageasnecessaryto reachthe end-

point,andstoresthis informationfor usewhenthemousemovesto selectanotherendpoint.

5.3 Situation of Our Method in the “Kno wledgeContin-

uum”

Herewe placeourmethodin the“KnowledgeContinuum”introducedin Chapter2.

66

Page 67: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Start Point

End Point

Figure5-13: Utility of bothimagefeatures:segmentationwith individual featuresandthecombination.Theleftmostimageis anattemptto segmentusingthephasefeatureonly. Thecontouris distractedby phasevaluesin theinteriorof thebladder(rememberthemagnitudeof the edgedoesnot influencephase).The centerimageis an attemptto segmentusingthe certaintyfeatureonly, and the contouris distractedby the highest-valueboundariesin theimage.Therightmostimagedisplaysa contourdrawn usinga combinationof thesefeatures,whichfunctionsbetterthaneitherfeaturealone.Thecenterfrequency of thefiltersusedwasthe“Large” settingin theSlicer, [ / .

5.3.1 KnowledgeEmployedBy Li vewireand Phasewire

Thephase-basedlivewiremethodusessophisticatedfiltering to extractlocalphaseinforma-

tion from theimage.Thisknowledgeplacesit into thecategoryof “Local IntensityKnowl-

edgeUsedby Algorithm” asdefinedin Chapter2. Livewire doesnot employ anatomical

or shapeknowledge,but its generalityand interactivity allow it to be appliedto various

segmentationproblemswhereanautomated,knowledgeablesolutiondoesnotexist.

5.3.2 Useof Additional Knowledge

Like many othersegmentationalgorithms,the informationusedas input to livewire can

be thoughtof asseparatefrom the algorithmitself. In otherwords, the featuresusedto

guide the livewire can comefrom any sourceof information, so it is possibleto inject

additionalknowledgeaboutaspecificsegmentationproblemif theknowledgeis available.

For example, information that could be incorporatedinto the weightedgraphincludes:

distancesfrom otherstructuresin the image,the distancefrom the samestructurein the

67

Page 68: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

previousslice,or aprior probabilitythatacertaingraphregionshouldcontainthestructure.

As thelivewire methodis interactive,it providesaninterestingtestbedfor featuresthat

mightbeusefulfor segmentation.Theprosandconsof thefeaturewhenusinglivewirewill

besimilar to thoseencounteredif it is usedto driveanautomaticmethod,suchaslevel set

evolution. But thelivewire is simplerandouruserpopulationat theSurgical PlanningLab

hasaccessto it, sothereexiststhepotentialfor agreatamountof feedbackfrom clinicians

regardingits performancewhenguidedby a new feature.

5.4 SystemFeatures

In thissection,weintroducespecificdetailsabouttheinterfaceanddemonstratethefeatures

thatareavailableto usersof our system.

5.4.1 User Interface for Controlling Filter Parameters

We have integratedthephase-basedlivewire segmentationmethodinto the3D Slicer, the

SurgicalPlanningLab’splatformfor imagevisualization,imagesegmentation,andsurgical

guidance[10]. Our systemhasbeenaddedinto theSlicerasa new module,PhaseWire, in

theImageEditor.

Figures5-14and5-15show the interfaceof thePhaseWire moduleandits integration

into the3D Slicervisualizationenvironment.Most of theparameterspresentedto theuser

aresimilar to thosein theDraw functionof the ImageEditor, with additionalparameters

for filter control.

5.4.2 Filter Parameters: Center Frequency

Thequadraturefilters arenot selective to grayscalevalue,nor orientation,but their shape

mustpick up theappropriateedgesin theimage.Soit is importantin practiceto choosea

centerfrequency thatcorrespondsto thesizeof thestructuresof interestin theimages.

As shown in theuserinterfacein Figure5-14, theusermayselectthe relative sizeof

the structureof interest. Experimentationwith variouscenterfrequencies,asdefinedin

68

Page 69: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Equation5.1,led to thefollowing settingswhichweemploy in thePhaseWire module:

� SmallImageFeatureSize: ] E ,|7� MediumImageFeatureSize: ] E , [} /� LargeImageFeatureSize: ] E , [ /Figure5-16shows phaseimagescomputedusingvariouscenterfrequencies.Figures

5-17and5-18demonstratetheeffecton segmentationof varyingthecenterfrequency.

5.4.3 Filter Parameters: Bandwidth

We found that setting w (the width at half maximum)to 2 for all kernelswaseffective.

w controlsthe specificityof the filter to the centerfrequency. Choosingw is a tradeoff

becauseonedesiresto restrict the filter’s responseto the frequency of interest,in order

to ignoreunwantedeventsat otherfrequencies,but onealsodesiresto includeeventsthat

occur at frequenciescloseto the centerfrequency. Setting w to 2 provided reasonable

behavior in our system,thoughfurther investigationof this parameter, perhapsfor fine-

tuningsegmentationof specificstructures,wouldbeinteresting.

69

Page 70: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure5-14: User Interfacefor PhaseWire. Optionspresentedto the useraresimilar tootherSlicereditingmodules,with theexceptionof the“ClearContour,” “Undo LastClick,”and“ImageFeatureSize”buttons,which arespecificto PhaseWire.

70

Page 71: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure5-15: 3D Slicerimagedisplayinterface,duringa PhaseWire editingsession.

71

Page 72: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure5-16: Effect of varying the centerfrequency. The phasewascomputedfrom thegrayscaleimageusingcenterfrequenciesof [ � (upperright image), [ ~ (lower left image),and [ � (lower right image).Closeexaminationshowsthatthehigherfrequency, [ � , capturesbestthedetail,thoughit is harderto interpretvisually.

72

Page 73: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure5-17: Centerfrequency example. The leftmostimageis a cervicalCT scan. Themiddle imageis a zoomon theareaof interest,a tumorborderingthe trachea.Thewhitelivewire contourcontainsthreereddots,which representthepointswheretheuserclickedin theimage.Therightmostimageis thephaseimagecomputedfrom thegrayscale,withthesegmentationcontourin yellow overlay. Thefilter kernelsusedhada centerfrequencyof 798;� . This frequency is high enoughto captureboth theposteriorborderof thetrachea(the black shape)andthe borderimmediatelybelow it, which is possiblytumor. (Sincethesefeaturesarerelatively close,they areonly separableif thecenterfrequency is chosenhighenough.)

73

Page 74: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure 5-18: Centerfrequency example,effect of a lower centerfrequency. The filterkernelsusedhada centerfrequency of 798;� . Theseimagesarefrom thesamecervicalCTasshown in Figure5-17.But thelowercenterfrequency is tunedto capturelargerfeaturesin theimage.Theleftmosttwo imagesshow thelivewire snappingto theupperandlowerregionsthatareattractive (dark) in theaccompanying (rightmost)phaseimage.Note thatthe livewire still finds anotherboundaryinferior to the trachea,but it now finds a moredistantonedueto thelowercenterfrequency (whichcorrespondsto awiderfilter in spatialdomain).

74

Page 75: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Chapter 6

Analysis of Expert SegmentationsDone

With Phasewire and Li vewire

6.1 Intr oduction

In this chapterwe presentsegmentationresultsfrom both the Phasewire andthe original

Livewire systems.

The Phasewire systemhasbeenin useat the Surgical PlanningLab at Brighamand

Women’s Hospital for four months. At the Surgical PlanningLab, we have conducted

validationtrials of thesystemandobtainedexpertopinionsregardingits functionality. In

addition,aPhasewire validationstudywasconductedatHospitalDr. Negrin in LasPalmas

deGranCanaria,Spain.

6.2 Statistical Measures

Beforepresentingsegmentationresults,we give anoverview of methodsusedto quantify

thesegmentationquality.

75

Page 76: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

6.2.1 VolumeStatistics

First, thevolumeof asegmentationis calculatedasthenumberof voxelsmultipliedby the

volumeof eachvoxel.

Now referringto Figure6-1, we definethe“PercentOverlap” of onesegmentationon

theotherasthefractionof segmentationA thatis containedwithin segmentationB. This is

thevolumeof theintersectiondividedby thevolumeof thesegmentation(A or B). Finally,

whatwewill referto asthe“Percentof Total Volumein Common”is thevolumecommon

to bothsegmentations(theintersection)relative to thetotal volume(theunion).

A A intersection B B

Figure6-1: A Venndiagram.Theunionof A andB is theentireshadedarea(bothcircles).

6.2.2 Hausdorff Distance

TheHausdorff distancemeasuresthedegreeof mismatchbetweentwo sets.Thestandard

versionidentifiesthepoint in onesetthatis thefarthestfrom theotherset,andoutputsthe

distanceto thenearestpoint in theotherset.

A generalizationof this,which is lesssensitive to outliers,sortsthedistancesbetween

eachpoint in onesetandthecorrespondingclosestpoint in theother. Thenstatisticsare

availableto quantify the nearnessof the points in oneset to the other: for example,one

canstatethat80%of thevoxelsof onedatasetarewithin a certaindistancefrom theother

dataset.

In addition,sincethemeasureis not symmetric,it makessenseto computeit for one

datasetrelative to theother, andthenviceversa,andtake themaximumresultingdistance.

76

Page 77: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

This can give an upperboundon the distanceof voxels in eachsegmentationfrom the

other. In this sectionwe usethe fourth quintile, or 80%, generalizedHausdorff distance

metric, which givesan upperboundon the distanceof 80 percentof the voxels in each

segmentationfrom theother[24].

6.3 Logging

In orderto enablevalidationof the segmentationmethod,we have createda systemthat

continuouslyrecordsuserinteractionandcangeneratea databasecontainingthe number

of userinteractions,suchasmouseevents,andtime stampsfrom variouseditingmodules.

A selectionof theeventsthatcanberecordedis listedin Table6.1.

ItemLogged Details

mouseclicks recordedperslice,perlabelvalue,pervolume,andpereditormoduleelapsedtime recordedperslice,perlabelvalue,pervolume,andpereditormoduledescription includesvolumesviewedduringthesessionusername mayallow investigationof learningcurve

Table6.1: Selecteditemsloggedby the3D Slicerfor validationandcomparisonpurposes.

This loggeddatais includedin thesegmentationinformationthat follows whenit was

reasonablyconsistent,or collectedduringacontrolledstudy. Thisis becauseseveralfactors

reducedthereliability of theloggeddata.Themainissuewasthattheprogramusagetime

was inaccurateif the userleft the 3D Slicer window openduring the day. This is very

commonpracticeat theSurgical PlanningLab,whereanopenSlicerwindow will prevent

the lossof one’s computerduringbreaksor lunch. Anotherfactoris thatuserssegmented

many scansin onesession,complicatingthelog files. Finally, someusershadthehabitof

exiting theprogramabruptlywith aCtrl-C key sequence,which preventedlogging.

77

Page 78: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

6.4 Expert Segmentations

6.4.1 Controlled SegmentationExperiments

In this sectionwe presentthe resultsof thesegmentationtrial performedby doctorsfrom

HospitalDoctorNegrin in LasPalmasdeGranCanaria,Spain.AbdominalandneuralCT

scansweresegmentedin acontrolledexperimentto ensurevalidity of theloggedinforma-

tion. Table6.2demonstratesthespeedof thesegmentationmethodusinginformationfrom

the logging system,while Table6.3 givesdoctors’opinionsregardingthe easeof useof

the systemandthe quality of the outputsegmentations.The doctors’opinionsaboutthe

systemwerepositive,andthey consideredthat thesegmentationsproducedby thesystem

weresuperiorto themanualsegmentations,sincethephasewire aidedthemin producing

smoothboundaries.

Study Method TotalClicks Clicks/Slice Time/Slice(sec) Volume(mL)

CT braintumormanual 234 26.0 39.3 68.5phasewire 97 10.8 28.7 67.3phasewire 109 12.1 25.5 69.2

CT bladder manual 1488 28.1 31.7 715.6phasewire 359 6.8 21.5 710.8

Table6.2: Examplesegmentationsperformedwith Phasewire. Clicks andtime per sliceareaveragesover thedataset.

For example,Figure6-2 showsa liversegmentationdonewith phasewire, in which the

doctor remarked that the three-dimensionalmodelwasmoreanatomicallyaccuratethan

the oneproducedwith the manualmethod,whereboth segmentationswereperformedin

approximatelythesameamountof time. Thisis likely dueto thesmoothnessof thecontour

obtainedwith phasewire, in comparisonwith thecontourobtainedwith themanualmethod.

78

Page 79: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Study Method Easeof Use SegmentationQuality

CT braintumor manual 3 3phasewire 4 4

CT bladder manual 2.7 3phasewire 4 4

Table6.3: Doctors’ comparisonof Phasewire andManualsegmentationmethodson thedatasetsfrom Table6.2.Thescaleis from 1 to 5, with 5 beingthehighest.

Figure6-2: A surfacemodelof the liver, createdfrom a phasewire segmentation,showswell-definedsurfaceindentationsbetweentheliver andthekidney andgallbladder. Thesesurfacesaremarkedwith arrows.

6.4.2 Comparisonof Manual and PhasewireTumor Segmentations

In this case,a neuralMR scancontaininga tumor wasrapidly re-segmentedby a neuro-

surgeonin his first time usingthe Phasewire system. We presenta comparisonbetween

this segmentationandthe very carefulmanualsegmentationthatwasdonepreviously by

thesameneurosurgeon. Theseresultsareshown to demonstratethata novice userof the

systemcanrapidly producea segmentationthat is similar to a manualsegmentation.The

neurosurgeonin thiscasestatedthatsomeof thedifferencesin thesegmentationsweredue

to thefactthathehadnotstudiedthecaserecently, andmighthavechosenslightly different

bordersfor thetumoreachtime.

Figure6-3 displaysmodelsgeneratedfrom bothsegmentations.ThenTable6.4makes

aquantitativecomparisonbetweenthetwo.

79

Page 80: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Original Image Manual Phasewire Overlayof Models

Figure6-3: ManualandPhasewire tumor segmentation. The manualsegmentationwascarefullydonewhile thePhasewire segmentationwasrapidly traced.

Labelmap Volumein mL PercentOverlapManual 48.866 90.87%Phasewire 47.969 92.57%

Percentof Union in Common Hausdorff Dist.84.69% 2.5mm

Table6.4: A tumorsegmentation.Between7% and9% of eachsegmentationis not con-tainedwithin theother, but 80%of thepixelsof eachsegmentationarewithin thegeneral-izedHausdorff distanceof 2.5mm from theothersegmentation.As 2.5mm wastheslicethicknessof thescan,andthein-planeresolutionwas0.859375mm, this meansthatmostboundaryvoxelswerewithin 1-3voxelsof theboundaryof theothersegmentation.

6.4.3 Pulmonary Vein Segmentations

Pulmonaryvein segmentationswereperformedin threeMR angiographycasesusingthe

originalPhasewire implementation,andthenrepeatedusinganupdatedversion.Thenewer

versioncontainedseveralimprovementsto themethod.First,thelocalphasewascomputed

after the datahadbeenwindow-leveled. This enabledthe userto indicatethe grayscale

rangefo thedataof interestin an intuitive manner. Second,thefilters wereimprovedby

multiplicationwith a X!Y NOB 3�� / radial functionwhich forcedthekernelsto smoothlygo to Zon theirboundaries.

A visualcomparisonof three-dimensionalmodelsderivedfrom thedatashowsthatthe

segmentationsdoneusingthe newer versionweremorecomplete,in that theveinscould

80

Page 81: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

be followed deeperinto the lungs. Figure6-4 shows two models,onefrom the original

Phasewire implementation,andonewherewindow-leveleddatawasusedfor local phase

computation. Both segmentationswere donesolely with Phasewire for the purposesof

thisstudy. However, sincesemi-automaticsegmentationof suchdatawastime-consuming,

it was thought that the phasewire would be betterusedas a fine-tunerto completethe

segmentationafterinitial thresholding.

OriginalPhasewire ImprovedSystem

Figure6-4: Pulmonaryveinssegmentedwith Phasewire. The modelon the left wasseg-mentedusingtheoriginal system.Thegreenmodeloverlayedin theright-handimagewassegmentedusinglocalphaseandcertaintyinformationcomputedafterwindow-levelingthedata.It capturesmoreof thepulmonarycirculation.

6.4.4 Repeatability of Thr eeMethodson the Temporal Pole

Thetemporalpole,locatedin theanteriortip of thetemporallobe,hasanimportantrole in

retrieval of semanticandepisodicmemoryespeciallyin a emotionalcontext. This region

is segmentedby schizophreniaresearchersat theSurgical PlanningLab.

The temporalpole region in a neuralMR scanwassegmentedsix times, twice man-

ually, twice with the original livewire implementation,and twice with Phasewire. The

repeatabilityof theLivewire andPhasewire systemswascomparable,while thetwo Haus-

dorff distanceimplied thatthemanualsegmentationswereactuallyquitedifferent(despite

their similar volumemeasures).Table6.5givesHausdorff distancesfor the4thquartile,as

measuredfor therepeatedsegmentationpairs.

81

Page 82: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Manual Livewire Phasewire80%Hausdorff Distance 4.47mm 0.94mm 0.94mm

Table6.5: Repeatabilityof threemethodson the temporalpole. GeneralizedHausdorffdistanceswere measuredbetweenoriginal and repeatedsegmentationsdonewith eachmethod.

GrayscaleImage ManualSegmentation Phasewire Segmentation

Figure6-5: Phasewire vs. ManualonPartial-VolumeBorderPixels.

ThePhasewiresystemin thiscasechoseto includemorepixelsontheborder, asdemon-

stratedin the imagesin Figure6-5. This increasedthe overall volumeof the structure.

However, this repeatabilitystudywasdonebeforetheintroductionof theprefilterwindow-

leveling or the phaseselectionslider, both of which are aimedat allowing greateruser

controlin this typeof situation.It is alsotruethattherein theabsenceof agoldstandardit

is difficult to stateabsolutelywhichpixelsshouldbechosenon theboundary.

Volumetriccomparisonsof thevarioussegmentationsfollow in Table6.6.

6.4.5 Fusiform Gyrus

Thefusiform gyrus,locatedin theventromedialsurfaceof thetemporallobe,is important

for faceperceptionandrecognition.In two cases,thisstructurewassegmentedusingman-

ual andPhasewire segmentation.Volumetricandtime resultsareshown in Table6.7. In

the first case,the overall volumewaslarger with Phasewire, andso the secondcasewas

measuredwith morefrequentclicks. However, a largetime savingswasfoundin segmen-

82

Page 83: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Labelmap Volumein mL PercentOverlap Percentof TotalVol. in CommonManual 8.724 0.9124 0.8362

8.755 0.9092 0.8362

Labelmap Volumein mL PercentOverlap Percentof TotalVol. in CommonLivewire 8.840 0.8957 0.8107

8.846 0.8951 0.8107

Labelmap Volumein mL PercentOverlap Percentof TotalVol. in CommonPhasewire 9.345 0.9308 0.8758

9.285 0.9368 0.8758

Table6.6: Volumetricmeasuresfrom repeatedsegmentations.

tationof thefirst case.(This studywasalsodonewith thefirst versionof Phasewire, and

consequentlyinvestigatingfurtherwith thepresentsystemandfuture improvementsis of

interest.)

Manual Phasewirecase1volume 5.264mL 6.699mLcase2volume 5.984mL 5.996mLcase1time 87 min 48 min

Table6.7: Segmentationof thefusiformgyrus.

6.4.6 Thalamus

Phasewire wasfoundto beusefulin thelateralborderof thethalamus(markedwith anar-

row in Figure6-6),which is aweakboundaryalongwhichsegmentationis difficult. Figure

6-6,whichshowsasegmentationof thethalamus,highlightsastrengthof thephasefeature

usedby thesystem:its insensitivity to grayscalemagnitude.Phasewire’s combinationof

local signalshapeinformationanduserinput producesa reasonablesegmentationof this

difficult structure.

83

Page 84: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Figure6-6: Phasewire segmentationof thethalamus,right andleft sides.Theweaklateralborder(marked with an arrow in the middle image)is difficult to segmentmanually, butPhasewire canbeusedeffectively in this region.

6.5 Discussionof SegmentationResults

Generally, wherespeedandreproducibilityareimportantfactors,andthereexists no au-

tomaticmethod,Phasewire would be preferredover manualsegmentation.However, in

extremelycritical segmentations,suchas thoseof the schizophreniagroupat the Surgi-

cal PlanningLab, yearsof researchhave beenbasedon manualsegmentationandvolume

measurementof certainstructures.Consequently, theadoptionof a new systemis difficult

unlessit canperformfor all intentsandpurposesexactly like a manualsegmenter. This is

notaneasyproblem,andmoretweakingof thesystemwouldbenecessaryto approachthis

functionality.

84

Page 85: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Chapter 7

Discussion

In this work, two systemswere implementedbasedon the livewire paradigm. The first

usedtheimagefeaturesdescribedin [8] while thesecondemployeda novel feature,local

phase.We investigatedthebehavior of bothtools in segmentationof medicalimagery. In

thischapter, wewill describeproblemsencounteredandsystemimprovements,addressthe

prosandconsof bothapproaches,discussfuturework, andfinally summarizetheoutcome

of theproject.

7.1 Issuesand Impr ovementsto SystemFunctionality

Themainissuewith thePhasewire systemwasmatchingthecontourproducedby thesys-

temto thecontourthatwasdesiredby theuser. This,of course,is nota simpleproblemas

theoperatorsegmentsbasedon grayscaleinformationplusa wealthof anatomicalknowl-

edge,while thealgorithmonly seesthegrayscaleimagery. We addedthreeimprovements

to thesystemto addressthis issue.

Thefirst systemfeatureis theability to selectthe imagefeaturesizeof interest.This

is importantsinceedgesexist at many scalesin theimage,andthecenterfrequency of the

filters controlsthe scaleat which edgeswill be detected.To this end,a menufor small,

medium,andlarge featuresizes(] E ,x7 , ] E , [} / , and ] E ,�[/ arethe respective center

frequencies)wasaddedto thePhasewire module.

The secondfeatureallows theuserto intuitively selectthegrayscalerangeof interest

85

Page 86: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

in thedata. We begancomputinglocal phaseon alreadywindow-leveleddatain orderto

focusin on only thevaluesof interest,andbetterlocalizeedges.

Thethird feature,thephasesliderin theAdvancedtabof thePhasewire module,allows

the userto follow alongphasevaluesthat arehigheror lower than [ / . The effect of this

is to segmentmoretoward light regions,or moretowarddark regions. It is similar to an

erosionor dilation of theboundary. In structureswheretheboundaryis consistentaround

thestructure,this featureis useful. If theboundarychanges,thedesiredphasevaluemay

needto bechangedaswell. Experimentswereperformedwith picking a new phasevalue

at every mouseclick, but this wasfound to be a bit noisy. This is an areaof interestfor

futureinvestigation.

Finally, anotherissuewasencounteredwith thefilter kernelsthemselves. Thekernels

did not smoothlygo to 0 at theboundaries,which causedanabruptcutoff of frequencies

of interestinsteadof the desiredsmoothlognormaltail. To ensurethat all kernelshad

the desiredproperty, even thosesensitive to high frequencies,we multiplied by a X$Y N /radial function in the frequency domain. The resultingfiltered imageswerequalitatively

smoother.

7.2 Comparisonof the Two Systems

ThePhasewire systemwasgenerallypreferredby usersfor severalreasons.Thefirst reason

wasthemoreintuitiveuserinteractiondueto thefact that thepathswerecomputedalong

pixels.

The secondreasonwas that the local phasegenerallygivessmoothcontoursfor the

livewire to follow, which producessmoothermovementof thewire. This madethephase-

basedsystemseemmoreintelligent. Generally, thephasewire is not distractedlocally by

extraneousattractivepixels,but insteadby anotherpath.If so,movementof themousecan

generallysetit backon theborderof interest.

The third reasonwasthat the training requiredfor theoriginal systemwasconfusing,

andnot alwayssuccessfulsincevariedboundarycharacteristicswerenot capturedwell.

However, it wastruethatwhentrainingwassuccessful,theoriginal systemwasvery spe-

86

Page 87: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

cific to thedesiredgrayscalelevels,unlike thePhasewire system.

7.3 Futur eWork

Severalpotentialimprovementsto thesystemareof interestfor futureinvestigation.

First, thoughit hasbeenfoundwith Phasewire thata specificlocal directionfeatureis

not necessary, utilizing informationaboutthe local orientationof structuresin the image

couldprove beneficial(both for smoothnessandfor rejectingunsuitablepaths).A vector

describingthemostprevalentlocalorientationcanbeobtainedfrom theorientedquadrature

filters,soit is logical to addthis asanotherimagefeaturein thesystem.

Currently, the systemtreatsboth dark edgeson a light backgroundandlight on dark

asthe samething. This cancauseambiguityand“jumping” from oneto the other, since

both are equally preferred. This problemhasbeenaddressedin the training processof

the original Livewire system[7]. Using a morecompleterepresentationof local phase,

which includestheedgeorientation(asdeterminedusingtheorientationof thequadrature

filters), thetwo casesof edgecanbedisambiguated.This representationof phaseis three-

dimensional:it addsanotherdimensionto thephasediagramshown in Figure4-4 in order

to includetheangleof dominantlocal orientation[13, 17].

Anotherproblemof interestis training,or learningfrom theuserwhatis desired.This

hasbeenaddressedin otherwork by computingaveragesof featuresandusinga Gaus-

sianmodel,andalsoby building a distribution of gradientmagnitudes.This information

is then usedto assignlower coststo preferredimageregions. In our first system,the

Gaussianmodeltypetrainingwasimplemented,andthemaindifficulty wasthatstructures

with varying boundarycharacteristicscould not be segmentedwell due to averagingof

thecharacteristicsduringtraining. To addressthis,someexperimentationwasdonewith a

smoothedhistogram,or Parzendensityestimator, but the resultingdistribution wasnoisy

anddid not aid segmentation.It would beinterestingto revisit this problemin thecontext

of phase-basedlivewire,perhapsapplyingadditionalmachinelearningtechniques.

87

Page 88: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

7.4 Conclusion

We have presenteda user-steeredsegmentationalgorithmwhich is basedon the livewire

paradigm. Our resultsusing local phaseas the main driving force are promising. The

applicationof the tool to a variety of medicaldatahasbeensuccessful.The methodis

intuitive to use,andrequiresno training despitehaving fewer input imagefeaturesthan

otherlivewire implementations.

88

Page 89: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

Bibliography

[1] W. A. BarrettandE. N. Mortensen.Interactive live-wireboundaryextraction.Med-

ical ImageAnalysis, 1(4):331–341,1997.

[2] BoualemBoashash.Estimatingand interpretingthe instantaneousfrequency of a

signal- part1: Fundamentals.Proceedingsof theIEEE, 80(4),1992.

[3] BoualemBoashash.Estimatingand interpretingthe instantaneousfrequency of a

signal- part2: Algorithmsandapplications.Proceedingsof theIEEE, 80(4),1992

[4] V. Caselles,R. Kimmel, G. Sapiro,C. Sbert. Minimal Surfaces:A ThreeDimen-

sionalSegmentationApproach.TechnionEEPub973,1995

[5] V. Caselles,R. Kimmel, andG. Sapiro.GeodesicActiveContours.Proceedingsof

Fifth InternationalConferenceon ComputerVision694–699,1995.

[6] E. W. Dijkstra. A NoteOn Two Problemsin Connexion With GraphsNumerische

Mathematik, 269–271,1959

[7] A. X. Falcao,J. K. Udupa,andF. K. Miyazawa. An Ultra-FastUser-SteeredIm-

ageSegmentationParadigm:Live Wire on theFly. IEEE Transactionson Medical

Imaging, 19(1):55–61,2000.

[8] A. X. Falcao,J. K. Udupa,S. Samarasekera,andS. Sharma.User-SteeredImage

SegmentationParadigms:Live Wire andLive Lane. GraphicalModelsand Image

Processing, 60:233–260,1998.

[9] D. J. FleetandA. D. Jepson.Stability of PhaseInformation. IEEE Trans.PAMI,

15(12):1253–1268,1993

89

Page 90: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

[10] D. Gering, A. Nabavi, R. Kikinis, N. Hata, L. O’Donnell, W. Eric L. Grimson,

F. Jolesz,P. Black, W. Wells III. An IntegratedVisualizationSystemfor Surgical

PlanningandGuidanceUsingImageFusionandanOpenMR. Journalof Magnetic

ResonanceImaging, 13:967–975,2001

[11] D. T. Gering,A. Nabavi, R. Kikinis, W. E. L. Grimson,N. Hata, P. Everett,and

F. JoleszandW. Wells. An IntegratedVisualizationSystemfor Surgical Planning

andGuidanceUsingImageFusionandInterventionalImaging.MedicalImageCom-

putingandComputer-AssistedIntervention- MICCAI’99, 809–819,1999.

[12] P. Golland,W. E.L. Grimson,MarthaE.Shenton,andR.Kikinis. SmallSampleSize

Learningfor ShapeAnalysisof AnatomicalStructuresMedical Image Computing

andComputer-AssistedIntervention- MICCAI’200072–82,2000

[13] G. A. GranlundandH. Knutsson.SignalProcessingfor ComputerVision, Kluwer

AcademicPublishers,1995.

[14] C. Guttmannet al. ComputerizedImageProcessingfor Quantitative Follow-up of

Patients.Journal of MagneticResonanceImaging9(4):509-518,1999.

[15] C. R. G. Guttmann,H. L. Weiner, L. Hsu, S. J. Khoury, E. J. Orav, M. J. Hohol,

S. S. Ahn, R. Kikinis, F. A. Jolesz. The naturalcourseof relapsing-remittingand

chronic progressive multiple sclerosis. International Societyfor Magnetic Reso-

nancein Medicine, 2:1327,1998.

[16] C.R.G.Guttmannetal. Multiple SclerosisProjectWebsite,BWH SurgicalPlanning

Lab. http://splweb.bwh.harvard.edu:8000/pages/projects/ms/ms.html

[17] L. Haglund,H. Knutsson,G. H. GranlundOnPhaseRepresentationof ImageInfor-

mation.The6th ScandinavianConferenceon ImageAnalysis, 1082–1089,1989

[18] T. Kapur. ModelbasedthreedimensionalMedicalImageSegmentation.Ph.D.The-

sis,Artificial IntelligenceLaboratory, MassachusettsInstituteof Technology, 1999.

90

Page 91: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

[19] M. Kaus,M. Warfield,F. Jolesz,andR. Kikinis Adaptive templatemoderatedbrain

tumorsegmentationin MRI. Bildverarbeitungfur die Medizin102–106,1998.

[20] M. Kausetal. AutomatedSegmentationof MR Imagesof BrainTumorsRadiology,

218(2):586-591,2001.

[21] Kitware.TheVisualizationToolkit, http://www.kitware.com/vtk.html

[22] H. Knutssonand C.-F. Westin andG. H. Granlund. Local Multiscale Frequency

andBandwidthEstimationProceedingsof IEEEInternationalConferenceonImage

Processing, 36–40,1994

[23] J. Liang, T. McInerney, D. Terzopoulos.Interactive Medical ImageSegmentation

with UnitedSnakes.MedicalImageComputingandComputer-AssistedIntervention

- MICCAI’99, 116–127,1999.

[24] M. Leventon.StatisticalModelsfor MedicalImageAnalysis.Ph.D.Thesis,Artificial

IntelligenceLaboratory, MassachusettsInstituteof Technology, 2000.

[25] L. M. Lorigo, O. Faugeras,W. E. L. Grimson,R. Keriven,R. Kikinis, C.-F. Westin.

Co-dimension2 GeodesicActive Contoursfor MRA Segmentation. International

Conferenceon InformationProcessingin Medical Imaging. June/July1999,Viseg-

rad,Hungary.

[26] W. E. LorensenandH. E. Cline. MarchingCube:A High Resolution3-D Surface

ConstructionAlgorithm. ComputerGraphics21(3):163–169,1987.

[27] R. W. McCarley, C. Wible, M. Frumin, Y. Hirayasu,J. J. Levitt, I. A. Fischer,

M. E. Shenton. MRI Anatomy of Schizophrenia. Biological Psychiatry 1999,

45:1099-1119,1999.

[28] T. McInerney, D. Terzopoulos.DeformableModelsin Medical ImageAnalysis: A

Survey. MedicalImageAnalysis,1(2):91–108,1996.

[29] E. N. MortensenandW. A. Barrett. Interactive Segmentationwith IntelligentScis-

sors.GraphicalModelsandImageProcessing, 60(5):349–384,1998.

91

Page 92: Lauren O’Donnell - MIT CSAILpeople.csail.mit.edu/lauren/publications/odonnell_ms...Semi-Automatic Medical Image Segmentation by Lauren O’Donnell Submitted to the Department of

[30] E. N. MortensenandW. A. Barrett. Intelligent Scissorsfor ImageComposition.

ComputerGraphics(SIGGRAPH‘95), 191–198,1995.

[31] L. O’Donnell, Carl-FredrikWestin,W. Eric L. Grimson,JuanRuiz-Alzola,Martha

E. Shenton,RonKikinis Phase-BasedUser-SteeredImageSegmentationMedical

Image Computingand Computer-AssistedIntervention- MICCAI’01, 1022–1030,

2001.

[32] E. SimoncelliandW. Freeman The SteerablePyramid: A exible architecturefor

multi-scalederivative computation Int’l Conferenceon Image Processing, 3:444–

447,October1995.

[33] S.Warfieldet al. Intraoperative SegmentationandNonrigid Registrationfor Image

GuidedTherapy. Medical Image ComputingandComputer-AssistedIntervention-

MICCAI 2000, 176–185,2000.

[34] S.Warfieldet al. Adaptive,TemplateModerated,SpatiallyVaryingStatisticalClas-

sification.MedicalImageAnalysis, 4(1):43–55,2000.

[35] S. Warfield et al. Automatic Segmentationof MRI of the Knee. ISMRM Sixth

ScientificMeetingandExhibition, p.563,April 18-24,1998.

[36] W. M. Wells,R. Kikinis, W.E.L. Grimson,F. Jolesz.Adaptivesegmentationof MRI

data.IEEE Transactionson MedicalImaging, 15:429–442,1996.

[37] C-JWesteliusFocusof AttentionandGazeContol for RobotVision. Dissertation

No379,LinkopingUniversity, SwedenISBN 91–7871–530–X,1995

[38] C.-F. Westin,J.Richolt,V. Moharir, R.Kikinis AffineAdaptiveFilteringof CT Data

MedicalImageAnalysis4(2):161–172,2000

[39] C. F. Westinetal TensorControlledLocalStructureEnhancementof CT Imagesfor

BoneSegmentation.MedicalImageComputingandComputer-AssistedIntervention

- MICCAI’98, 1205–1212,1998

92