Land Surface Temperature from Geostationary Satellites · I.F. Trigo (1,2), S.C. Freitas (1),C....

1
In Situ LST (ºC) Land Surface Temperature from Geostationary Satellites I.F. Trigo (1,2) , S.C. Freitas (1) , C. Barroso (1) , J. Macedo (1) , R. Perdigão (1,2) , R. Silva (1) , P. Viterbo (1,2) (1) Instituto de Meteorologia, IP, Lisboa, Portugal , (2) Centro de Geofisica da Universidade de Lisboa, IDL, Lisboa, Portugal Introduction Introduction Land Surface Temperature (LST) presents high variability in space and time, particularly over land surfaces. Geostationary satellites are well-suited to describe the daily cycle of LST and present spatial resolutions of the order of 3-to-5 km at sub-satellite point, acceptable for many applications. The EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA SAF) provides operational retrievals of LST from SEVIRI on board Meteosat Second Generation (MSG) with a 15-minute temporal frequency. In order to increase spatial coverage, MSG-based LST is complemented with estimations from GOES-W and MTSAT data, which cover North and South America, and Eastern Asia and Australia, respectively. Hourly LST fields are then regularly estimated using GOES and MTSAT top-of- atmosphere observations disseminated via EUMETCast, as part of Geoland-2 demonstrational service. Different LST algorithms were trained to the relevant infra-red channels available for each sensor, described the table below. Product uncertainty is assessed taking into account the propagation of (realistic) input errors and the expected performance of the algorithms. LST estimations are validated through comparisons against independent sources, i.e., other satellite retrievals and ground measurements. 11.5 - 12.5 μm ( * ) - 11.2 – 12.8 μm Thermal IR 2 5 km 5 km 3 km Spatial sampling (**) 1 h 1 h 15 min Temporal sampling 10.3 – 11.3 μm 10.2 – 11.2 μm 10.0 – 11.5 μm Thermal IR 1 3.5 – 4.0 μm 3.8 – 4.0 μm 3.5 – 4.4 μm Middle IR MTSAT GOES Imager SEVIRI Channels / Resolution 11.5 - 12.5 μm ( * ) - 11.2 – 12.8 μm Thermal IR 2 5 km 5 km 3 km Spatial sampling (**) 1 h 1 h 15 min Temporal sampling 10.3 – 11.3 μm 10.2 – 11.2 μm 10.0 – 11.5 μm Thermal IR 1 3.5 – 4.0 μm 3.8 – 4.0 μm 3.5 – 4.4 μm Middle IR MTSAT GOES Imager SEVIRI Channels / Resolution GOES12 MSG2 MTSAT1-R Dual-Channel Algorithm Dual-Channel Algorithm Generalized Split-Window Algorithm (LSA SAF) ( ) 9 . 3 7 . 10 2 7 . 10 2 1 T T C T C C LST - + + = Dual-Channel Applied when only one thermal infrared channel is available (Adapted from Sun et al., 2004 to IMAGER-GOES & JAMI-MTSAT channels – Freitas et al., 2012) Daytime 7 . 10 2 1 T C C LST + = Nighttime Mono-Channel 10.7 μ m Two-Channel 10.7 μ m & 3.9 μ m Parameters C k depend on: Total Column Water Vapour From Numerical Weather Prediction Models (ECMWF) Landcover Satellite View Angle Generalized Split-Window Applied when two thermal infrared channels are available (Generalized Split Window - Wan and Dozier, 1996; adapted to SEVIRI-MSG – Freitas et al., 2010) Daytime & Nighttime Two-Channel 10.7 μ m & 12.0 μ m C T T B B B T T A A A LST + - Δ + - + + + Δ + - + = 2 ) 1 ( 2 ) 1 ( 0 . 12 8 . 10 2 3 2 1 0 . 12 8 . 10 2 3 2 1 ε ε ε ε ε ε ε ε Parameters A k , B k & C depend on: Total Column Water Vapour From Numerical Weather Prediction Models (ECMWF) Satellite View Angle 2 2 2 2 2 2 LST f X f S j j X i i LST j i Δ + + = θ σ θ σ References References Freitas, S. C., I. F. Trigo, and J. M. Bioucas-Dias, F. Göttsche, 2010: Quantifying the Uncertainty of Land Surface Temperature Retrievals from SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens., 48, doi : 10.1109/TGRS.2009.2027697. Freitas, S. C., I. F. Trigo, J. Macedo, C. Barroso, R. Silva and R. Perdigão, 2011: Land surface temperature from Multiple Geostationary Satellites, Int J. Remote Sens., accepted. Sun, D., R. T. Pinker, and J. B. Basara, 2004: “Land Surface Temperature Estimation from the Next Generation of Geostationary Operational Environmental Satellites: GOES M–Q”, J. Appl. Met., vol. 43, 363-372. Trigo, I. F., C. C. DaCamara, P. Viterbo, J.-L. Roujean, F. Olesen, C. Barroso, F. Camacho-de Coca, D. Carrer, S. C. Freitas, J. García-Haro, B. Geiger, F. Gellens-Meulenberghs, N. Ghilain, J. Meliá, L. Pessanha, N. Siljamo, and A. Arboleda, 2011: The Satellite Application Facility on Land Surface Analysis. Int. J. Remote Sens., 32, 2725-2744. doi: 10.1080/01431161003743199. Trigo, I. F., I. T. Monteiro, F. Olesen, and E. Kabsch, 2008: An assessment of remotely sensed Land Surface Temperature, J. Geophys. Res., vol 113, D17108, doi:10.1029/2008JD010035. Wan Z. E Dozier J. , 1996. A generalized split-window algorithm for retrieving land surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing. Vol. 34. Pag. 892-905 LST Uncertainty Algorithm uncertainty [depend on retrieval conditions total optical path] Errors in algorithm parameters [depend on implicit input variables column water vapour; view angle; land cover] Errors in explicit algorithm inputs [sensor noise; emissivity] 4 2 0 -2 -4 0 1.5 3 4.5 (cm) 4 2 0 -2 -4 0 1.5 3 4.5 (cm) 5 0 -5 0 1.5 3 4.5 (cm) 5 0 -5 0 1.5 3 4.5 (cm) 5 0 -5 0 1.5 3 4.5 (cm) 4 2 0 -2 -4 0 1.5 3 4.5 (cm) LST Errors (K) Total Column Water Vapour Nadir Nadir ~40º ~40º ~70º ~70º Algorithm Uncertainty (assessed using simulated radiances) Generalized Split-Windows (SEVIRI; LSA SAF) Dual Channel (GOES/ MTSAT; Geoland-2) LST Error Bars LST Error Bars (K) estimated taking into consideration: (i) algorithm uncertainty; (ii) sensor noise; (iii) channel emissivity uncertainties; (iv) expected forecast errors of water vapour. Available since: 2009 2009 2005 Validation Validation Acknowledgments Acknowledgments This work is supported by the EUMESAT Satellite Application Facility on Land Surface Analysis – http://landsaf.meteo.pt – and Geoland-2, the pilot project for the Global Monitoring for the Environment and Security (GMES) Land Monitoring Core Service, funded by the European Community’s Seventh Framework Program (FP7/2007-2013) – http://www.gmes-geoland.info/ Comparison among satellite retrievals GOES-W & MSG overlapping region Comparison with In Situ Observations SEVIRI – GOES W LST Distribution of LST differences [GOES minus SEVIRI] (ºC) for (a) January 2010 and (b) July 2010, per 3-hourly slots. The boxplots show the lower quartile, median and upper quartile, respectively, while whiskers extend to remaining data. (a) Jan2010 (b) Jul2010 Differences (ºC) between MSG/SEVIRI and GOES-W LST for the overlapping area between the 2 disks (both projected onto a regular 0.05ºX0.05º grid): 16 Jul 2010 at 03 and 15 UTC. 03 UTC 15 UTC SEVIRI/MSG versus MODIS SEVIRI ~11UTC MODIS ~11UTC SEVIRI – MODIS LST fields over the Iberian Peninsula from SEVIRI (left) and MODIS (right), collocated in space and time, for the MODIS morning passage on 14 Sep 2005. Differences are shown in the central panel. Most differences within -2 to +2 ºC; heterogeneity is high. 2-8 Jan 2006 Daytime 14-20 Sep 2005 Night-time Daytime Distributions of SEVIRI and MODIS daytime retrievals show conditional biases dependent on the view angle of the polar-orbiter. These are more pronounced in summer (right) than in winter (left). Dependence on viewing geometry nearly vanishes for night- time estimations (far right). Distribution of LST differences: SEVIRI/MSG – MODIS (ºC) MODIS view zenith angle MODIS view zenith angle Comparisons with Ground Measurements avoids assumptions about performance of other LST products. Difficult to find sites with skin temperature observations, which are representative of pixel scale. GOES-W MTSAT SEVIRI Bondville (USA) 2011 Sioux Falls (USA) 2011 GoodwinCreek (USA) 2011 Crops SURFRAD Grass SURFRAD Rural/ Pasture SURFRAD BSRN BIAS: -0.71ºC RMSE: 3.12ºC BIAS: -0.76ºC RMSE: 2.90ºC BIAS: -0.54ºC RMSE: 3.38ºC GOES- W LST (ºC) GOES- W LST (ºC) GOES- W LST (ºC) In Situ LST (ºC) Tateno (Japan) 2011 BIAS: -1.18ºC RMSE: 4.36ºC MTSAT LST (ºC) Morning – green; afternoon – red; night - blue Evora – Aug 2009 In Situ LST (ºC) L1 L2 L3 Evora (Portugal) KIT / LSA SAF SEVIRI LST (ºC) 60 40 20 0 Obs In Situ (ºC) 0 20 40 60 LST SEVIRI/MSG (ºC) Nov 2008 Bias: +0.24ºC RMS: 1. 44ºC 60 40 20 0 Obs In Situ (ºC) 0 20 40 60 LST SEVIRI/MSG (ºC) Jul 2008 Bias: -0.91ºC RMS: 1.67ºC Gobabeb (Namibia) KIT / LSA SAF Gobabeb (Namibia) (*) Not disseminated via EUMETCast (**) At sub-satellite point GOES-W + SEVIRI/MSG + MTSAT LST field (ºC): 1st April 2012, 18 UTC

Transcript of Land Surface Temperature from Geostationary Satellites · I.F. Trigo (1,2), S.C. Freitas (1),C....

In Situ LST (ºC)

Land Surface Temperature from Geostationary SatellitesI.F. Trigo (1,2), S.C. Freitas (1),C. Barroso (1), J. Macedo (1), R. Perdigão (1,2), R. Silva (1), P. Viterbo (1,2)

(1) Instituto de Meteorologia, IP, Lisboa, Portugal , (2) Centro de Geofisica da Universidade de Lisboa, IDL, Lisboa, Portugal

IntroductionIntroductionLand Surface Temperature (LST) presents high variability in space and time, particularly over land

surfaces. Geostationary satellites are well-suited to describe the daily cycle of LST and present spatial

resolutions of the order of 3-to-5 km at sub-satellite point, acceptable for many applications. The

EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA SAF) provides operational

retrievals of LST from SEVIRI on board Meteosat Second Generation (MSG) with a 15-minute temporal

frequency. In order to increase spatial coverage, MSG-based LST is complemented with estimations

from GOES-W and MTSAT data, which cover North and South America, and Eastern Asia and

Australia, respectively. Hourly LST fields are then regularly estimated using GOES and MTSAT top-of-

atmosphere observations disseminated via EUMETCast, as part of Geoland-2 demonstrational service.

Different LST algorithms were trained to the relevant infra-red channels available for each sensor,

described the table below.

Product uncertainty is assessed taking into account the propagation of (realistic) input errors and the

expected performance of the algorithms. LST estimations are validated through comparisons against

independent sources, i.e., other satellite retrievals and ground measurements.

11.5 - 12.5 µm(*)-11.2 – 12.8 µmThermal IR 2

5 km5 km3 kmSpatial sampling(**)

1 h1 h15 minTemporal sampling

10.3 – 11.3 µm10.2 – 11.2 µm10.0 – 11.5 µmThermal IR 1

3.5 – 4.0 µm3.8 – 4.0 µm3.5 – 4.4 µmMiddle IR

MTSATGOES ImagerSEVIRIChannels /

Resolution

11.5 - 12.5 µm(*)-11.2 – 12.8 µmThermal IR 2

5 km5 km3 kmSpatial sampling(**)

1 h1 h15 minTemporal sampling

10.3 – 11.3 µm10.2 – 11.2 µm10.0 – 11.5 µmThermal IR 1

3.5 – 4.0 µm3.8 – 4.0 µm3.5 – 4.4 µmMiddle IR

MTSATGOES ImagerSEVIRIChannels /

Resolution

GOES12 MSG2 MTSAT1-R

Dual-ChannelAlgorithm

Dual-ChannelAlgorithm

Generalized Split-Window

Algorithm

(LSA SAF)

( )9.37.1027.1021

TTCTCCLST −++=

Dual-Channel Applied when only one thermal infrared channel is available

(Adapted from Sun et al., 2004 to IMAGER-GOES & JAMI-MTSAT channels – Freitas et al., 2012)

Daytime

7.1021TCCLST +=

Nighttime

Mono-Channel →10.7 µ m

Two-Channel →10.7 µ m & 3.9 µ m

Parameters Ck depend on:

Total Column Water Vapour

From Numerical Weather Prediction Models (ECMWF)

Landcover

Satellite View Angle

Generalized Split-Window Applied when two thermal infrared channels are available

(Generalized Split Window - Wan and Dozier, 1996; adapted to SEVIRI-MSG – Freitas et al., 2010)

Daytime & Nighttime

Two-Channel →10.7 µ m & 12.0 µ m

CTT

BBB

TTAAALST

+−∆

+−

+

++∆

+−

+=

2)

1(

2)

1(

0.128.10

2321

0.128.10

2321

ε

ε

ε

εε

ε

ε

ε

Parameters Ak, Bk & C depend on:

Total Column Water Vapour

From Numerical Weather Prediction Models (ECMWF)

Satellite View Angle

22

2

2

2

2 LSTf

X

fS

j j

X

i i

LST ji∆+

∂+

∂= ∑∑ θσ

θσ

ReferencesReferences• Freitas, S. C., I. F. Trigo, and J. M. Bioucas-Dias, F. Göttsche, 2010: Quantifying the Uncertainty of Land Surface Temperature Retrievals from SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens., 48, doi : 10.1109/TGRS.2009.2027697.

• Freitas, S. C., I. F. Trigo, J. Macedo, C. Barroso, R. Silva and R. Perdigão, 2011: Land surface temperature from Multiple Geostationary Satellites, Int J. Remote Sens., accepted.

• Sun, D., R. T. Pinker, and J. B. Basara, 2004: “Land Surface Temperature Estimation from the Next Generation of Geostationary Operational Environmental Satellites: GOES M–Q”, J. Appl. Met., vol. 43, 363-372.

• Trigo, I. F., C. C. DaCamara, P. Viterbo, J.-L. Roujean, F. Olesen, C. Barroso, F. Camacho-de Coca, D. Carrer, S. C. Freitas, J. García-Haro, B. Geiger, F. Gellens-Meulenberghs, N. Ghilain, J. Meliá, L. Pessanha, N. Siljamo, and A. Arboleda, 2011: The Satellite

Application Facility on Land Surface Analysis. Int. J. Remote Sens., 32, 2725-2744. doi: 10.1080/01431161003743199.

• Trigo, I. F., I. T. Monteiro, F. Olesen, and E. Kabsch, 2008: An assessment of remotely sensed Land Surface Temperature, J. Geophys. Res., vol 113, D17108, doi:10.1029/2008JD010035.

• Wan Z. E Dozier J. , 1996. A generalized split-window algorithm for retrieving land surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing. Vol. 34. Pag. 892-905

LST Uncertainty

Algorithm uncertainty [depend on

retrieval conditions → total optical path]

Errors in algorithm parameters [depend on implicit input

variables → column water vapour; view angle; land cover]

Errors in explicit algorithm inputs [sensor noise; emissivity]

4

2

0

-2

-40 1.5 3 4.5 (cm)

4

2

0

-2

-40 1.5 3 4.5 (cm)

5

0

-50 1.5 3 4.5 (cm)

5

0

-50 1.5 3 4.5 (cm)

5

0

-50 1.5 3 4.5 (cm)

4

2

0

-2

-4

0 1.5 3 4.5 (cm)

LS

T E

rrors

(K

)

Total Column Water Vapour

Nadir

Nadir ~40º

~40º ~70º

~70º

Algorithm Uncertainty (assessed using simulated radiances)

Generalized Split-Windows

(SEVIRI; LSA SAF)

Dual Channel

(GOES/ MTSAT; Geoland-2)

LST Error Bars

LST Error Bars (K) estimated taking into consideration: (i) algorithm uncertainty; (ii) sensor noise; (iii)

channel emissivity uncertainties; (iv) expected forecast errors of water vapour.

Available since: 2009 2009 2005

ValidationValidation

AcknowledgmentsAcknowledgmentsThis work is supported by the EUMESAT Satellite Application Facility on Land

Surface Analysis – http://landsaf.meteo.pt – and

Geoland-2, the pilot project for the Global Monitoring for the Environment and

Security (GMES) Land Monitoring Core Service, funded by the European

Community’s Seventh Framework Program (FP7/2007-2013) –http://www.gmes-geoland.info/

Comparison among satellite retrievals

GOES-W & MSG overlapping region

Comparison with In Situ Observations

SEVIRI – GOESW LST

Distribution of LST differences [GOES minus SEVIRI] (ºC)

for (a) January 2010 and (b) July 2010, per 3-hourly slots. The boxplots show the lower quartile, median and upper quartile, respectively, while whiskers extend to remaining data.

(a) Jan2010 (b) Jul2010

Differences (ºC) between MSG/SEVIRI and GOES-W LST for the overlapping area between

the 2 disks (both projected onto a regular 0.05ºX0.05º grid): 16 Jul 2010 at 03 and 15 UTC.

03 UTC 15 UTC

SEVIRI/MSG versus MODIS

SEVIRI ~11UTC MODIS ~11UTCSEVIRI – MODIS LST fields over the Iberian Peninsula from SEVIRI (left)

and MODIS (right), collocated in space and time, for the MODIS morning passage on 14 Sep 2005. Differences are

shown in the central panel.

Most differences within -2 to +2 ºC; heterogeneity is high.

2-8 Jan 2006

Daytime

14-20 Sep 2005

Night-timeDaytimeDistributions of SEVIRI and MODIS daytime retrievals show conditional biases dependent on the view angle of the polar-orbiter. These are more pronounced in summer (right) than in

winter (left). Dependence on viewing geometry nearly vanishes for night-time estimations (far right).

Distribution of LST differences: SEVIRI/MSG – MODIS (ºC)

MODIS view zenith angleMODIS view zenith angle

� Comparisons with Ground Measurements avoids assumptions about performance of other LST products.

� Difficult to find sites with skin temperature observations, which are representative of pixel scale.

GOES-W

MTSAT

SEVIRIBondville (USA) 2011

Sioux Falls (USA) 2011

GoodwinCreek (USA) 2011

Crops

SURFRAD

Grass

SURFRAD

Rural/ Pasture

SURFRAD BSRN

BIAS: -0.71ºC

RMSE: 3.12ºC

BIAS: -0.76ºC

RMSE: 2.90ºC

BIAS: -0.54ºC

RMSE: 3.38ºC

GO

ES

-W

LS

T (

ºC)

GO

ES

-W

LS

T (

ºC)

GO

ES

-W

LS

T (

ºC)

In Situ LST (ºC)

Tateno (Japan) 2011

BIAS: -1.18ºC

RMSE: 4.36ºC

MT

SA

T L

ST

(ºC

)

Morning – green; afternoon – red; night - blue

Evora – Aug 2009

In Situ LST (ºC)

L1

L2

L3

Evora (Portugal)

KIT /

LSA SAF

SE

VIR

I L

ST

(ºC

)

60

40

20

0

Obs

In S

itu (

ºC)

0 20 40 60

LST SEVIRI/MSG (ºC)

Nov 2008

Bias: +0.24ºC

RMS: 1. 44ºC

60

40

20

0

Obs

In S

itu (

ºC)

0 20 40 60

LST SEVIRI/MSG (ºC)

Jul 2008

Bias: -0.91ºC

RMS: 1.67ºC

Gobabeb (Namibia)

KIT /

LSA SAF

Gobabeb (Namibia)

(*) Not disseminated via EUMETCast

(**) At sub-satellite point

GOES-W + SEVIRI/MSG + MTSAT

LST field (ºC): 1st April 2012, 18 UTC