Laminar Complex

37
1 TK5102 Ad dT t Ph Advanced Transport Phenomena “Transports in Laminar Regimes: Complex Problems” I Dewa Gede Arsa Putrawan Chemical Engineering ITB 28-Sep-09 DGA/1 TK5102 Outcomes Students can simplify equations of change to derive Students can simplify equations of change to derive mathematical models of complex problems in transport phenomena. Students can estimate property profiles for complex problems in transport phenomena. 28-Sep-09 DGA/2 TK5102

Transcript of Laminar Complex

Page 1: Laminar Complex

1

TK5102Ad d T t PhAdvanced Transport Phenomena

“Transports in Laminar Regimes:Complex Problems”

I Dewa Gede Arsa PutrawanChemical Engineering ITB

28-Sep-09 DGA/1TK5102

Outcomes

• Students can simplify equations of change to derive• Students can simplify equations of change to derive mathematical models of complex problems in transport phenomena.

• Students can estimate property profiles for complex problems in transport phenomena.

28-Sep-09 DGA/2TK5102

Page 2: Laminar Complex

2

The Equation of Changefor Isothermal System

28-Sep-09 DGA/3TK5102

Equation of Continuity

28-Sep-09 TK5102 DGA/4

Page 3: Laminar Complex

3

Mass balance over a volume element x, y, z

x, y, z Rate of mass accumulation

z xyz /t

Rate of mass in( vxyz)x + ( vyxz)y

+ ( vzxy)z

x, y, zx

y Rate of mass out( vxyz)x+x + ( vyxz)y+y

+ ( vzxy)z+z28-Sep-09 DGA/5TK5102

Mass Balanceover a volume element x, y, z

y z v vx y z

x xx x x

y yy y y

z zz z z

y z v vx y z tx z v v

x y v v

( )( ) ( ) 0yx zvv vt x y z

28-Sep-09 DGA/6TK5102

Page 4: Laminar Complex

4

Mass Balanceover a volume element x, y, z

D 0 0Dv or vt Dt

(Rate of increase of mass per unit volume = Net rate of mass addition per unit volume by convection)

• Incompressible fluid

0v

28-Sep-09 DGA/7TK5102

The equation of continuity

28-Sep-09 DGA/8TK5102

Page 5: Laminar Complex

5

The Equation of Motion

28-Sep-09 TK5102 DGA/9

Momentum concentration

• Three components of momentum (x y z• Three components of momentum (x, y, z components)

• Concentration of x-component of momentum : vx

• Accumulation rate of x component of• Accumulation rate of x-component of momentum ( )xvx y z t

28-Sep-09 DGA/10TK5102

Page 6: Laminar Complex

6

Flow of momentumby molecular diffusion

yyz

xx

yxzxx

yz

xx yx zxy z x z x y

28-Sep-09 DGA/11TK5102

• Flow of momentum in by molecular

xx yxx x y yy z x z

• Flow of momentum out by molecular

zx z zx y

xx yxy z x z

xx yxx x x y y y

zx z z z

y

x y

28-Sep-09 DGA/12TK5102

Page 7: Laminar Complex

7

Flow of momentumby convective mechanism

xv y z

x

y

z

volumetric flow rate vv

x

yv x z

x y

x( v )( )xy z v Q

Qz

xy

y

z

( v )( )

( v )( )x

x

x z vx y v

Qx

Qy

28-Sep-09 DGA/13TK5102

• Flow of momentum in by convective

x y( v )( ) ( v )( )x xx x y yy z v x z v

z( v )( )x z zx y v

• Flow of momentum out by convective

x y( v )( ) ( v )( )x xy z v x z v

x y

z

( )( ) ( )( )

( v )( )

x xx x x y y y

x z z z

y

x y v

28-Sep-09 DGA/14TK5102

Page 8: Laminar Complex

8

Forces acting on fluid

• Gravity• Gravity

• Pressure

( )( )xx y z g

( )( )y z p p

( )( )x x x x x

y p p

28-Sep-09 DGA/15TK5102

The equation of motion in terms of

28-Sep-09 DGA/16TK5102

Page 9: Laminar Complex

9

The equation of motion in terms of

28-Sep-09 DGA/17TK5102

The equation of motion in terms of

28-Sep-09 DGA/18TK5102

Page 10: Laminar Complex

10

Equation of motion for a newtonianfluid with constant and

28-Sep-09 DGA/19TK5102

Equation of motion for a newtonianfluid with constant and

28-Sep-09 DGA/20TK5102

Page 11: Laminar Complex

11

Equation of motion for a newtonianfluid with constant and

28-Sep-09 DGA/21TK5102

Tangential annular flow of a Newtonian fluid

• Outer cylinder rotates atOuter cylinder rotates at angular velocity of o

• Incompressible and Newtonian fluid with constant transport properties

• Laminar flow in direction only at steady state condition

28-Sep-09 DGA/22TK5102

y y• 1D momentum transfer in

radial direction• Pressure varies in radial and

axial directions

Page 12: Laminar Complex

12

Continuity equation

( )( ) ( )1 1 0r zvrv vt r r r z

v

28-Sep-09 TK5102 DGA/23

0v

Equation of motion for r-component

2r r r r

r zv vv v v v pv v

t r r r z r

2 2( )1 1 2 vrv v v

28-Sep-09 TK5102 DGA/24

2 2 2 2

( )1 1 2r r rr

vrv v v gr r r r r z

Page 13: Laminar Complex

13

Equation of motion for -component

1rr z

v v v v v v v pv vt r r r z r

2 2( )1 1 2rv v vv

28-Sep-09 TK5102 DGA/25

2 2 2 2

( )1 1 2 rrv v vv gr r r r r z

Equation of motion for z-component

2z z z z

r zv vv v v v pv v

t r r r z z

2 21 1v v v

28-Sep-09 TK5102 DGA/26

2 2 2

1 1z z zz

v v v gr r r r z

Page 14: Laminar Complex

14

Simplified equations of motion

2vp (Effect of centrifugal• Eq. B.6.4vp

r r

(Effect of centrifugal force on pressure)

• Eq. B.6.51 ( ) 0d d rv

dr r dr

(Velocity distribution)

27

• Eq. B.6.6p gz

(Effect of gravity force on pressure)

Distribution of angular velocity

1 ( ) 0d d

• Eq. B.6.5 1 ( ) 0d d rvdr r dr

• BC: v = 0 at r = R and v = oR at r = R• Velocity profile

28-Sep-09 TK5102 DGA/28

/( ) /1/o

r R R rv R

Page 15: Laminar Complex

15

Momentum flux and torque

vd • Momentum flux

2 2 22 ( / ) ( /(1 ))

r

o

vdr

dr r

R r

• Torque

28-Sep-09 TK5102 DGA/29

Torque

2 2 2

2

4 /(1 )z r r R

o

T RL R

R L

Concentric cylinder viscometer

28-Sep-09 TK5102 DGA/30

Page 16: Laminar Complex

16

Flow near a slowly rotating sphere

22

1 vr

r r r

2

1 1( sin ) 0

sinv

r

28-Sep-09 TK5102 DGA/31

BC 1 : vφ = R Ω sin θ at r = RBC 2 : vφ = 0 at r = ∞

Cone and Cup Viscometer

28-Sep-09 DGA/32TK5102

Page 17: Laminar Complex

17

Cone and Cup Viscometer

2( / ) sinv R R r • Velocity distribution

• Torque

28-Sep-09 DGA/33TK5102

38zT R

Equations of Changefor non isothermal system

28-Sep-09 DGA/34TK5102

Page 18: Laminar Complex

18

Energy Equation2 2ˆ ˆ(0,5 ) (0,5 )v U v U q (0,5 ) (0,5 )v U v U q

t

( ) ( [ ]) ( )pv v v g

Accumulation of energy

Convective mechanism

Conduction

( ) ( [ ]) ( )pv v v g

28-Sep-09 DGA/35TK5102

Pressure forces

Gravitational forces

Viscous forces

Special Forms of Energy Equation

ˆ ˆ ( ) ( )U U ( ) ( : )U Uv q p v v

t

ˆ( ) ( : )DU q p v v

28-Sep-09 DGA/36TK5102

( ) ( : )q p v vDt

(the equation of thermal energy)

Page 19: Laminar Complex

19

Special Forms of Energy Equation

• Incompressible fluid (constant )

ˆ( : )DU q v

Dt

• U = H – p/

( : )DH Dpq vDt Dt

28-Sep-09 DGA/37TK5102

Energy equationin terms of fluid temperature

ˆ DT p ˆ

ˆ ( : ) ( )vV

DT pC q v T vDt T

(1/ )ˆ ( : )pp

DT DpC q v TDt T Dt

• For incompressible fluid : Cv = Cp

ˆ ( : )pDTC q vDt

28-Sep-09 DGA/38TK5102

Page 20: Laminar Complex

20

Energy equationsfor incompressible fluids

28-Sep-09 DGA/39TK5102

28-Sep-09 DGA/40TK5102

Page 21: Laminar Complex

21

28-Sep-09 DGA/41TK5102

28-Sep-09 DGA/42TK5102

Page 22: Laminar Complex

22

28-Sep-09 DGA/43TK5102

28-Sep-09 DGA/44TK5102

Page 23: Laminar Complex

23

28-Sep-09 DGA/45TK5102

28-Sep-09 DGA/46TK5102

Page 24: Laminar Complex

24

Forced Convectionof Laminar Flow in Pipe

Fluid in at T1

z

r

fluks

q o• Steady state momentum and heat

transfer• 1D momentum transfer (vz = v(r))• T = T(r,z)

• Constant physical properties

Hea

t • Constant physical properties

28-Sep-09 DGA/47TK5102

Continuity equation

( )( ) ( )1 1 0r zvrv vt r r r z

v

28-Sep-09 TK5102 DGA/48

0zvz

Page 25: Laminar Complex

25

Equation of motion for z-component

2z z z z

r z

v vv v v v pv v

t r r r z z

2 21 1v v v

28-Sep-09 TK5102 DGA/49

2 2 2

1 1z z zz

v v vg

r r r r z

Energy Equation

28-Sep-09 TK5102 DGA/50

Page 26: Laminar Complex

26

Forced Convectionof Laminar Flow in Pipe

Fluid in at T1 Continuity equation

z

r

fluks

q oy q

dvz/dz = 0Equation of motion

10 zdvdP d r gdz r dr dr

Energy equation

viscous dissipation

Hea

t

22

2

1ˆ zp

dvdT dT TC k rdz r r dr z dr

28-Sep-09 DGA/51TK5102heat conduction

in z direction

Tangential flow in an annulus with viscous heat generation

• Incompressible and Newtonian fl id i hfluid with constant transport properties

• Outer cylinder rotates• Laminar flow in direction• Steady state condition • 1D momentum and heat transfers

in radial direction

28 September 2009 DGA/52

in radial direction• Pressure varies in radial and axial

directions

Page 27: Laminar Complex

27

Energy Equation

T T T T r z

vT T T TCp v vt r r z

2 21 1T T Tk #

28-Sep-09 TK5102 DGA/53

2 2 2 vk rr r r r z

#

Dissipation Function22 212 r zvv v

$ # %

2 2

2

1

r zv r

z z r

vr r z

v v v vz r r z

# % &

28-Sep-09 TK5102 DGA/54

21 r vv rr r r

$ % &

Page 28: Laminar Complex

28

Energy Equation

21 vT 1 vTk r rr r r r r

From momentum balance:

28-Sep-09 TK5102 DGA/55

/( ) /1/o

r R R rv R

Energy Equation

2 4 441 1RT 2 2 4

41 1 0(1 )

o RTk rr r r r

Boundary conditions :• T = T at r = R

28-Sep-09 TK5102 DGA/56

• T = Tb at r = R• T = To at r = R

Page 29: Laminar Complex

29

Energy Equation(dimensionless form)

1 14d d N' (

2 4 4

2 2( )(1 )o o

b o b o

T T Rr NR T T k T T

'

(

44Nd d

'' ' ' '

28-Sep-09 TK5102 DGA/57

( )( )b o b okBoundary conditions :

• = 1 at = 1• = 0 at = 0

Temperature Profiles

• Annulus

2 2

ln 1 1 ln1 1 1ln ln

N' ' '

(

1 (1 )( )Br' ' ' (

• Annulus

• Treating annulus as parallel plates

28-Sep-09 TK5102 DGA/58

21 2 (1 )Br

(

Note : N = Br 4 / (1 – 2)2

Page 30: Laminar Complex

30

Tangential flow in an annulus with viscous heat generation

• = 92 3 cP• = 92.3 cP• = 1.22 g/ml• k = 0.0055 cal/(s cm C)• Tb = 100 ºC• To = 70 ºC• R = 5.060 cm• = 0.99• = 7980 rpm

28-Sep-09 TK5102 DGA/59

28-Sep-09 TK5102 DGA/60

Page 31: Laminar Complex

31

Tangential flow in an annulus with viscous heat generation

• = 92 3 cP• = 92.3 cP• = 1.22 g/ml• k = 0.0055 cal/(s cm C)• Tb = 100 ºC• To = 70 ºC• R = 5.060 cm• = 0.50• = 7980 rpm

28-Sep-09 TK5102 DGA/61

28-Sep-09 TK5102 DGA/62

Page 32: Laminar Complex

32

Continuity Equation for Component

28-Sep-09 DGA/63TK5102

Mass Balance of Aover volume element x, y, z

x, y, zz Rate of accumulation

y

zxyz A/t

Rate of A in

Rate of productionxyz rA

x, y, zx

Rate of A innAxxyz + nAyy xz+ nAzzxyRate of A out

nAxx+xyz + nAyy+yxz + nAzz+zxy28-Sep-09 DGA/64TK5102

Page 33: Laminar Complex

33

Equations of Continuityfor a Binary System

• Component A• Component A

AAA

AAzAyAxA rn

tataur

z

n

y

n

x

n

t

• Component B

BBB

BBzByBxA rnataur

nnn

BBB tzyxt

• Mixer

0)()(

vt

ataurrnnt BABA

28-Sep-09 DGA/65TK5102

Equations of Continuityfor a Binary System

• Component A• Component A

AAA

AAzAyAxA RN

t

CatauR

z

N

y

N

x

N

t

c

• Component B

BBB

BBzByBxA RN

catauR

NNNc

BBB tzyxt

• Mixer

BABABA RRcvt

catauRRNN

t

c

)()( *

28-Sep-09 DGA/66TK5102

Page 34: Laminar Complex

34

Equations of Continuityfor a Binary System

• Component A • Average velocity• Component A

AAA rnt

• Fick’s law

AABBAAA wDnnwn )(

• Average velocityvnn BA

• Component A

AAABAA rwDvt

)()(

28-Sep-09 DGA/67TK5102

Equations of Continuityfor a Binary System

• Component A • Average velocity• Component A

AAA RNt

c

• Fick’s law

AABBAAA xcDNNxN )(

• Average velocity*cvNN BA

• Component A

AAABAA RxcDvct

c

)()( *

28-Sep-09 DGA/68TK5102

Page 35: Laminar Complex

35

Equations of Continuityfor a Binary System (dilute component)

• Component A with constant ρ and DAB (weight base)Component A with constant ρ and DAB (weight base)

AAABAAA rDvvt

2

AAABAA rDvt

2

• Component A with constant ρ and DAB (molar base)Component A with constant ρ and DAB (molar base)

AAABAAA RcDcvvct

c

2**

)(2*BAAAAABA

A RRxRcDcvt

c

28-Sep-09 DGA/69TK5102

28-Sep-09 DGA/70TK5102

Page 36: Laminar Complex

36

28-Sep-09 DGA/71TK5102

Reaction in Pipe Reactor

• Fast reaction A → B at cylinder wall

zr

L

2RDilute solutionConcentration cA

• B in solution can be neglected

• Steady state, isothermal, and laminar flow

• Constant transport properties

28-Sep-09 DGA/72TK5102

Page 37: Laminar Complex

37

Reaction in Pipe Reactor

• Equation of motion• Equation of motion

dr

dvr

dr

d

rdz

dP z10

• Continuity equation of A

21 cc

Dc AAA

Boundary conditions:

Boundary conditions:• vz = 0 at r = R• dvz/dr = 0 at r = 0

2

1

z

c

r

cr

rrD

z

cv AA

ASA

z

y• cA = cA0 at z = 0• cA = 0 at r = R• dcA/dr = 0 at r = 0

neglected

28-Sep-09 DGA/73TK5102