Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02...

55
] ] Lattice rules and beyond. . . ] ] Dirk Nuyens Numerical Analysis and Applied Mathematics, Department of Computer Science, KU Leuven, Belgium MCQMC2016, Stanford, August 14–19, 2016

Transcript of Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02...

Page 1: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

] ] Lattice rules and beyond. . . ] ]— Dirk Nuyens —

⋆Numerical Analysis and Applied Mathematics, Department of Computer Science, KU Leuven, Belgium • MCQMC2016, Stanford, August 14–19, 2016

Page 2: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Approximating high-dimensional expectations or integrals

High-dimensional integralsTask: Approximate a d-dimensional integral

E[f ]= I(f ) :=∫Rd

f (x)p(x)dx

=∫[0,1]d

f (P−1(x))dx .

Method: An N-point cubature/quadrature method

Q(f )=QN(f )=Q(f ;{(wk ,xk)

}Nk=1) :=

N∑k=1

wk f (xk).

(This talk: Using functional analysis and number theoretic uniform point sets.To tackle integration, approximation and “other” high dimensional problems. )

Applications: random fields, parametrised PDEs, financialengineering, Bayesian integrals, uncertainty quantification,. . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 1 / 63245986

Page 3: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Some examples

Example: random fields / parametrised PDEs (d =∞)Parametric representation (e.g., Karhunen–Loève expansion)

a(x ,y)= a0(x)+∞∑

j=1yj ψj(x), x ∈D, y ∈ [−1

2 , 12 ]

N,

by sample variables yj . Use in porous flow using Darcy’s law:q(x ,y)+a(x ,y)∇p(x ,y)= f (x),

∇·q(x ,y)= 0.

See, e.g., Barth, Charrier, Cliffe, Dick, Gantner, Giles, Graham, Haji-Ali, Harbrecht,Kuo, Le Gia, N., Nichols, Nobile, Peters, Robbe, Scheichl, Schwab, Siebenmorgen,Sloan, Teckentrup, Tempone, Ullmann, Vandewalle, Zollinger, von Schwerin, . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 2 / 63245986

Page 4: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Some examples

Example: option pricing (d = hundreds, thousands, ∞)Simulation of SDE

dX (t)= a(X (t))dt +b(X (t))dW (t), X (0)=X0, 0≤ t ≤T ,

using Euler–Maruyama, X0 =X0,X i+1 = X i +a(X i)h+b(X i)

phZi , i = 1, . . . ,n−1, h =T/n,

with Zi sampled from standard normal distribution.

See, e.g., Achtsis, Baldeaux, Boyle, Cools, Gerstner, Giles, Glasserman, Griebel, Holtz,Imai, Irrgeher, Joshi, Kucherenko, Kuo, L’Écuyer, Larcher, Lemieux, Leobacher, Lin,N., Niu, Ökten, Pages, Platen, Sloan, Staum, Szölgyenyi, Tan, Tezuka, Tichy, Traub,Tuffin, Wang, Waterhouse, . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 3 / 63245986

Page 5: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Some examples

Example: option pricing (d = hundreds, thousands, ∞)Simulation of SDE

dX (t)= a(X (t))dt +b(X (t))dW (t), X (0)=X0, 0≤ t ≤T ,

using Euler–Maruyama, X0 =X0,X i+1 = X i +a(X i)h+b(X i)

phZi , i = 1, . . . ,n−1, h =T/n,

with Zi sampled from standard normal distribution.

See, e.g., Achtsis, Baldeaux, Boyle, Cools, Gerstner, Giles, Glasserman, Griebel, Holtz,Imai, Irrgeher, Joshi, Kucherenko, Kuo, L’Écuyer, Larcher, Lemieux, Leobacher, Lin,N., Niu, Ökten, Pages, Platen, Sloan, Staum, Szölgyenyi, Tan, Tezuka, Tichy, Traub,Tuffin, Wang, Waterhouse, . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 3 / 63245986

Page 6: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Some examples

Example: Bayesian integrals (d = hundreds, thousands, ∞)Simulation of insulin-glucose model

dG(t)/dt =−λ(G(t)−Gb)−βX (t)G(t)+Ra(t)dX (t)/dt =−µX (t)+µ(I(t)− Ib)

to infer parameters and quantify input uncertainty given noisymeasurement Gη

ref(t) and uncertain input data Ra(t).

Using evaluation of the integral point-of-view: see, e.g., Dick, Gantner, Le Gia, N.,Scheichl, Schillings, Schwab, Stuart, Teckentrup, . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 5 / 63245986

Page 7: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Monte Carlo and quasi-Monte Carlo

Product rules “The curse by construction”

What kind of cubature/quadrature method to use for d large?Ï A product of classical quadrature rules?

Assume a product of one-dimensional rules with the minimumnumber of points per dimension:

Ï m = 1? ⇒ N = 1d = 1, initial approximation?Ï m = 2? ⇒ N = 2d , next approximation?

So, what if d = 100, N = 2100?

2100 = 1267650600228229401496703205376≈ 1030.

That is called a quintillion. . .At 1 function evaluation per µs that is 10−6×1030 = 1024 sec.And the age of the universe is. . . roughly 1017 sec!

{ The Curse of Dimensionality! }(Could try luck with “sparse” grid method; but not d = 100 out of the box, same issue.)(An appropriate definition for the curse and intractability follows.)

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 8 / 63245986

Page 8: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Monte Carlo and quasi-Monte Carlo

Product rules “The curse by construction”

What kind of cubature/quadrature method to use for d large?Ï A product of classical quadrature rules?

Assume a product of one-dimensional rules with the minimumnumber of points per dimension:

Ï m = 1? ⇒ N = 1d = 1, initial approximation?

Ï m = 2? ⇒ N = 2d , next approximation?So, what if d = 100, N = 2100?

2100 = 1267650600228229401496703205376≈ 1030.

That is called a quintillion. . .At 1 function evaluation per µs that is 10−6×1030 = 1024 sec.And the age of the universe is. . . roughly 1017 sec!

{ The Curse of Dimensionality! }(Could try luck with “sparse” grid method; but not d = 100 out of the box, same issue.)(An appropriate definition for the curse and intractability follows.)

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 8 / 63245986

Page 9: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Monte Carlo and quasi-Monte Carlo

Product rules “The curse by construction”

What kind of cubature/quadrature method to use for d large?Ï A product of classical quadrature rules?

Assume a product of one-dimensional rules with the minimumnumber of points per dimension:

Ï m = 1? ⇒ N = 1d = 1, initial approximation?Ï m = 2? ⇒ N = 2d , next approximation?

So, what if d = 100, N = 2100?

2100 = 1267650600228229401496703205376≈ 1030.

That is called a quintillion. . .At 1 function evaluation per µs that is 10−6×1030 = 1024 sec.And the age of the universe is. . . roughly 1017 sec!

{ The Curse of Dimensionality! }(Could try luck with “sparse” grid method; but not d = 100 out of the box, same issue.)(An appropriate definition for the curse and intractability follows.)

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 8 / 63245986

Page 10: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Monte Carlo and quasi-Monte Carlo

Product rules “The curse by construction”

What kind of cubature/quadrature method to use for d large?Ï A product of classical quadrature rules?

Assume a product of one-dimensional rules with the minimumnumber of points per dimension:

Ï m = 1? ⇒ N = 1d = 1, initial approximation?Ï m = 2? ⇒ N = 2d , next approximation?

So, what if d = 100, N = 2100?

2100 = 1267650600228229401496703205376≈ 1030.

That is called a quintillion. . .

At 1 function evaluation per µs that is 10−6×1030 = 1024 sec.And the age of the universe is. . . roughly 1017 sec!

{ The Curse of Dimensionality! }(Could try luck with “sparse” grid method; but not d = 100 out of the box, same issue.)(An appropriate definition for the curse and intractability follows.)

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 8 / 63245986

Page 11: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Monte Carlo and quasi-Monte Carlo

Product rules “The curse by construction”

What kind of cubature/quadrature method to use for d large?Ï A product of classical quadrature rules?

Assume a product of one-dimensional rules with the minimumnumber of points per dimension:

Ï m = 1? ⇒ N = 1d = 1, initial approximation?Ï m = 2? ⇒ N = 2d , next approximation?

So, what if d = 100, N = 2100?

2100 = 1267650600228229401496703205376≈ 1030.

That is called a quintillion. . .At 1 function evaluation per µs that is 10−6×1030 = 1024 sec.

And the age of the universe is. . . roughly 1017 sec!

{ The Curse of Dimensionality! }(Could try luck with “sparse” grid method; but not d = 100 out of the box, same issue.)(An appropriate definition for the curse and intractability follows.)

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 8 / 63245986

Page 12: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Monte Carlo and quasi-Monte Carlo

Product rules “The curse by construction”

What kind of cubature/quadrature method to use for d large?Ï A product of classical quadrature rules?

Assume a product of one-dimensional rules with the minimumnumber of points per dimension:

Ï m = 1? ⇒ N = 1d = 1, initial approximation?Ï m = 2? ⇒ N = 2d , next approximation?

So, what if d = 100, N = 2100?

2100 = 1267650600228229401496703205376≈ 1030.

That is called a quintillion. . .At 1 function evaluation per µs that is 10−6×1030 = 1024 sec.And the age of the universe is. . . roughly 1017 sec!

{ The Curse of Dimensionality! }(Could try luck with “sparse” grid method; but not d = 100 out of the box, same issue.)(An appropriate definition for the curse and intractability follows.)

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 8 / 63245986

Page 13: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Monte Carlo and quasi-Monte Carlo

Product rules “The curse by construction”

What kind of cubature/quadrature method to use for d large?Ï A product of classical quadrature rules?

Assume a product of one-dimensional rules with the minimumnumber of points per dimension:

Ï m = 1? ⇒ N = 1d = 1, initial approximation?Ï m = 2? ⇒ N = 2d , next approximation?

So, what if d = 100, N = 2100?

2100 = 1267650600228229401496703205376≈ 1030.

That is called a quintillion. . .At 1 function evaluation per µs that is 10−6×1030 = 1024 sec.And the age of the universe is. . . roughly 1017 sec!

{ The Curse of Dimensionality! }(Could try luck with “sparse” grid method; but not d = 100 out of the box, same issue.)(An appropriate definition for the curse and intractability follows.)

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 8 / 63245986

Page 14: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Monte Carlo and quasi-Monte Carlo

Monte Carlo type methods: 1N

∑Nk=1 f (xk)

What kind of cubature/quadrature method to use for d large?Ï A product of classical quadrature rules? L

→ N =md ⇒ The curse “by construction”!Ï The plain Monte Carlo method: xk ∼U[0,1)d .

→ Free to choose N.Ï Quasi-Monte Carlo methods: deterministic points using some

algebraic structure.→ Free to choose N.

grid MC QMC

N =md N free N freeerror =O(N−r/d ) std =O(N−1/2) error = O(N−1), . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 13 / 63245986

Page 15: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice rule

Lattice rules rule! Lattice rules rule! Lattice rules rule!Rank-1 lattice rule: given N and integer generating vector z:

xk ={zk

N

}:= zk

N mod 1= zk mod NN , k = 0, . . . ,N −1.

Classical references: Niederreiter (1992), Sloan & Joe (1994).“Good” lattice rules require “good” generating vectors z ∈Zd .Obviously z = (1, . . . ,1) will only have diagonal points in [0,1]d .

z = (1,1), N = 21 z = (1,13), N = 21

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 21 / 63245986

Page 16: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice rule

Lattice rules rule! Lattice rules rule! Lattice rules rule!Rank-1 lattice rule: given N and integer generating vector z:

xk ={zk

N

}:= zk

N mod 1= zk mod NN , k = 0, . . . ,N −1.

Classical references: Niederreiter (1992), Sloan & Joe (1994).“Good” lattice rules require “good” generating vectors z ∈Zd .Obviously z = (1, . . . ,1) will only have diagonal points in [0,1]d .

How to find “good” rules? (More later in the talk.)→ 2D: Fibonacci lattice rules: z = (1,Fk−1), N =Fk .→ Component-by-component construction, see, e.g., Dick, Joe, Korobov, Kritzer, Kuo,N., Pillichshammer, Sloan, Suryanarayana, Weimar, . . .→ Fast component-by-component construction, see, e.g, Cools, Dick, Korobov,Kritzer, Laimer, Leobacher, Kuo, Le Gia, N., Matthysen, Pillichshammer, Schwab, . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 21 / 63245986

Page 17: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice rule

Visual mind-image (vectorization)

z(0,1, . . . ,N −1)

d ×N

=

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 34 / 63245986

Page 18: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice rule

One-liners in Matlab/Octave, Python, . . .So assume you are given a “good” z for your choice of N, then

QN(f ;z ,N)= 1N

N−1∑k=0

f(zk mod N

N

), and take eg f (x)=

∣∣∣∣∣ d∑j=1

e2πixj

∣∣∣∣∣r

.

(Example I(f ) is expected distance of rth moment of distance travelled by d-step random walk in the plane, see,Borwein, N., Straub, Wan (2011).)

(Copy paste does not work, watch ‘-’ and ‘*’. Sorry.)

z = [1; 55]; N = 89; % points as [d x N] (Fortran ), dim=1,2f = @(r, x) abs( sum( exp(2∗pi∗1i∗x), 1 ) ).^ r ;% one−liner:Q = mean( f(1, mod(z∗(0:N−1), N)/N ) )

from numpy import ∗; # using Numpyz = [1, 55]; N = 89; # points as [N x d] (C), axis=0,1f = lambda r, x: abs( sum( exp(2∗pi∗1j∗x), axis=1 ) )∗∗r# one−liner:Q = mean( f(1, (outer(range(N), z) % N)/float(N) ) )

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 55 / 63245986

Page 19: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice rule

One-liners in Matlab/Octave, Python, . . .So assume you are given a “good” z for your choice of N, then

QN(f ;z ,N)= 1N

N−1∑k=0

f(zk mod N

N

), and take eg f (x)=

∣∣∣∣∣ d∑j=1

e2πixj

∣∣∣∣∣r

.

(Example I(f ) is expected distance of rth moment of distance travelled by d-step random walk in the plane, see,Borwein, N., Straub, Wan (2011).) (Copy paste does not work, watch ‘-’ and ‘*’. Sorry.)

z = [1; 55]; N = 89; % points as [d x N] (Fortran ), dim=1,2f = @(r, x) abs( sum( exp(2∗pi∗1i∗x), 1 ) ).^ r ;% one−liner:Q = mean( f(1, mod(z∗(0:N−1), N)/N ) )

from numpy import ∗; # using Numpyz = [1, 55]; N = 89; # points as [N x d] (C), axis=0,1f = lambda r, x: abs( sum( exp(2∗pi∗1j∗x), axis=1 ) )∗∗r# one−liner:Q = mean( f(1, (outer(range(N), z) % N)/float(N) ) )

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 55 / 63245986

Page 20: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice rule

One-liners in Matlab/Octave, Python, . . .So assume you are given a “good” z for your choice of N, then

QN(f ;z ,N)= 1N

N−1∑k=0

f(zk mod N

N

), and take eg f (x)=

∣∣∣∣∣ d∑j=1

e2πixj

∣∣∣∣∣r

.

(Example I(f ) is expected distance of rth moment of distance travelled by d-step random walk in the plane, see,Borwein, N., Straub, Wan (2011).) (Copy paste does not work, watch ‘-’ and ‘*’. Sorry.)

z = [1; 55]; N = 89; % points as [d x N] (Fortran ), dim=1,2f = @(r, x) abs( sum( exp(2∗pi∗1i∗x), 1 ) ).^ r ;% one−liner:Q = mean( f(1, mod(z∗(0:N−1), N)/N ) )

from numpy import ∗; # using Numpyz = [1, 55]; N = 89; # points as [N x d] (C), axis=0,1f = lambda r, x: abs( sum( exp(2∗pi∗1j∗x), axis=1 ) )∗∗r# one−liner:Q = mean( f(1, (outer(range(N), z) % N)/float(N) ) )

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 55 / 63245986

Page 21: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice sequence

Fixed N is boring, so, . . . , in come lattice sequences

Ï Let φb(k) be the radical inverse function in base b:

φb :N0 → [0,1) : (· · ·k3k2k1k0)b 7→ (0.k0k1k2k3 · · ·)b .

Ï Hickernell & Niederreiter (2003), Hickernell, Hong, L’Écuyer, Lemieux(2000),

xk = zφb(k) mod 1, k = 0,1, . . . ,

equivalently, for some m,

xk = (z revb,m(k) mod bm)/bm, k = 0, . . . ,bm −1,

revb,m(k)= [φb(k)bm] reverses the digits in an m-digit word.→ Fast CBC construction of rules good for a range of m: Cools, Kuo, N. (2016), Dick,Pillichshammer, Waterhouse (2008).→ For b = 2, bitreverse can be done in log2(m) (bithacks).

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 89 / 63245986

Page 22: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice sequence

An alternative sequence constructionÏ Typical trick to generate an (s +1)-dimensional digital net

with bm points from an s-dimensional sequence: addx0 = k/bm, k = 0, . . . ,bm −1, as the first dimension.

Ï Idea from Korobov (1961): take s-dimensional lattice rulewith z1 = 1, drop first dimension to obtain (s −1)-dimensionallattice sequence. Ok for O(N−1), see Hickernell, Kuo, Kritzer & N. (2011).

“First” 13 points of a base 2 lattice sequence optimized over21, . . . ,25 with z = (1,13,27, . . .):

Initial part of lattice Korobov-seq Radical-inverse-seq

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 144 / 63245986

Page 23: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice sequence

An alternative sequence constructionÏ Typical trick to generate an (s +1)-dimensional digital net

with bm points from an s-dimensional sequence: addx0 = k/bm, k = 0, . . . ,bm −1, as the first dimension.

Ï Idea from Korobov (1961): take s-dimensional lattice rulewith z1 = 1, drop first dimension to obtain (s −1)-dimensionallattice sequence. Ok for O(N−1), see Hickernell, Kuo, Kritzer & N. (2011).

“First” 13 points of a base 2 lattice sequence optimized over21, . . . ,25 with z = (1,13,27, . . .):

Initial part of lattice Korobov-seq Radical-inverse-seq

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 144 / 63245986

Page 24: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice sequence

An alternative sequence constructionÏ Typical trick to generate an (s +1)-dimensional digital net

with bm points from an s-dimensional sequence: addx0 = k/bm, k = 0, . . . ,bm −1, as the first dimension.

Ï Idea from Korobov (1961): take s-dimensional lattice rulewith z1 = 1, drop first dimension to obtain (s −1)-dimensionallattice sequence. Ok for O(N−1), see Hickernell, Kuo, Kritzer & N. (2011).

“First” 13 points of a base 2 lattice sequence optimized over21, . . . ,25 with z = (1,13,27, . . .):

Initial part of lattice Korobov-seq Radical-inverse-seqLattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 144 / 63245986

Page 25: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice sequence

Korobov trick for lattice sequence% For a rule with z(1)=1 and length(z) >= d+1acc = sum( f( mod( z(2:d+1) ∗ (0:n1−1) , N ) / N )Q1 = acc / n1acc = acc + sum( f( mod( z(2:d+1) ∗ (n1:n2−1) , N ) / N )Q2 = acc / n2...

Note: Although the above is a cool trick, we provide aMatlab/Octave point generator which can be used like rand anduses the radical-inverse method (using the bithacks bitreverse):

latticeseq_b2 ( ’ init0 ’ , z, N);acc = sum( f( latticeseq_b2(d, n1) )Q1 = acc / n1acc = acc + sum( f( latticeseq_b2(d, n2) )Q2 = acc / n2...

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 233 / 63245986

Page 26: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice sequence

Korobov trick for lattice sequence% For a rule with z(1)=1 and length(z) >= d+1acc = sum( f( mod( z(2:d+1) ∗ (0:n1−1) , N ) / N )Q1 = acc / n1acc = acc + sum( f( mod( z(2:d+1) ∗ (n1:n2−1) , N ) / N )Q2 = acc / n2...

Note: Although the above is a cool trick, we provide aMatlab/Octave point generator which can be used like rand anduses the radical-inverse method (using the bithacks bitreverse):

latticeseq_b2 ( ’ init0 ’ , z, N);acc = sum( f( latticeseq_b2(d, n1) )Q1 = acc / n1acc = acc + sum( f( latticeseq_b2(d, n2) )Q2 = acc / n2...

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 233 / 63245986

Page 27: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Lattice sequence

Randomly shifted lattice rulesTo obtain an error estimator: take i.i.d. random shifts of the lattice

x(i)k =

(xk +∆(i)

)mod 1=

(zk +N∆(i)

)mod N

N , i = 1, . . . ,M ,

to obtain M independent estimates Q(1)N , . . . ,Q(M)

N . Then

QM×N = 1M

M∑i=1

Q(i)N , std(QM×N(f ))=

std(Q(1)N , . . . ,Q(M)

N )p

M.

Singleton expansion in Matlab/Octave to generate the points [d ×N ×M]:mod(bsxfun(@plus, reshape(z∗(0:N−1), d, N, 1),

reshape(N∗shifts , d, 1, M)), N) / N

N

d

MLattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 377 / 63245986

Page 28: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Some information-based complexity parlance

How to measure deterministic algorithms?Ï Worst-case error for approximating I(f ) by QN(f ) for f ∈Fd :

e(QN ;Fd) := supf ∈Fd

∥f ∥Fd ≤1

∣∣I(f )−QN(f )∣∣ ≤ upper bound for QN .

(And the RMS expectation over random shifts in case of a randomly shifted rule.)

Ï Best possible error using N function values (benchmark):e(N;Fd) := inf

QN :{(wk ,xk)}Nk=1

e(QN ;Fd) ≥ lower bound for any QN

= error of best algorithm using N function evaluations.

Ï Information complexity: the minimal number of functionvalues needed to reach error at most ϵ:

n(ϵ;Fd) :=min{N : ∃QN for which e(QN ;Fd)≤ ϵ

}= number of function evaluations of best algorithm.

See a multitude of references, e.g., Novak (2016) or the Novak–Woźniakowski trilogy(2008,2010,2012), . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 610 / 63245986

Page 29: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Some information-based complexity parlance

The curse of dimensionality & types of tractabilityTractability started by Woźniakowski (1994) and since then vastlyexpanding. . .

Ï The curse of dimensionality is now defined as needing anexponential number of function values in d to reach an errorϵ≤ ϵ0:

n(ϵ;Fd)≥ c (1+γ)d , for some c ,γ,ϵ0 > 0.

Ï A problem is called (weakly) tractable if

limϵ−1+d→∞

lnn(ϵ,d)ϵ−1+d

= 0,

and intractable otherwise.Ï Different types, e.g., polynomial tractability

n(ϵ;Fd)≤ c ϵ−p dq , for some c ,p,q ≥ 0.

See a multitude of references, in particular the Novak–Woźniakowski trilogy(2008,2010,2012), . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 987 / 63245986

Page 30: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Negativism

The curse might always be there. . .Assume f ∈Fd when

∥f ∥Fd := maxx ,y∈[0,1]d

|f (x)− f (y)|∥x −y∥∞

< ∞,

then (Maung Zho Newn and Sharygin, 1971)

e(N ,Fd)=d

2d +2 N−1/d .

See Novak’s (2016) review in MCQMC2014:

Not just avoid the “curse by construction”, but alsoÏ rate independent of d ⇒ “mixed dominating smoothness”.Ï constant Cd ,α independent of d ⇒ “weighted spaces”.

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 1597 / 63245986

Page 31: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Positivism

Aims

Ï Mixed dominating smoothness spaces: Move from typicalSobolev norm with ∥Dτf ∥ bounded for τ1 +·· ·+τd ≤α, whichgives O(N−α/d) to (τ1, . . . ,τd)≤α which gives ∼O(N−α).

Ï Dimension-independent error bounds: Switch to weightedspaces: not all combinations of variables are as important.Denote the importance of the variables in u⊆ {1, . . . ,d} by γu.

Mixed dominating smoothness: Novak, Sickel, Temlyakov, Ullrich ×2, . . .Weights: Hickernell (1998), Sloan & Woźniakowski (1998), Novak–Woźniakowskitrilogy (2008,2010,2012), . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 2584 / 63245986

Page 32: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Function spaces

Spaces based on series representations & Koksma–HlawkaAssume an L2-ONB {ϕh}h, with ϕ0 = 1, QN(1)= 1, and abs. summ.

f (x)=∑h

f (h)ϕh(x), with f (h) :=∫[0,1]d

f (x)ϕh(x)dx ,

then, for rα,γ(h)> 0 an “increasing” function,

∣∣I(f )−QN(f )∣∣= ∣∣∣∣∣ ∑

h =0f (h)QN(ϕh)rα,γ(h)r−1

α,γ(h)∣∣∣∣∣

≤(∑

h

∣∣f (h)∣∣p rpα,γ(h)

)1/p ( ∑h =0

∣∣QN(ϕh)∣∣q r−q

α,γ(h))1/q

norm × worst-case error .

For 1< p ≤∞ and nice choices of ϕh , QN and rα,γ we can find a “worst-case”representer ξ(x) for which ∣∣QN (ξ)− I(ξ)

∣∣1/q = e(QN ,Fd ),

independent of the particular QN , e.g., Fourier series and lattice rules, Walsh seriesand digital nets, see N. (2014) and Hickernell (1998a,b).

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 4181 / 63245986

Page 33: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Function spaces

Spaces based on series representations & Koksma–HlawkaAssume an L2-ONB {ϕh}h, with ϕ0 = 1, QN(1)= 1, and abs. summ.

f (x)=∑h

f (h)ϕh(x), with f (h) :=∫[0,1]d

f (x)ϕh(x)dx ,

then, for rα,γ(h)> 0 an “increasing” function,

∣∣I(f )−QN(f )∣∣= ∣∣∣∣∣ ∑

h =0f (h)QN(ϕh)rα,γ(h)r−1

α,γ(h)∣∣∣∣∣

≤(∑

h

∣∣f (h)∣∣p rpα,γ(h)

)1/p ( ∑h =0

∣∣QN(ϕh)∣∣q r−q

α,γ(h))1/q

norm × worst-case error .

For 1< p ≤∞ and nice choices of ϕh , QN and rα,γ we can find a “worst-case”representer ξ(x) for which ∣∣QN (ξ)− I(ξ)

∣∣1/q = e(QN ,Fd ),

independent of the particular QN , e.g., Fourier series and lattice rules, Walsh seriesand digital nets, see N. (2014) and Hickernell (1998a,b).

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 4181 / 63245986

Page 34: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Function spaces

Choice ISo we have (Let u(h) be the support of h.)

Ï choice of rα,γ(h), controls the (decaying) importance of ϕh:Ï polynomial decay, e.g., rα,γ(h)= γu(h)

∏dj=1(1+hj)α,

Ï exponential decay, e.g., ra,b,γ(h)= γu(h)∏d

j=1 exp(ajhbjj ),

Ï choice of γ= {γu}u⊆{1,...,d}:Ï product weights: γu =∏

j∈uγ{j},Ï order-dependent weights: γu = Γ|u|,Ï POD weights: γu = Γ|u|

∏j∈uγ{j},

Ï . . . ,Ï choice of ϕh,Ï choice of QN , i.e.,

{(wk ,xk)

}Nk=1.

Weights: Sloan, Woźniakowski (1998), Dick, Sloan, Wang, Woźniakowski (2004), Kuo,Schwab, Sloan (2012), Dick, Kuo, Le Gia, N., Schwab (2014), . . .Cos: Dick, N., Pillichshammer (2013), Suryanarayana, N., Cools (2015), Potts,Volkmer (2015), Cools, Kuo, N., Suryanarayana (2016), . . .Exp: Dick, Larcher, Pillichshammer, Woźniakowski (2011), Kritzer, Pillichshammer,Woźniakowski (2014), Irrgeher, Kritzer, Leobacher, Pillichshammer. (2015), Nguyen,N. (201x), Nguyen, N., Cools (201y), . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 6765 / 63245986

Page 35: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Function spaces

Choice IISo we have

Ï choice of rα,γ(h), controls the (decaying) importance of ϕh,Ï choice of γ= {γu}u⊆{1,...,d},Ï choice of ϕh:

Ï Fourier basis,Ï Walsh basis,Ï Cosine basis,

Ï choice of QN , i.e.,{(wk ,xk)

}Nk=1:

Ï Lattice rules/sequences,Ï Digital nets/sequences, polynomial lattice rules,Ï Tent-transformed lattice rules/sequences.

Weights: Sloan, Woźniakowski (1998), Dick, Sloan, Wang, Woźniakowski (2004), Kuo,Schwab, Sloan (2012), Dick, Kuo, Le Gia, N., Schwab (2014), . . .Cos: Dick, N., Pillichshammer (2013), Suryanarayana, N., Cools (2015), Potts,Volkmer (2015), Cools, Kuo, N., Suryanarayana (2016), . . .Exp: Dick, Larcher, Pillichshammer, Woźniakowski (2011), Kritzer, Pillichshammer,Woźniakowski (2014), Irrgeher, Kritzer, Leobacher, Pillichshammer. (2015), Nguyen,N. (201x), Nguyen, N., Cools (201y), . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 10946 / 63245986

Page 36: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Function spaces

Reproducing kernel Hilbert spaces, p = q = 2Given a one-dimensional reproducing kernel K (x ,y)=K (y ,x).Suppose H (K ) is separable: H (K )= span{ϕh}h and ϕ0 = 1.Determine the eigenvalues and eigenfunctions, and assume λ0 = 1,∫

[0,1]ϕ(x)K (x ,y)dx =λϕ(y).

Then

K (x ,y)=∑h

ϕh(x)√λh

ϕh(y)√λh

=∑h

ϕh(x)∥ϕh∥L2

ϕh(y)∥ϕh∥L2

,

the ϕh are L2-orthogonal, with ∥ϕh∥L2 =√

λh and ∥ϕh∥H = 1, with

⟨f ,g⟩H =∑hλh f (h) g(h), ∥f ∥2

H =∑hλh

∣∣f (h)∣∣2 .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 17711 / 63245986

Page 37: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Function spaces

Multivariate weighted reproducing kernel Hilbert spaceUse the one-dimensional space as building block for d dimensionsby taking weighted tensor products (tensor product basis):

K (x ,y)= ∑u⊆{1,...,d}

γu∏j∈u

K (xj ,yj)=∑hγu(h)

d∏j=1

ϕhj (xj)√λhj

ϕhj (yj)√λhj

=∑h

r−2α,γ(h)ϕh(x)ϕh(y),

with (You could now interpret α as the decay of the eigenvalues.)

r−2α,γ(h)= γu(h)

∏j∈u

λ−1hj

= γu(h)d∏

j=1λ−1

hj,

and u(h)= {hj : hj = 0} the support of h. Now, γ; = 1, QN(1)= 1,

e2(QN ;H )=−1+N∑

k ,ℓ=1wk wℓK (xk ,yℓ).

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 28657 / 63245986

Page 38: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Function spaces

Korobov type spaces Eα,p: Lattice rules

f (x)= ∑h∈Zd

f (h) exp(2πih ·x), ∥f ∥pEα,p

:= ∑h∈Zd

∣∣f (h)∣∣p rpα,γ(h)<∞.

Traditional choice of r , for α> 1/q:

rpα,γ(h)= γ−1

u(h)

d∏j=1

rpα (hj), rp

α (hj)=max(1, |hj |pα).

Ï Unweighted ⇒ intractable. Sloan & Woźniakowski (2001).Ï Strong tractability with product weights iff ∑

j≥1γ{j} <∞. Ditto.Ï CBC construction of lattice rule achieving optimal O(N−α+δ), δ> 0, if∑

j≥1γ1/(2α){j} <∞ with constant independent of d for product weights. Kuo

(2003).Ï Unweighted strong tractability for sufficient large α and e.g. r2

α(hj )= (2πh)2α,i.e., periodic Sobolev space, under the condition of permutation-invariance, e.g.f (x1,x2)= f (x2,x1). N., Suryanarayana, Weimar (2015,201z).

Ï Several results on exponential convergence: Dick, Larcher, Pillichshammer,Woźniakowski (2011), Kritzer, Pillichshammer, Woźniakowski (2014), Irrgeher,Kritzer, Leobacher, Pillichshammer. (2015), Nguyen, N. (201x), Nguyen, N.,Cools (201y), . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 46368 / 63245986

Page 39: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Function spaces

Cosine space Cα,p: Tent-transformed lattice rules

f (x)=∑

h∈Nd0

f cos(h)d∏

j=1hj =0

p2cos(πhjxj), ∥f ∥p

Cα,p:=

∑h∈Nd

0

∣∣f cos(h)∣∣p rp

α,γ(h).

In the Hilbert case, for α= 1 and d = 1:

⟨f ,g⟩C1,2 =(∫ 1

0f (x)dx

)(∫ 1

0g(x)dx

)+ (2π)2

γ

∫ 1

0f ′(x)g ′(x)dx .

For γ= (2π)2 this is the inner product of the unanchored Sobolevspace W1,2, Dick, N., Pillichshammer (2013).

Ï This gives deterministic O(N−1) for tent-transformed latticerules in W1,2. Tent-transform: elementwise x 7→ 1−|2x −1|.

Ï Same tractability results as for Korobov space.Ï Thus for product weights, optimal dimension-independent

O(N−α+δ), δ> 0, if ∑j≥1γ

1/(2α){j} <∞.

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 75025 / 63245986

Page 40: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Function spaces

Sobolev spaces and Walsh spaces

Ï Unanchored Sobolev space Wα,p of order α= 1:Ï randomly shifted lattice rules/sequences, orÏ (deterministic) tent-transformed lattice rules/sequences.

Ï Walsh spaces based on Walsh expansion of function:Ï digital nets/sequences,Ï polynomial lattice rules.

Ï Higher order Sobolev spaces embedded in Walsh spaces:Ï higher order polynomial lattice rules,Ï interlaced digital nets/sequences,Ï interlaced polynomial lattice rules.

See, e.g., Hickernell (2002), Dick & Pillichshammer (2009), Baldeaux, Dick,Leobacher, N., Pillichshammer (2012), Dick, Kuo, Le Gia, N., Schwab (2014), . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 121393 / 63245986

Page 41: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Definition

Polynomial lattice rules ≡ lattice rules over finite fieldFor x ∈ [0,1) identify (uniquely) (Let’s fix the base of the finite field to b = 2.)

x =∑i≥1

xi 2−i ≃ (x1x2 · · ·)2 ≃ x1χ1 +x2χ

2+·· · = x(χ).

Likewise for k ∈N0

k = ∑i≥0

ki 2i ≃ (· · ·k2k1k0)2 ≃ k0χ0+k1χ

1+·· · = k(χ).

For a polynomial P(χ) over Z2 with deg(P)= n define thepolynomial lattice points

xk(χ)=z(χ)k(χ) mod P(χ)

P(χ)over Z2[χ], for k = 0, . . . ,bm −1.

The points in the unit cube [0,1)d are obtained by evaluating eachx(χ) in χ= b = 2 (up to χ−n, or further).

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 196418 / 63245986

Page 42: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Definition

Recap: Lattice rules

For a generating vector z ∈ZdN :

xk = zk mod NN , for 0≤ k <N .

ThenQN(f ;z ,N)= 1

NN−1∑k=0

f (xk).

Components of zj relatively prime to N:then zj defines a permutation for dimension j .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 317811 / 63245986

Page 43: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Definition

Polynomial lattice rulesFor a generating vector z(χ) ∈ (Z2[χ]/P(χ))d :

xk(χ)=z(χ)k(χ) mod P(χ)

P(χ), for deg(k(χ))< 2m.

ThenQN(f ;z(χ),P(χ))= 1

N2m−1∑k=0

f (xk(χ)|χ=2).

If zj(χ) relatively prime to P(χ):then zj(χ) defines a permutation for dim j .

→ Typically, take P(χ) irreducible over Z2[χ].

Niederreiter (1992), Dick & Pillichshammer (2009),Lemieux & L’Écuyer (2002), . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 514229 / 63245986

Page 44: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Representation

Digital net formulationAssembling the n bits of each component of xk in a vector xk ,j ,and the m bits of k in a vector k, this is equivalent to

xk ,j =Cj k over Z2

where Cj ∈Zn×m2 is a Hankel matrix formed by the recursion of

zj(χ)/P(χ) over Z2. I.e., for each dimension j , we havexk ,j ,1xk ,j ,2xk ,j ,3

...xk ,j ,n

=

c j ,1 · · · c j ,m

k0k1...

km−1

=m−1⊕i=0ki =0

c j ,i ,

where ⊕ is addition over Z2.→ “In parallel” on n bits this is the xor operation. . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 832040 / 63245986

Page 45: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Representation

RepresentationBy the same representation of integers and vectors over Z2:

Cj =

c j ,1 · · · c j ,m

∈Zn×m2 ≃ (

cj ,1 · · · cj ,m) ∈Zm.

Inverse: Print generating matrices given as integers C= (Cj ,i ), j = 1, . . . ,d , i = 1, . . . ,m:

n = max(floor(log2(C(:)))+1); [d, m] = size(C);permute(reshape(rot90(dec2bin(C, n)−’0’ ), n, d, m),[1 3 2])

Ï Each matrix Cj ∈Zn×m2 is represented as m integers.

Ï Integers need to have at least ≥ n bits.Ï Use top row as least significant bit.Ï Running through k in Gray code ordering only changes one bit.Ï Next point: xor “state” with column of changed bit.

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 1346269 / 63245986

Page 46: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Interlaced polynomial lattice rules

Interlaced pointsGiven a digital net in base b with s =αd dimensions:

xk =

xk ,1xk ,2

...xk ,α

xk ,α+1...

xk ,2α...

xk ,αd

=

0.xk ,1,1 xk ,1,2 xk ,1,3 · · ·xk ,1,m0.xk ,2,1 xk ,2,2 xk ,2,3 · · ·xk ,2,m

...0.xk ,α,1 xk ,α,2 xk ,α,3 · · ·xk ,α,m

0.xk ,α+1,1 xk ,α+1,2 xk ,α+1,3 · · ·xk ,α+1,m...

0.xk ,2α,1 xk ,2α,2 xk ,2α,3 · · ·xk ,2α,m...

0.xk ,αd ,1 xk ,αd ,2 xk ,αd ,3 · · ·xk ,αd ,m

gives d dimensions with αm digits

yk ,1 = 0.xk ,1,1 xk ,2,1 · · ·xk ,α,1|xk ,1,2 xk ,2,2 · · ·xk ,α,2| · · · ,

and so on. . . See, e.g., Dick (2007), Dick & Goda (2013), . . .Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 2178309 / 63245986

Page 47: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Interlaced polynomial lattice rules

Interlaced pointsGiven a digital net in base b with s =αd dimensions:

xk =

xk ,1xk ,2

...xk ,α

xk ,α+1...

xk ,2α...

xk ,αd

=

0.xk ,1,1 xk ,1,2 xk ,1,3 · · ·xk ,1,m0.xk ,2,1 xk ,2,2 xk ,2,3 · · ·xk ,2,m

...0.xk ,α,1 xk ,α,2 xk ,α,3 · · ·xk ,α,m

0.xk ,α+1,1 xk ,α+1,2 xk ,α+1,3 · · ·xk ,α+1,m...

0.xk ,2α,1 xk ,2α,2 xk ,2α,3 · · ·xk ,2α,m...

0.xk ,αd ,1 xk ,αd ,2 xk ,αd ,3 · · ·xk ,αd ,m

gives d dimensions with αm digits

yk ,1 = 0.xk ,1,1 xk ,2,1 · · ·xk ,α,1|xk ,1,2 xk ,2,2 · · ·xk ,α,2| · · · ,

and so on. . . See, e.g., Dick (2007), Dick & Goda (2013), . . .Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 2178309 / 63245986

Page 48: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Interlaced polynomial lattice rules

Interlaced pointsGiven a digital net in base b with s =αd dimensions:

xk =

xk ,1xk ,2

...xk ,α

xk ,α+1...

xk ,2α...

xk ,αd

=

0.xk ,1,1 xk ,1,2 xk ,1,3 · · ·xk ,1,m0.xk ,2,1 xk ,2,2 xk ,2,3 · · ·xk ,2,m

...0.xk ,α,1 xk ,α,2 xk ,α,3 · · ·xk ,α,m

0.xk ,α+1,1 xk ,α+1,2 xk ,α+1,3 · · ·xk ,α+1,m...

0.xk ,2α,1 xk ,2α,2 xk ,2α,3 · · ·xk ,2α,m...

0.xk ,αd ,1 xk ,αd ,2 xk ,αd ,3 · · ·xk ,αd ,m

gives d dimensions with αm digits

yk ,1 = 0.xk ,1,1 xk ,2,1 · · ·xk ,α,1|xk ,1,2 xk ,2,2 · · ·xk ,α,2| · · · ,

and so on. . . See, e.g., Dick (2007), Dick & Goda (2013), . . .Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 2178309 / 63245986

Page 49: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

One-liner? Unfortunately no. . .

Generate the pointsÏ Generate points in Gray code ordering.Ï Only one integer (column) needs to be xor’d.Ï Need to know which bit changed. . .

de Bruijn sequence for bit change:

db = [0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9];

jc = @(v) db( bitshift (mod(double(bitand(int32(v),−int32(v)))∗0x077CB531,pow2(32)),−27)+1)+1; % mind the double because of Matlab madness to not have proper integer multiplication (with modulo)

Generate points (for the fun of it):

k = 1:pow2(m)−1; K = numel(k);P = reshape(reshape(mod(cumsum(

reshape( fliplr (dec2bin(C(:, jc (k )),n)−’0’ ),d,K,n), 2), 2),d∗K, n) ∗ pow2(−1:−1:−n)’, d, K);

→ Don’t be silly: use digitalseq_b2g instead.Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 3524578 / 63245986

Page 50: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Fast component-by-component constructions

Construction of lattice rules and polynomial lattice rules

Point sets constructed forweighted spaces using fastcomponent-by-componentconstructions using numbertheoretic transforms.

See https://www.cs.kuleuven.be/~dirkn/qmc4pde/ andhttps://www.cs.kuleuven.be/~dirkn/fast-cbc/.

See, e.g., N. & Cools (2006a,2006b), Cools, Kuo, & N. (2006), Dick, Kuo, Le Gia, N.& Schwab (2014), N. (2014), Kuo & N. (2016), . . .Variations and speedups by: Gantner, Kritzer, Laimer, Leobacher, Pillichshammer,Schwab, . . .

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 5702887 / 63245986

Page 51: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Sample point generators

Point generatorsÏ Matlab/Octave: procedural generators like Matlab’s rand:

Ï latticeseq_b2.m: radical inverse lattice sequence generator,Ï digitalseq_b2g.m: gray coded radical inverse digital

sequence generator (incl. higher-order, max 53 bit).Ï Python: iterator classes, which can be used as standalone

point generators from the command line (__main__):Ï latticeseq_b2.py: iterator based (__iter__), set_state

for parallel computing,Ï digitalseq_b2g.py: ditto, arbitrary precision using mpmath

if needed.Ï C++: header file based implementation with driver program

for the command line:Ï latticeseq_b2.(h|cpp): complies to ForwardIterator

concept, set_state for parallel computing,Ï digitalseq_b2g.(h|cpp): ditto, max 64 bit.

See https://www.cs.kuleuven.be/~dirkn/qmc4pde/ andhttps://www.cs.kuleuven.be/~dirkn/qmc-generators/.

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 9227465 / 63245986

Page 52: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

The point-selling business

Welcome to T he Magic Point Shop!Different flavours of quasi-Monte Carlo points to choose:

Ï Lattice rules.Ï Lattice sequences.Ï Polynomial lattice rules.Ï Interlaced Sobol’ sequences (higher-order).Ï Interlaced polynomial lattice rules (higher-order).Ï Interlaced Niederreiter–Xing sequence (higher-order).

And code (C++ and Matlab) to use them. . .

Subsidiaries: QMC4PDE: construct points for parametrised PDEs.

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 14930352 / 63245986

Page 53: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Bounds on derivatives

Bounds on derivatives

Assume bounds on derivatives of f , ν ∈ {0, ...,α}d , up to|ν| =∑s

j=1νj ≤α

∥∥(∂νf )(x1, ...,xd)∥∥∞ =O

((|ν+a1|!)d1

d∏j=1

(a2βj)νj

).

“SPOD-type” (smoothness-driven product and order dependent decay) and“POD-type” (product and order dependent decay, α= 1) — coming from PDE context,see, e.g., Dick, Kuo, Le Gia, N., Schwab (2014), Kuo & N. (2016).

With e.g.βj = c j−d2

for some d2 > d1 ≥ 0 and c > 0.The parameter d2 is the “decay”.

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 24157817 / 63245986

Page 54: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Catering for. . .

Construction of specialized (polynomial) lattice rulesLattice rules:

Ï randomly shifted lattice rules on [0,1]s→ randomly shifted Sobolev space W1: O(N−1)

Ï randomly shifted lattice rules constructed for Rs

→ “unbounded integrand space”: O(N−1)

Ï tent-transformed lattice rules→ Sobolev space W1: O(N−1)

Digital nets:Ï randomly shifted polynomial lattice rules

→ randomly shifted Sobolev space: O(N−1)

Ï higher order polynomial lattice rules→ Sobolev space Wr embedded in ho Walsh space: O(N−r )

Ï higher order interlaced polynomial lattice rules→ Sobolev space Wr embedded in ho Walsh space: O(N−r )

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 39088169 / 63245986

Page 55: Lattice rules and beyond - Stanford Universitymcqmc2016.stanford.edu/Nuyens-Dirk.pdf0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 ff Approximating

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Magic 0x07 QMC4PDE 0x08 Coffee

Take home messageÏ You can use QMC!Ï It’s easy!Ï You are not afraid of the function spaces!Ï You gladly found out about higher-order convergence N−α!Ï You are happily finding online software resources!Ï You walk out happy to the coffee break. . .

This talk was mainly based on (self-promote):Ï N. (2014): review of fast construction,Ï Kuo & N. (2016): QMC4PDE review,Ï Magic Point website (and fast CBC construction scripts),Ï QMC4PDE website.

But of course there is also L’Écuyer & Munger (TOMS, 2016), Gantner & Schwab’swebsite, Kuo’s website.

Lattice rules and beyond. . . • Dirk Nuyens (KU Leuven, Belgium) • 63245986 / 63245986