Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

23
Physics@FOM, Veldhoven, 2009. 1 Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity Stephan de Roode (1,2) & Alexander Los (2) (1) Clouds, Climate and Air Quality, Multi-Scale Physics, Department of Applied Sciences, TU Delft (2) KNMI, De Bilt

description

Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity. Stephan de Roode (1,2) & Alexander Los (2) (1) Clouds, Climate and Air Quality, Multi-Scale Physics, Department of Applied Sciences, TU Delft (2) KNMI, De Bilt. Outline.  Introduction - PowerPoint PPT Presentation

Transcript of Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Page 1: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

1

Large-eddy simulation of stratocumulus –cloud albedo and cloud inhomogeneity

Stephan de Roode(1,2)

&Alexander Los(2)

(1)Clouds, Climate and Air Quality, Multi-Scale Physics, Department of Applied Sciences, TU Delft

(2)KNMI, De Bilt

Page 2: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

2

Outline

Introduction- Physical processes in stratocumulus

Research question - The stratocumulus "albedo bias" effect

Large-eddy simulation of stratocumulus as observed during the FIRE I experiment- Stratocumulus cloud albedo- Thermodynamic cloud structure

Synthesis of LES results- Parameterization of cloud liquid water variability

Summary

Page 3: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

3

Atmospheric boundary-layer clouds simulated with large-eddy models: shallow cumulus and stratocumulus

shallow cumulus stratocumulusdeep convection

Page 4: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

4

Longwave radiative cooling drives turbulence at the stratocumulus cloud top

∂θl

∂t= −

1ρcp

∂FL,net

∂z≈ −8K /hr Cloud top cooling

Page 5: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

5

Turbulence: Entrainment of warm and dry air at the stratocumulus cloud top

entrainment: turbulent mixing of free atmosphere air into the boundary layer

Page 6: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

6

Stratocumulus cloud albedo: example

cloud layer depth = 400 m

effective cloud droplet radius = 10 m

optical depth = 25

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Cloud albedo

Cloud optical depth

homogeneous stratocumuluscloud layer

=32

LWPρ liqreff

, LWP = ρ air

zbase

ztop

∫ q ldz

Page 7: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

7

Real clouds are inhomogeneous

Stratocumulus albedo from satellite

Page 8: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

8

Albedo for an inhomogeneous cloud layer

Redistribute liquid water:

optical depths = 5 and 45

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Cloud albedo

Cloud optical depth

inhomogeneous stratocumuluscloud layer

mean albedo = 0.65 < 0.79

Page 9: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

Decrease optical thickness:

Cahalan et al (1994): = 0.7 (FIRE I observations)

9

Cloud albedo in a weather forecast or climate model

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Cloud albedo

Cloud optical depth

effective mean

inhomogeneous albedo homogeneous

albedo

effective = χτ mean

Page 10: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

DALES: Dutch Atmospheric Large-Eddy Simulation Model

Dry LES code (prognostic subgrid TKE, stability dependent length scale)Frans Nieuwstadt (KNMI) and R. A Brost (NOAA/NCAR, USA)

Radiation and moist thermodynamics (θl=θ-Lv/cp qliq , equivalent to sl=cpT+gz-Lv/cp qliq )Hans Cuijpers and Peter Duynkerke (KNMI/TU Delft, Utrecht University)

ParallellisationMatthieu Pourquie (TU Delft)

Drizzle Margreet Van Zanten and Pier Siebesma (UCLA/KNMI)

Atmospheric ChemistryJordi Vila (Wageningen University)

Land-surface interaction, advection schemesChiel van Heerwaarden (Wageningen University)

Particle dispersion, numericsThijs Heus and Harm Jonker (TU Delft)

Page 11: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

The diurnal cycle of stratocumulus during FIRE I -Observations () and LES results (lines)

LWP = ρ air

zbase

ztop

∫ q ldz

Page 12: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

Inhomogeneity factor computed from all hourly 3D cloud fields

for fixed solar zenith angle θ=530

> 0.7 (value used in some weather and climate models) depends on the (optical depth) liquid water path variance

Page 13: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

Total water (qt) and liquid water (ql) PDFs

Differences in PDFs: temperature effect (Clausius-Clapeyron)

liquid water

total water

0

10

20

30

40

50

-20 -10 0 10 20 30 40 50

qsaturation

[g/kg]

temperature [0C]

q liq = q tot −qsat T( )

Page 14: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

Positive temperature (T) and total water (qt) correlation:more moisture -> warmer

θl ' = T' −L v

cp

q l ' = 0 ⇒ T' =L v

cp

1+L v

cp

dqs

dT

⎝ ⎜

⎠ ⎟q t ' ≈ 1000q t '

Physical explanation for θl'≈0: Approximate balance entrainment warming and longwave radiative cooling

Page 15: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

Model proposal based on LES results:From total water fluctuations to liquid water path

fluctuations

LWP'ρ0

=Hβqt'+12H'βqt'

θl' ≈ 0 = 0.4

' ≈ 0 = 1

Page 16: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

Model proposal based on LES results:Compare computed to reconstructed liquid water path

PDF

Page 17: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Physics@FOM, Veldhoven, 2009.

Summary

1. LES results:

- ql' = qt' , ≈ 0.4 (and not =1)

2. Parameterization of the variance of LWP and :

3. Outlook: Weather and climate models will use liquid water path variance rather

than prescribing a constant correction factor for the cloud albedo

LWP'2= ρ0Hβ( )2qt'

2

'2 =3ρ 0 Hβ2ρ liqreff

⎝ ⎜

⎠ ⎟

2

q t '2

∂q t '2

∂t= −2w' q t '

∂q t

∂z−

∂w' q t ' q t '∂z

−2εqt

Page 18: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

LES thermodynamic fields

q liq = q tot −qsat T( )

LWP = ρ air

zbase

ztop

∫ q ldz

Is temperature important for liquid water fluctuations?

Page 19: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Aim: model cloud liquid water path variance

RACMO

Page 20: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Factor depends on the optical depth variance ()

Page 21: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Analytical results for the inhomogeneity factor Assumption: Gaussian optical depth distribution

not smaller than ~ 0.8

isolines

Page 22: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Vertical structure of fluctuations

In a cloudy subcolumn the mean liquid water fluctuation can be approximated to be constant with height

Page 23: Large-eddy simulation of stratocumulus – cloud albedo and cloud inhomogeneity

Effect of domain size