Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

34
Lattice Energy LLC Commercializing a next-generation source of valuable stable elements Low Energy Neutron Reactions (LENRs) Addendum to May 19, 2012 Technical Overview regarding a WLT Tungsten 74 W 180 -seed LENR neutron-catalyzed transmutation network: Pb Hg ; Bi Tl http://www.slideshare.net/lewisglarsen/lattice-energy-llc-lenr-transmutation-networks-can-produce-goldmay-19-2012 Lewis Larsen President and CEO Lattice Energy LLC May 26, 2012 Unstable 82 Pb 210 Half-life = ~22.2 years Alpha decay Unstable 83 Bi 210 Half-life = ~5 days Unstable 80 Hg 206 Half-life = ~8.2 minutes Unstable 81 Tl 206 Half-life = ~4.2 minutes Alpha decay Lead Mercury Bismuth Thallium In above LENR network, unstable isotopes of Lead and Bismuth will spontaneously transmute into unstable isotopes of Mercury and Thallium, respectively, which could be detected Apparently observed by L. Thomassen in experimental work for his PhD at Caltech in 1927 May 26, 2012 Copyright 2012, Lattice Energy LLC All Rights Reserved Transmutations

description

In a hypothetical Widom-Larsen LENR network, unstable isotopes of Lead and Bismuth created by neutron capture processes will spontaneously transmute via alpha-decays into unstable isotopes of Mercury and Thallium, respectively, which could potentially be detected analytically. Such LENR network products were apparently observed by L. Thomassen in experimental work that he conducted for his PhD at Caltech in 1927. A summary of these results was subsequently published in peer-reviewed Physical Review in 1929.

Transcript of Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Page 1: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Lattice Energy LLC

Commercializing a next-generation source of valuable stable elements

Low Energy Neutron Reactions (LENRs)

Addendum to May 19, 2012 Technical Overview

regarding a WLT Tungsten

74W180-seed LENR neutron-catalyzed

transmutation network: Pb → Hg ; Bi → Tl http://www.slideshare.net/lewisglarsen/lattice-energy-llc-lenr-transmutation-networks-can-produce-goldmay-19-2012

Lewis Larsen

President and CEO

Lattice Energy LLC

May 26, 2012

Unstable 82Pb210

Half-life = ~22.2 years

Alpha decay

Unstable 83Bi210

Half-life = ~5 days

Unstable 80Hg206

Half-life = ~8.2 minutes

Unstable 81Tl206

Half-life = ~4.2 minutes

Alpha decay

Lead

Mercury

Bismuth

Thallium

In above LENR network, unstable isotopes of Lead and Bismuth will spontaneously transmute

into unstable isotopes of Mercury and Thallium, respectively, which could be detected

Apparently observed by L. Thomassen in experimental work for his PhD at Caltech in 1927

May 26, 2012 Copyright 2012, Lattice Energy LLC All Rights Reserved

Transmutations

Page 2: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Lattice Energy LLC

Commercializing a next-generation source of valuable stable elements

Low Energy Neutron Reactions (LENRs)

Addendum to May 19, 2012 Technical Overview http://www.slideshare.net/lewisglarsen/lattice-energy-llc-lenr-transmutation-networks-can-produce-goldmay-19-2012

Unstable 81Tl206

Half-life = ~4.2 minutes

In hypothetical LEN R network, unstable isotopes of Lead and Bismuth will spontaneously

transmute into unstable isotopes of Mercury and Thallium, respectively, which could be detected

Apparently observed by L. Thomassen in experimental work for his PhD at Caltech in 1927

Documents:

“Low Energy Neutron Reactions (LENRs): in theory, neutron-catalyzed

LENR transmutations can produce Gold; already observed

experimentally; may also occur naturally in the earth --- Might process

be scalable and economic; if so, what are long-term implications for

Gold price?”

Lewis Larsen, Lattice Energy LLC [66 PowerPoint slides – not peer-

reviewed]

May 19, 2012 --- published on SlideShare.net

http://www.slideshare.net/lewisglarsen/lattice-energy-llc-lenr-transmutation-

networks-can-produce-goldmay-19-2012

“The Transmutation of Elements”

Lars Thomassen

PhD Thesis, Caltech

August 1927 [totals 21 pages – copy is included within this document]

http://thesis.library.caltech.edu/843/1/Thomassen_l_1927.pdf

Somewhat shorter version of Thomassen’s PhD thesis was eventually

published as a peer-reviewed journal paper:

“Transmutation of Elements”

L. Thomassen [acknowledged input from R. Millikan, Nobel Prize 1923]

Physical Review 33 pp. 229 – 238 (1929)

http://authors.library.caltech.edu/2524/1/THOpr29.pdf

May 26, 2012 Copyright 2012, Lattice Energy LLC All Rights Reserved

Page 3: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Lattice Energy LLC

Commercializing a next-generation source of valuable stable elements

Low Energy Neutron Reactions (LENRs)

Addendum to May 19, 2012 Technical Overview http://www.slideshare.net/lewisglarsen/lattice-energy-llc-lenr-transmutation-networks-can-produce-goldmay-19-2012

Unstable 81Tl206

Half-life = ~4.2 minutes

May 26, 2012 Copyright 2012, Lattice Energy LLC All Rights Reserved

Documents:

“Discovery of the thallium, lead, bismuth, and polonium isotopes”

C. Fry and M. Thoennessen

Cornell physics preprint archive

January 21, 2012 [totals 50 pages]

http://arxiv.org/pdf/1201.4474v1.pdf

Source of Figure is above-cited preprint

Fig. 3: Lead isotopes as a function of time when they were discovered. The different production methods are indicated.

Page 4: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Lattice Energy LLC

Commercializing a next-generation source of valuable stable elements

Low Energy Neutron Reactions (LENRs)

Addendum to May 19, 2012 Technical Overview http://www.slideshare.net/lewisglarsen/lattice-energy-llc-lenr-transmutation-networks-can-produce-goldmay-19-2012

In hypothetical LEN R network, unstable isotopes of Lead and Bismuth will spontaneously

transmute into unstable isotopes of Mercury and Thallium, respectively, which could be detected

Apparently observed by L. Thomassen in experimental work for his PhD at Caltech in 1927

Brief comments on Thomassen’s ca. 1927 experiments:

Please note, existence of the neutron was not truly verified for another 5 years (Chadwick, 1932), so

the concept of neutron-catalyzed nuclear transmutation reactions was unknown to researchers at

that point in time. Although Rutherford had discovered beta-minus decay in 1899, it was not at all

understood until Fermi published his seminal theory papers on subject of beta-decay in 1934

Although Pb210 had been discovered in 1900 and Bi210 in 1905, Tl206 was only first discovered in

1935 and Hg206 not until 1961 (for a history of Mercury isotopes see

http://www.nscl.msu.edu/~thoennes/2009/mercury-adndt.pdf ); so Thomassen and other

contemporary researchers of that era would have been unaware of possibility that some of the

alpha-decay paths into unstable Mercury and Thallium isotopes that are known today, 85 years later

Please note Thomassen’s frequent comments about experimentalists having great difficulty in

repeating experimental results in transmutation experiments; does that gnarly, contentious issue of

adequate experimental reproducibility sound familiar? Plus ça change, plus c'est la même chose!

Thomassen and his contemporaries had no idea or clue whatsoever that the Mercury and Thallium

transmutation products they were attempting to observe and measure were in fact relatively short-

lived isotopes (please see LENR network diagrams and isotope half-life data provided therein)

Spectroscopic analytical techniques can reveal the presence of reasonable quantities of new

elements (and even short-lived unstable isotopes) fast enough before they can decay. By contrast,

in case of the other type of time-laborious wet-chemical analytical technique described later in

Thomassen’s thesis, it would have been a race against time to finish the analytical procedures

before unstable isotopes of chemical elements of interest had decayed below the limits of detection

To create neutrons via the WLT e + p electroweak reaction, Hydrogen (protons) must be present in

some chemical form, if only in trace amounts, somewhere inside experimental apparatus. In many

of these 1920s experiments, quantity of hydrogen (protons) internally available to make neutrons

may have been a limiting factor controlling quantities of transmutation products and contributed to

variability of results; Nagaoka inadvertently solved this issue by arcing in transformer oil, CnH2n+2

Note that Thomassen cited Nagaoka but not Wendt & Irion; the credibility of their exploding wire

work published 1922 had already been destroyed by Rutherford’s critique in Nature; we have since

determined that Rutherford was wrong: http://arxiv.org/PS_cache/arxiv/pdf/0709/0709.1222v1.pdf

Conclusion: even given above comments and length of time since these early

experiments were conducted (85 years), it appears that Thomassen’s reported

results were consistent with operation of a WLT neutron-catalyzed LENR process

May 26, 2012 Copyright 2012, Lattice Energy LLC All Rights Reserved

Page 5: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Phys. Rev. 33, 229 (1929): Transmutation of Elements

http://prola.aps.org/abstract/PR/v33/i2/p229_1[5/26/2012 1:31:18 PM]

Home Browse Search Subscriptions What's New Help

Citation Search: Phys. Rev. Lett. Vol. Page/Article

Physics - spotlighting exceptionalresearch

Read the latest from Physics : Viewpoint: Quantum Dipolar Gases inBoson or Fermion Flavor

Viewpoint: A Closer Connection BetweenEntanglement and Nonlocality

Focus: How to Make Soft, WavyStructures

Phys. Rev. 33, 229–238 (1929)

Transmutation of Elements

L. Thomassen

Norman Bridge Laboratory of Physics, California Institute, Pasadena, California

Received 25 September 1928; published in the issue dated February 1929

Test for the transmutation in the tungsten target of an x-ray tube.—X-

ray spectrograms of the tungsten target of a deep-therapy x-ray tube were taken before

and after operating it for about 80 hours at 2-3 ma and 207 kv peak voltage. No lines

other than those due to tungsten were found before or after.

Test for transmutation of lead in a lead arc.—The experiments of Smits and

Karssen with the lead arc were duplicated as nearly as possible. Under no conditions of

current density was there any spectroscopic evidence of a transmutation of the lead to

mercury.

Test for transmutation of lead in a high potential discharge between lead electrodes in

CS2.—The experiments of Smits and Karssen were carefully repeated. Some evidence

of Hg in the residue from the electrodes was found. The indications are however, that

the mercury comes from the electrodes, the carbon bisulphide or dust particles rather

than from a transmutation of lead.

© 1929 The American Physical Society

URL: http://link.aps.org/doi/10.1103/PhysRev.33.229

DOI: 10.1103/PhysRev.33.229

PROLA » Phys. Rev. » Volume 33 » Issue 2 < Previous Article | Next Article >

Abstract References No Citing Articles Page Images

Download: PDF (668 kB) Buy this article Export: BibTeX or EndNote (RIS)

< Previous Article | Next Article >

About | Terms and Conditions | Subscriptions | Search

| Help

Use of the American Physical Society websites and

American Physical Society

Log in | Create Account (what's this?)

RSS Feeds | Email Alerts

Page 6: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Latt

ice

En

erg

y L

LC

Co

mm

erc

iali

zin

g a

next-

gen

era

tio

n s

ou

rce o

f valu

ab

le s

tab

le e

lem

en

ts

Lo

w E

nerg

y N

eu

tro

n R

eac

tio

ns (

LE

NR

s)

In t

he

ory

, n

eu

tro

n-c

ata

lyze

d L

EN

R t

ran

sm

uta

tio

ns

ca

n p

rod

uc

e G

old

Alr

ea

dy o

bs

erv

ed

ex

pe

rim

en

tally;

ma

y a

lso

oc

cu

r n

atu

rally in

th

e e

art

h

Mig

ht

pro

ce

ss

be

sc

ala

ble

an

d e

co

no

mic

; if

so

, w

ha

t a

re lo

ng

-te

rm im

plic

ati

on

s f

or

Go

ld p

ric

e?

Te

ch

nic

al

Ov

erv

iew

Lew

is L

ars

en

Pre

sid

en

t an

d C

EO

Latt

ice E

nerg

y L

LC

May 1

9,

2012

Sta

ble

74W

180-1

86

seeds

Se

rie

s o

f

Inte

rme

dia

te

Iso

top

es

78P

t197

79A

u1

97

+n

an

d d

eca

ys

β- d

ecay

Ex

am

ple

1

Pro

du

cti

on

of

Go

ld:

on

e p

os

sib

le p

ath

Ne

utr

on

-ca

taly

ze

d tr

an

sm

uta

tio

ns

Sta

ble

73Ta

180-1

81

seeds

79A

u1

97

+n

Ne

utr

on

-ca

taly

ze

d tr

an

sm

uta

tio

ns

Basic

LE

NR

tra

nsm

uta

tio

n r

eacti

on

s:

e- * +

p+ g

n

+ ν

e

n +

(Z

, A

) g

(Z

, A

+1

) sta

ble o

r

(Z

, A

+1

) un

sta

ble

(Z, A

+1

) un

sta

ble g

(Z+

1,

A+

1) s

tab

le o

r u

nst

ab

le +

e- β

+

νe

“F

acts

do

no

t cease t

o e

xis

t

becau

se t

hey a

re i

gn

ore

d.”

Ald

ou

s H

uxle

y i

n

“P

rop

er

Stu

die

s” 1

92

7

Ex

am

ple

2

Ma

kin

g G

old

: a

no

the

r p

os

sib

le p

ath

+n

an

d d

eca

ys

78P

t196

Se

rie

s o

f

Inte

rme

dia

te

Iso

top

es

77Ir

197

78P

t197

β- d

ecay

β- d

ecay

M

ay 1

9, 2

01

2 C

op

yri

gh

t 2

01

2, L

att

ice E

nerg

y L

LC

A

ll R

igh

ts R

ese

rve

d

1

Page 7: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Latt

ice

En

erg

y L

LC

Co

mm

erc

iali

zin

g a

next-

gen

era

tio

n s

ou

rce o

f valu

ab

le s

tab

le e

lem

en

ts

74W

18

0-s

eed

LE

NR

neu

tro

n-c

ata

lyzed

tra

nsm

uta

tio

n n

etw

ork

Th

eo

reti

ca

l d

es

cri

pti

on

of

nu

cle

os

yn

the

tic

ne

two

rk f

or

Go

ld

W

e w

ill n

ow

ex

am

ine a

hyp

oth

eti

ca

l L

EN

R t

ran

sm

uta

tio

n n

etw

ork

th

at

be

gin

s

wit

h n

eu

tro

n c

ap

ture

s o

n T

an

talu

m (

Ta

) a

nd

Tu

ng

ste

n (

W)

‘se

ed

s’

E

xp

lan

ato

ry l

eg

en

d f

or

ne

two

rk d

iag

ram

s a

pp

ea

rs o

n t

he

ne

xt

sli

de

7

4W

180-s

ee

d n

etw

ork

pro

du

ce

s G

old

(A

u)

an

d P

lati

nu

m (

Pt)

; if

su

ffic

ien

tly h

igh

ne

utr

on

flu

xe

s a

re m

ain

tain

ed

fo

r e

no

ug

h t

ime

, it

ca

n r

ea

ch

Bis

mu

th (

Bi)

W

hil

e u

ns

tab

le in

term

ed

iate

ne

two

rk p

rod

uc

ts u

nd

erg

o n

uc

lea

r d

ec

ays

, th

eir

ha

lf-l

ive

s a

re g

en

era

lly s

ho

rt (

es

pe

cia

lly t

ho

se

th

at

are

mo

re n

eu

tro

n-r

ich

); t

his

ne

two

rk d

oe

s n

ot

pro

du

ce

co

pio

us

, d

an

ge

rou

s lo

ng

-liv

ed

ra

dio

ac

tive

is

oto

pe

s

A

cc

ord

ing

to

th

e W

LT,

in

co

nd

en

se

d m

att

er

sys

tem

s L

EN

Rs

oc

cu

r in

ma

ny t

iny

nm

- to

mic

ron

-sc

ale

su

rfa

ce

sit

es

or

‘pa

tch

es

’ th

at

on

ly ‘

live

’ fo

r s

eve

ral

hu

nd

red

na

no

se

co

nd

s b

efo

re t

he

y ‘

die

’; s

uc

h s

ite

s c

an

fo

rm a

nd

re

-fo

rm s

po

nta

ne

ou

sly

N

ee

d in

pu

t e

ne

rgy t

o m

ak

e n

eu

tro

ns

th

at

‘ca

taly

ze

’ L

EN

R t

ran

sm

uta

tio

ns

In

fo

llo

win

g s

ec

tio

ns

, w

e w

ill d

isc

us

s c

om

pe

llin

g e

xp

eri

me

nta

l e

vid

en

ce

th

at

this

nu

cle

os

yn

the

tic

ne

two

rk in

fa

ct

oc

cu

rs b

oth

in

th

e la

bo

rato

ry a

nd

ou

t in

Na

ture

M

ay 1

9, 2

01

2 C

op

yri

gh

t 2

01

2, L

att

ice E

nerg

y L

LC

A

ll R

igh

ts R

ese

rve

d

19

Page 8: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Latt

ice

En

erg

y L

LC

Co

mm

erc

iali

zin

g a

next-

gen

era

tio

n s

ou

rce o

f valu

ab

le s

tab

le e

lem

en

ts

Ne

utr

on

ca

ptu

re a

nd

nu

cle

ar

de

ca

y p

roc

es

se

s:

UL

M n

eu

tro

n c

ap

ture

s p

roce

ed

fro

m le

ft t

o r

igh

t e

xc

ep

t fo

r u

pp

er-

left

co

rne

r; Q

-va

lue

of

cap

ture

re

ac

tio

n (

Me

V)

in

gre

en

eit

her

ab

ove

or

belo

w h

ori

zo

nta

l a

rro

w.

Be

ta- (β

- ) d

ec

ays

pro

ce

ed

fro

m t

op

to

bo

tto

m;

den

ote

d w

ith

bri

gh

t b

lue v

ert

ical a

rro

w p

oin

tin

g d

ow

n w

ith

Q-v

alu

e

(Me

V)

in b

lue

eit

her

to le

ft o

r ri

gh

t; b

eta

+ (β

+)

dec

ays

are

den

ote

d w

ith

ye

llo

w a

rro

w p

oin

tin

g u

pw

ard

to

ro

w a

bo

ve

Alp

ha

dec

ays

, in

dic

ate

d w

ith

ora

ng

e a

rro

ws, p

roce

ed

mo

stl

y f

rom

rig

ht

to le

ft a

t a

n a

ng

le w

ith

Q-v

alu

e (

Me

V)

sh

ow

n

in o

ran

ge lo

ca

ted

on

eit

her

sid

e o

f th

e p

roce

ss

arr

ow

.

Ele

ctr

on

cap

ture

s (

e.c

.) in

dic

ate

d b

y p

urp

le v

ert

ical a

rro

w; Q

-va

lue

(M

eV

) to

le

ft o

r ri

gh

t.

No

te:

to r

ed

uc

e v

isu

al c

lutt

er

in t

he n

etw

ork

dia

gra

m, g

am

ma

em

issio

ns

(c

on

ve

rte

d t

o in

fra

red

ph

oto

ns b

y h

ea

vy e

- *

ele

ctr

on

s)

are

no

t s

ho

wn

; s

imil

arl

y, e

xc

ep

t w

here

sp

ecif

ically lis

ted

bec

au

se

a g

ive

n b

ran

ch

cro

ss

-sec

tio

n is

sig

nif

ican

t, b

eta

-dela

ye

d d

ec

ays

als

o g

en

era

lly n

ot

sh

ow

n;

BR

me

an

s “

bra

nc

hin

g r

ati

o” if

>1

dec

ay a

lte

rnati

ve

Co

lor

co

de

d h

alf

-liv

es

:

Wh

en

kn

ow

n, h

alf

-liv

es s

ho

wn

as “

HL

= x

x”. S

tab

le a

nd

qu

as

i-s

tab

le is

oto

pe

s (

i.e

., t

ho

se w

ith

half

-liv

es >

or

eq

ual to

10

7 y

ears

) in

dic

ate

d b

y g

reen

bo

xes

; is

oto

pe

s w

ith

half

-liv

es <

10

7 b

ut

> t

han

or

eq

ual to

10

3 y

ears

in

dic

ate

d b

y l

igh

t

blu

e;

tho

se w

ith

half

-liv

es <

th

an

10

3 y

ears

bu

t >

or

eq

ual to

1 d

ay a

re d

en

ote

d b

y p

urp

lis

h b

ox

es

; h

alf

-liv

es o

f <

1 d

ay

in y

ell

ow

; w

ith

re

gard

to

half

-lif

e, n

ota

tio

n “

? n

m” m

ea

ns

is

oto

pe

has

be

en

ve

rifi

ed

by H

L h

as

no

t b

ee

n m

ea

su

red

Me

as

ure

d n

atu

ral te

rre

str

ial a

bu

nd

an

ce

s f

or

sta

ble

is

oto

pes

:

Ind

icate

d w

ith

% s

ym

bo

l; n

ote

th

at

83B

i20

9 =

100

% (

ess

en

tia

lly ~

sta

ble

wit

h h

alf

-lif

e =

1

.9 x

10

19 y

rs);

82P

b-2

05

~s

tab

le

wit

h H

L=

1.5

x10

7 y

rs;

74W

18

0-s

eed

LE

NR

neu

tro

n-c

ata

lyzed

tra

nsm

uta

tio

n n

etw

ork

Leg

en

d:

M

ay 1

9, 2

01

2 C

op

yri

gh

t 2

01

2, L

att

ice E

nerg

y L

LC

A

ll R

igh

ts R

ese

rve

d

20

Page 9: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Latt

ice

En

erg

y L

LC

Co

mm

erc

iali

zin

g a

next-

gen

era

tio

n s

ou

rce o

f valu

ab

le s

tab

le e

lem

en

ts

Ple

as

e n

ote

: o

nce c

reate

d, th

e p

rocess o

f cap

turi

ng

an

LE

NR

UL

M n

eu

tro

n o

n a

nearb

y a

tom

occu

rs v

ery

qu

ickly

; o

n t

he o

rder

of

pic

oseco

nd

s, i.e., 0.0

00000000001 s

ec., i.e

., 1

0-1

2 s

ec, w

hic

h

is m

uch

faste

r th

an

an

y o

f th

e v

ari

ou

s n

ucle

ar

decays f

ou

nd

in

th

is p

art

icu

lar

LE

NR

netw

ork

.

Mo

reo

ver,

in

case o

f co

nd

en

sed

matt

er

LE

NR

s,

wh

ile t

heir

neu

tro

n p

rod

ucti

on

rate

s a

re p

rob

ab

ly

sig

nif

ican

tly lo

wer

than

th

e r

-pro

cess, L

EN

R n

eu

tro

n c

ap

ture

cro

ss

-secti

on

s a

re v

astl

y h

igh

er

than

tho

se in

ste

llar

en

vir

on

men

ts;

on

bala

nce it’

s e

ssen

tially ‘a w

ash

’, s

o L

EN

Rs c

an

eff

ecti

vely

mim

ic

the r

-pro

cess.

Th

us, is

oto

pes in

LE

NR

s c

an

po

ten

tially c

ap

ture

ad

dit

ion

al n

eu

tro

ns (

i.e., b

eco

me

mo

re n

eu

tro

n-r

ich

iso

top

es o

f th

e s

am

e e

lem

en

t) b

efo

re b

eta

decay t

ran

sm

ute

s t

hem

in

to o

ther

hig

her-

Z e

lem

en

ts f

ou

nd

in

th

e P

eri

od

ic T

ab

le. T

his

is w

hy t

he ‘h

ot’

astr

op

hysic

al r-

pro

cess c

an

make h

eav

ier

ele

men

ts t

han

th

e s

-pro

cess (

i.e., g

o b

eyo

nd

Bis

mu

th):

wit

h m

uch

hig

her

pro

du

ced

neu

tro

n f

luxes, th

e r

-pro

cess c

an

su

ccessfu

lly t

rav

ers

e a

nd

‘b

rid

ge’ key r

eg

ion

s o

f v

ery

sh

ort

-liv

ed

iso

top

es t

hat

are

fo

un

d i

n u

ltra

-neu

tro

n-r

ich

, h

igh

-Z r

each

es o

f v

ast

nu

cle

ar

iso

top

ic lan

dscap

e

Netw

ork

may p

ote

nti

all

y c

on

tin

ue ‘

up

ward

’ to

even

hig

her

valu

es o

f A

;

Th

is d

ep

en

ds o

n U

LM

neu

tro

n f

lux i

n c

m2/s

ec

75R

e-1

85

Stab

le 3

7.4

%

75R

e-1

86

HL

= 3

.7 d

ays

76O

s-1

86

Stab

le 1

.58

%

6.2

6.3

Increasing values of Z

73Ta

-18

1

Stab

le 9

9.9+

%

73Ta

-182

HL

= 11

4 d

ays

73T

a-1

84

HL

= 8

.6 h

rs

73Ta

-18

5

HL

= 4

9.3

min

7.4

6

.9

5.6

74W

-18

0

Stab

le 0

.12%

7

4W

-182

Stab

le 2

6.5%

7

4W

-183

Stab

le 1

4.3

%

74W

-18

4

Stab

le 3

0.6

%

74W

-18

5

HL

= 7

5.1

day

s

8.1

6

.2

5.8

73Ta

-183

HL

= 5.

1 d

ays

74W

-18

6

Stab

le 2

8.4

%

Inc

rea

sin

g v

alu

es

of

A

6.1

6.7

7

.4

7.2

5

.5

7.4

1.8

1.1

2.9

2.0

5.4

73Ta

-18

6

HL

= 1

0.5

min

3.9

6.2

433 k

eV

1

.1

BR

92.5

%

7.2

74W

-18

1

HL

= 12

1 d

ays

ε 1

88 k

eV

B

R =

100%

ε

579

keV

BR

=

7.5

%

Sta

rt w

ith

sta

ble

Tu

ng

ste

n ‘seed

s’

of

pu

re W

meta

l

74W

18

0-s

eed

LE

NR

neu

tro

n-c

ata

lyzed

tra

nsm

uta

tio

n n

etw

ork

Alt

ern

ati

ve

ly,

on

e c

ou

ld

sta

rt w

ith

73T

a1

81

‘se

ed

T

un

gs

ten

It s

ho

uld

als

o b

e n

ote

d t

ha

t a

ll o

f th

e m

an

y a

tom

s lo

ca

ted

wit

hin

a 3

-D r

eg

ion

of

sp

ac

e t

ha

t e

nc

om

pa

ss

es

a g

ive

n U

LM

ne

utr

on

’s s

pa

tia

lly e

xte

nd

ed

De

Bro

glie

wa

ve

fu

nc

tio

n (

wh

os

e d

ime

ns

ion

s c

an

ra

ng

e f

rom

2 n

m t

o 1

00

mic

ron

s)

will ‘c

om

pe

te’

wit

h e

ac

h o

the

r to

ca

ptu

re s

uc

h n

eu

tro

ns

. U

LM

ne

utr

on

ca

ptu

re is

th

us

a d

ec

ide

dly

ma

ny

-bo

dy s

ca

tte

rin

g p

roc

es

s, n

ot

few

-

bo

dy s

ca

tte

rin

g s

uc

h a

s t

ha

t w

hic

h c

ha

rac

teri

ze

s c

ap

ture

of

ne

utr

on

s a

t th

erm

al e

ne

rgie

s in

co

nd

en

se

d m

att

er

in w

hic

h t

he

De

Bro

glie

wa

ve

fu

nc

tio

n o

f a

th

erm

al n

eu

tro

n is

on

th

e o

rde

r o

f ~

2 A

ng

str

om

s.

Th

is e

xp

lain

s w

hy v

as

t m

ajo

rity

of

pro

du

ce

d

ne

utr

on

s a

re c

ap

ture

d lo

ca

lly a

nd

are

on

ly r

are

ly d

ete

cte

d a

t a

ny e

ne

rgie

s d

uri

ng

co

urs

e o

f L

EN

R e

xp

eri

me

nts

; it

als

o c

lea

rly

ex

pla

ins

wh

y h

um

an

-le

tha

l M

eV

-en

erg

y n

eu

tro

n f

lux

es

are

ch

ara

cte

ris

tic

ally n

ot

pro

du

ce

d in

co

nd

en

se

d m

att

er

LE

NR

sys

tem

s.

M

ay 1

9, 2

01

2 C

op

yri

gh

t 2

01

2, L

att

ice E

nerg

y L

LC

A

ll R

igh

ts R

ese

rve

d

21

Page 10: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Latt

ice

En

erg

y L

LC

Co

mm

erc

iali

zin

g a

next-

gen

era

tio

n s

ou

rce o

f valu

ab

le s

tab

le e

lem

en

ts

75R

e-1

88

HL

= 17

hrs

76O

s-1

88

Stab

le 1

3.3

%

6.8

5.9

74W

-187

HL

= 2

3.7

hrs

75R

e-1

87

~Sta

ble

10

10 y

rs

UL

M N

eu

tro

n

C

ap

tu

re

E

nd

s o

n T

a

Do

tte

d g

ree

n a

rro

w d

en

ote

s U

LM

N c

ap

ture

pro

du

cts

co

min

g f

rom

lo

we

r va

lue

s o

f A

75R

e-19

0

HL

= 3.

2 m

in

75R

e-1

89

HL

= 1

day

76O

s-18

9

Stab

le 1

6.1%

76O

s-19

1

HL

= 15

.4 d

ays

76O

s-19

0

Stab

le 2

6.4%

76O

s-1

92

~Sta

ble

41

.0%

7

6O

s-1

93

HL

= 1.

3 d

ays

76O

s-1

94

HL

= 6

.0 y

rs

77Ir

-191

Stab

le 3

7.3%

77Ir

-19

3

Stab

le 6

2.7

%

77Ir

-19

4

HL

= 1

9.3

hrs

78P

t-19

2

Stab

le 0

.79

%

78P

t-1

93

HL

= 5

1 y

rs

78P

t-1

94

Stab

le 3

2.9

%

4.9

7.0

5.7

6.9

8.0

6.2

6.3

8

.4

6.1

1.8

1.6

Inc

rea

sin

g v

alu

es

of

A

Increasing values of Z

Netw

ork

may p

ote

nti

all

y c

on

tin

ue ‘

up

ward

’ to

even

hig

her

valu

es o

f A

;

Th

is d

ep

en

ds o

n U

LM

neu

tro

n f

lux i

n c

m2/s

ec

73Ta

-18

7

HL

= 1.

7 m

in

75R

e-1

92

HL

= 1

6 s

ec

75R

e-1

93

HL

= 3

0 s

ec

75R

e-19

4

H L

= 2

sec

74W

-190

HL

= 30

min

7

4W

-191

HL

= 20

sec

6.3

5.5

6.2

7.4

5.1

74W

-189

HL

= 11

.6 m

in

74W

-18

8

HL

= 69

.8 d

ays

76O

s-18

7

Stab

le 1

.6%

75R

e-19

1

HL

= 9.

8 m

in

UL

M N

eu

tro

n

C

ap

tu

re

E

nd

s o

n W

UL

M N

eu

tro

n

C

ap

tu

re

E

nd

s o

n R

e

3.1

6.9

4.9

5.4

6

.7

5.3

7.8

5.9

5.8

7.6

5.6

7

.1

5.3

7.8

6

.1

1.5

BR

95.1

%

1.0

3.1

2.1

4.2

3.1

313 k

eV

B

R 1

00%

2..1

73Ta

-189

HL

= 3

sec

73Ta

-190

HL=

3 x

10

2 m

sec

73T

a-18

8

HL

= 2

0 se

c

4.9

3.7

5.6

74W

-19

2

HL

= 1

0 s

ec

ε

1..1

B

R =

4.9

%

77Ir

-19

2

HL

= 73

.8 d

ays

1.1

ε

57 k

eV

BR

= 1

00%

74W

18

0-s

eed

LE

NR

neu

tro

n-c

ata

lyzed

tra

nsm

uta

tio

n n

etw

ork

1.3

349 k

eV

2.5

1.3

3.2

2.1

4.9

97 k

eV

2.2

7.2

6.1

4.9

6.7

Pro

du

ce P

lati

nu

m

As s

ho

wn

in

th

ese n

etw

ork

ch

art

s, m

ore

neu

tro

n-r

ich

, u

nsta

ble

beta

-decayin

g iso

top

es t

en

d t

o h

av

e m

ore

en

erg

eti

c d

ecays a

nd

sh

ort

er

half

-liv

es. E

lectr

ic c

urr

en

t-d

riv

en

LE

NR

UL

M n

eu

tro

n

pro

du

cti

on

an

d c

ap

ture

pro

cesses c

an

occu

r at

mu

ch

faste

r ra

tes

than

decay r

ate

s o

f b

eta

-/e.c

.-u

nsta

ble

iso

top

es in

th

is n

etw

ork

.

Th

us, if

lo

cal U

LM

ne

utr

on

pro

du

cti

on

rate

s in

a g

iven

‘p

atc

h’ are

hig

h e

no

ug

h,

larg

e d

iffe

ren

ces in

rate

s o

f b

eta

decay v

s. n

eu

tro

n c

ap

ture

pro

cesses m

ean

s t

hat

larg

ish

po

pu

lati

on

s o

f u

nsta

ble

, v

ery

neu

tro

n-r

ich

iso

top

es c

an

accu

mu

late

lo

cally

du

rin

g 3

00 n

an

osec lif

eti

me o

f an

LE

NR

-acti

ve p

atc

h, p

rio

r to

its

bein

g d

estr

oyed

.

M

ay 1

9, 2

01

2 C

op

yri

gh

t 2

01

2, L

att

ice E

nerg

y L

LC

A

ll R

igh

ts R

ese

rve

d

22

Page 11: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Latt

ice

En

erg

y L

LC

Co

mm

erc

iali

zin

g a

next-

gen

era

tio

n s

ou

rce o

f valu

ab

le s

tab

le e

lem

en

ts

76O

s-1

96

HL

= 34

.8 m

in

77Ir

-196

HL

= 52

sec

78P

t-19

6

Stab

le 2

5.3%

6.7

7

6O

s-1

95

HL

= 6

.5 m

in

77Ir

-19

5

HL

= 2

.5 h

rs

Do

tte

d g

ree

n a

rro

w d

en

ote

s U

LM

N c

ap

ture

pro

du

cts

co

min

g f

rom

lo

we

r va

lue

s o

f A

77Ir

-199

HL

= 20

sec

7

7Ir

-198

HL

= 8

sec

78P

t-19

7

HL

= 19

.9 h

rs

78P

t-19

9

HL

= 30

.8 m

in

78P

t-19

8

Stab

le 7

.2%

78P

t-2

00

HL

= 1

3 h

rs

79A

u-1

97

Stab

le 1

00%

7

9A

u-1

99

HL

= 3

.1 d

ays

79A

u-2

00

HL

= 48

min

7

9A

u-2

01

HL

= 2

7 m

in

5.8

6

.9

5.6

6

.9

5.9

7

.6

5.6

7.3

5.2

6.9

6.5

7.6

6.3

7

.2

6.1

6

.8

2.0

1.

3

0.6

1.7

666 k

eV

2.7

1.8

Inc

rea

sin

g v

alu

es

of

A

Increasing values of Z

Netw

ork

may p

ote

nti

all

y c

on

tin

ue ‘

up

ward

’ to

even

hig

her

valu

es o

f A

;

Th

is d

ep

en

ds o

n U

LM

neu

tro

n f

lux i

n c

m2/s

ec

78P

t-19

5

Stab

le 3

3.8%

UL

M N

eu

tro

n

C

ap

tu

re

E

nd

s o

n Ir

5.3

7.2

6.1

7

8P

t-2

02

HL

= 1

.9 d

ays

79A

u-2

02

HL

= 2

8.8

sec

UL

M N

eu

tro

n

C

ap

tu

re

E

nd

s o

n O

s

80H

g-19

8

Stab

le 9

.8%

8

0H

g-19

9

Stab

le 1

6.9%

80H

g-2

01

Stab

le 1

3.2%

8

0H

g-2

00

Stab

le 2

3.1

%

80H

g-2

02

Stab

le 2

9.9

%

79A

u-1

98

HL

= 2

.7 d

ays

78P

t-2

01

HL

= 2

.5 m

in

1.4

4

52 k

eV

719 k

eV

1.3

2.2

3.0

77Ir

-197

HL

= 5.

8 m

in

2.2

4.1

3.0

1.2

1.1

3.2

6.7

8

.0

6.2

7

.8

6.0

7.9

UL

M N

eu

tro

n

C

ap

tu

re

E

nd

s o

n P

t

Pro

du

ce G

old

74W

18

0-s

eed

LE

NR

neu

tro

n-c

ata

lyzed

tra

nsm

uta

tio

n n

etw

ork

80H

g-1

96

Stab

le 0

.15%

8

0H

g-19

7

HL

= 2.

7 d

ays

ε

600 k

eV

BR

= 1

00%

6.8

8

.5

Ple

ase n

ote

th

at:

Q-v

alu

e f

or

neu

tro

n c

ap

ture

on

a g

iven

beta

-un

sta

ble

iso

top

e is o

ften

larg

er

than

th

e Q

-valu

e f

or

the a

ltern

ati

ve β

-

decay p

ath

way, so

in

ad

dit

ion

to

bein

g a

faste

r p

rocess t

han

beta

decay it

can

als

o b

e e

nerg

eti

cally m

ore

fav

ora

ble

. T

his

can

als

o

co

ntr

ibu

te t

o c

reati

ng

fle

eti

ng

yet

su

bsta

nti

al lo

cal p

op

ula

tio

ns o

f sh

ort

-liv

ed

, n

eu

tro

n-r

ich

iso

top

es. T

here

is in

dir

ect

exp

eri

men

tal

ev

iden

ce t

hat

su

ch

neu

tro

n-r

ich

iso

top

es c

an

be p

rod

uced

in

co

mp

lex U

LM

neu

tro

n-c

ata

lyzed

LE

NR

nu

cle

osyn

theti

c (

tran

sm

uta

tio

n)

netw

ork

s t

hat

set-

up

an

d o

pera

te d

uri

ng

bri

ef

life

tim

e o

f an

LE

NR

-acti

ve ‘p

atc

h’;

see C

arb

on

-seed

netw

ork

on

Slid

es #

11 -

12 a

nd

esp

. o

n S

lid

e #

55 in

htt

p:/

/ww

w.s

lid

esh

are

.net/

lew

isg

lars

en

/latt

ice

-en

erg

y-l

lcte

ch

nic

al-

overv

iew

carb

on

-seed

-len

r-n

etw

ork

ssep

t-3-2

009

M

ay 1

9, 2

01

2 C

op

yri

gh

t 2

01

2, L

att

ice E

nerg

y L

LC

A

ll R

igh

ts R

ese

rve

d

23

Page 12: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012

Latt

ice

En

erg

y L

LC

Co

mm

erc

iali

zin

g a

next-

gen

era

tio

n s

ou

rce o

f valu

ab

le s

tab

le e

lem

en

ts

79A

u-2

04

HL

= 3

9.8

sec

80H

g-2

04

Stab

le 6

.9%

81Tl

-204

HL=

3.8

yrs

82P

b-2

04

Stab

le 1

.4%

5.7

7.5

81Tl

-20

3

Stab

le 2

9.5%

Do

tte

d g

ree

n a

rro

w d

en

ote

s U

LM

N c

ap

ture

pro

du

cts

co

min

g f

rom

lo

we

r va

lue

s o

f A

80H

g-20

6

HL

= 8.

2 m

in

80H

g-20

5

HL

= 5.

2 m

in

80H

g-20

7

HL

= 2.

8 m

in

81Tl

-205

Stab

le 7

0.5%

81Tl

-207

HL

= 4.

8 m

in

81Tl

-206

HL

= 4.

2 m

in

81T

l-2

08

HL

= 3

.1 m

in

81Tl

-20

9

HL

= 2

.2 m

in

81Tl

-21

0

HL

= 1

.3 m

in

82P

b-2

05

HL=

1.5

x 1

07 y

rs

82P

b-2

07

Stab

le 2

2.1%

8

2P

b-2

06

Stab

le 2

4.1%

82P

b-2

08

Stab

le 5

2.4

%

83B

i-2

09

~Sta

ble

10

0%

2.1

5.7

6

.7

3.3

6.7

7

.6

6.5

6

.9

3.8

5.0

3

.7

6.7

8

.1

6.7

7

.4

3.9

5

.2

3.8

4.6

5.1

1.3

644 k

eV

Inc

rea

sin

g v

alu

es

of

A

Increasing values of Z

Netw

ork

may p

ote

nti

all

y c

on

tin

ue ‘

up

ward

’ to

even

hig

her

valu

es o

f A

;

Th

is d

ep

en

ds o

n U

LM

neu

tro

n f

lux i

n c

m2/s

ec

80H

g-2

08

HL

= 4

2 m

in

UL

M N

eu

tro

n

C

ap

tu

re

E

nd

s o

n A

u

UL

M N

eu

tro

n

C

ap

tu

re

E

nd

s o

n H

g

6.8

6.0

8

0H

g-2

03

HL=

46.

6 d

ays

82P

b-2

09

HL

= 3

.3 h

rs

82P

b-2

10

HL=

22

.2 y

rs

6.1

7

9A

u-2

05

HL

= 31

sec

80H

g-2

09

HL

= 3

7 s

ec

80H

g-2

10

HL

= 1

0 m

in

492 k

eV

344 k

eV

BR

2.9

%

ε

344 k

eV

B

R =

97.1

%

79A

u-2

03

HL=

53

sec

4.9

ε 51 k

eV

B

R =

100%

63 k

eV

BR

99.9

%

1.4

1.5

5.0

4.0

5.5

3.9

3.5

84P

o-2

10

HL=

13

8 d

ays

83B

i-2

10

HL=

5 d

ays

1.2

B

R

99.9

%

1.5

1.3

4.8

3.7

5.3

4.1

74W

18

0-s

eed

LE

NR

neu

tro

n-c

ata

lyzed

tra

nsm

uta

tio

n n

etw

ork

4.9

3

.3

4.8

Beg

inn

ing

wit

h s

o-c

alled

‘seed

’ o

r ‘t

arg

et’

sta

rtin

g n

ucle

i u

po

n w

hic

h U

LM

neu

tro

n

cap

ture

s a

re in

itia

ted

, co

mp

lex, v

ery

dyn

am

ically c

han

gin

g L

EN

R n

ucle

osyn

theti

c

netw

ork

s a

re e

sta

blish

ed

in

tin

y L

EN

R-a

cti

ve ‘p

atc

hes.’

Th

ese U

LM

neu

tro

n-c

ata

lyzed

LE

NR

netw

ork

s e

xis

t fo

r life

tim

es o

f th

e p

art

icu

lar

‘patc

hes’ in

wh

ich

th

ey w

ere

cre

ate

d;

excep

t fo

r an

y s

till-d

ecayin

g t

ran

sm

uta

tio

n p

rod

ucts

th

at

may lin

ge

r, s

uc

h

netw

ork

s t

yp

ically ‘

die

’ alo

ng

wit

h t

he L

EN

R-a

cti

ve ‘p

atc

h’ th

at

ori

gin

ally g

av

e b

irth

to

them

. ‘S

eed

’ n

ucle

i fo

r su

ch

netw

ork

s c

an

co

mp

rise a

ny a

tom

s i

n a

su

bstr

ate

un

derl

yin

g a

n L

EN

R-a

cti

ve p

atc

h a

nd

/or

inclu

de a

tom

s lo

cate

d n

earb

y i

n v

ari

ou

s t

yp

es

of

su

rface n

an

op

art

icle

s o

r n

an

ostr

uctu

res e

lectr

om

ag

neti

cally c

on

necte

d t

o a

‘p

atc

h.’

M

ay 1

9, 2

01

2 C

op

yri

gh

t 2012, L

att

ice E

nerg

y L

LC

A

ll R

igh

ts R

ese

rve

d

24

Page 13: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 14: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 15: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 16: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 17: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 18: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 19: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 20: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 21: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 22: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 23: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 24: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 25: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 26: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 27: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 28: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 29: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 30: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 31: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 32: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 33: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012
Page 34: Lattice Energy LLC-Addendum to May 19 2012 Technical Overview-1927 Caltech Experiments-May 26 2012