Laboratory pilot scale evaluation of heat reallocation ...

33
1 Laboratory pilot scale evaluation of heat reallocation properties of a bio-sourced water stable Aluminum dicarboxylate Metal Organic Framework Anastasia Permyakova, Alexandre Skrylnyk, Maame Affram, Emilie Courbon, Sujing Wang, Farid Nouar, Georges Mouchaham, U-Hwang Lee, Anil H. Valekar, Jong-San Chang, Thomas Devic, Guy de Weireld, Nathalie Steunou,* Marc Frère,* Christian Serre* Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France Faculté Polytechnique de UMONS, Service de Thermodynamique et de Physique mathématique, 31, boulevard Dolez, 7000 Mons, Belgium European Community Programme (FP7), SOTHERCO Project

Transcript of Laboratory pilot scale evaluation of heat reallocation ...

Page 1: Laboratory pilot scale evaluation of heat reallocation ...

1

Laboratory pilot scale evaluation of heat reallocation properties of a bio-sourced

water stable Aluminum dicarboxylate Metal Organic Framework

Anastasia Permyakova, Alexandre Skrylnyk, Maame Affram, Emilie Courbon, Sujing Wang, Farid Nouar, Georges Mouchaham, U-Hwang Lee, Anil H. Valekar,

Jong-San Chang, Thomas Devic, Guy de Weireld, Nathalie Steunou,* Marc Frère,* Christian Serre*

Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France

Faculté Polytechnique de UMONS, Service de Thermodynamique et de Physique mathématique, 31, boulevard Dolez, 7000 Mons, Belgium

European Community Programme (FP7), SOTHERCO Project

Page 2: Laboratory pilot scale evaluation of heat reallocation ...

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

2

Page 3: Laboratory pilot scale evaluation of heat reallocation ...

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

3

Page 4: Laboratory pilot scale evaluation of heat reallocation ...

Foundation: reversible reaction A + B ↔ C + heat

solar heat as driving energy

High T heat (80-100°C)

water vapor

Medium T heat (30-45°C)

Low T heat (5-15°C)

desorption condenser

water vapor

Medium T heat (25-45°C)

adsorption evaporation

Principles of Thermochemical Energy Storage and transformation

4

Page 5: Laboratory pilot scale evaluation of heat reallocation ...

5

H2O Open storage systems

Materials for heat reallocation

Chemical sorption

(H2O + inorganic salt) Energy output:

160-630 kWh/m3

Kinetics: slow

Physical sorption (H2O+Inorganic and

Hybrid Porous Solids) Energy output:

90 kWh/m3

Kinetics: fast

Working pairs

Energy storage application Inter-seasonal storage Cycle time: several months Large quantity of material

Heat-pump application Cycle time: several minutes Small quantity of material

Working fluid

Hydrothermal stability

Suitable hydrophilicities (steep uptake at p/p0<0.3-0.4)

High sorption capacity

Easy regeneration (Td=80-100°C of solar collectors)

Stability under numerous cycles

Scalability

Page 6: Laboratory pilot scale evaluation of heat reallocation ...

Adsorption at too high relative

pressure

Very expensive due to

templated syntheses

Energy demanded regeneration (up

to T=140°C)

Physical sorption materials

Water sorption capacity, g H2O/g dry material

6

+ Stable, cheap - Limited in adsorption capacity

Page 7: Laboratory pilot scale evaluation of heat reallocation ...

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

7

Page 8: Laboratory pilot scale evaluation of heat reallocation ...

Metal Organic Frameworks (MOFs)

• Organic-inorganic hybrids • Crystalline • Porous

Structure of CAU-10(Al)

8

AlO4(OH)2

AlO4(OH)2 1,3 BDC

6 Å

1D square-shaped channels ~ 6 Å

CAU: Christian-Albrechts-University

cis chains of AlO4(OH)2 corner-sharing octahdera

A robust rigid hydrophilic Al-MOF

Page 9: Laboratory pilot scale evaluation of heat reallocation ...

Versatile chemistry • modification of SBU • Choice of organic ligand

Structural versatility • micro-, mesoporous • topology • rigid or flexible

Tunable properties

• Amphiphilic character Easy regeneration

Metal Organic Frameworks (MOFs)

hydrophobic

hydrophilic

P/P0

Wat

er u

ptak

e Amphiphilic caracter

Functionalization

O-O

-O O

NH2

O-O

-O O

OH

HO

O-O

-O O

SO3H

polar functional groups

9

Page 10: Laboratory pilot scale evaluation of heat reallocation ...

MIL-125(Ti)-NH2

0,5 0,3 0,1

0,2 0,4 0,6 0,8 1

10

MIL-127(Fe)

Correlation between structural and adsorption properties

m i c r o p o r o u s m e s o p o r o u s

Hydrophilic Amphiphilic Hydrophobic

0

0,5

1

1,5

2

0 0,2 0,4 0,6 0,8 1

p/p°

MIL-101(Cr)

CAU-10(Al) MIL-125(Ti)-NH2 UiO-66(Zr)-NH2 MIL-100(Fe) MIL-101(Cr) MIL-100(Fe)

Water adsorption isotherms: adsorption capacity (g/g)

0

0,5

1

0 0,2 0,4 0,6 0,8 1

p/p°

MIL-100(Fe)

Amphiphilic character → position of adsorption step (p/p0)

MIL-125(Ti)-NH2

Page 11: Laboratory pilot scale evaluation of heat reallocation ...

11

Correlation between structure and adsorption properties Dehumidification,

Open cycle air-conditioning

Heat-pump and thermochemical energy storage

0

0,3

0,6

0,9

1,2

1,5 p/p0 = 0-0.3 p/p0 = 0.3-0.5

Adsorption capacity, g/g

Hydrophilic Amphiphilic Hydrophobic

Hydrothermal stability

Suitable hydrophilicities (steep uptake at p/p0<0.3)

High sorption capacity

Page 12: Laboratory pilot scale evaluation of heat reallocation ...

CAU-10: advantages and limitations Water sorption isotherms at 25°C Excellent cycling stability

Suitable hydrophilicity Why CAU-10?

But…

↑ hydrophilic character of MOF → good for heat-pump ↑ polarity of linker → solubility in water↑, → possible synthesis in water Green biocompatible synthesis?

Petrol-based linker Synthesis in toxic solvent (DMF)

more hydrophilic bio-sourced Industrial producation by Avantium

0,4 0,3 0,2 0,1 0,0

0,2 0,4 0,6 0,8

adsorption capacity (g/g)

12

Page 13: Laboratory pilot scale evaluation of heat reallocation ...

MIL-160(Al): an alternative approach for hydrophilic MOFs

MIL-160(Al) isostructural with CAU-10

CAU-10 MIL-160(Al)

Computational

Design

DFT optimized structure

Alternative strategy

Standard approach to enhance the hydrophilicity of MOF: grafting polar functional groups O-O

-O O

NH2

O-O

-O O

OH

HO

O-O

-O O

SO3H

• higher affinity for water • decrease of the Vpore and thus, total uptake

UiO-66(Zr)-NH2 and MIL-125(Ti)-NH2

G. Maurin,D. Damasceno-Borges, A. Cadiau 13

Page 14: Laboratory pilot scale evaluation of heat reallocation ...

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

14

Page 15: Laboratory pilot scale evaluation of heat reallocation ...

A new hydrophilic Al dicarboxylate MOF: structure and synthesis

Structure solved from XRPD, Modelling and Solid State NMR

and DFT modelling

Isostructural with CAU-10

A. Cadiau et al., Adv. Mater, 2015

6 Å

Green scalable synthesis: solvent (H2O, reflux) cheap Al salts as metal precursor 2,5 Furane dicarboxylic linker produced from biomass (Avantium)

1D channels ~ 6 Å

Cis chains of AlO4(OH)2

Al(OH)[O2C-C4H2O-CO2].nH2O

15

Page 16: Laboratory pilot scale evaluation of heat reallocation ...

MIL-160(Al): optimization of synthesis

High throughput synthesis methodology

Screening of synthesis parameters New conditions:

AlCl3 precursor NaOH A. Cadiau et al., Adv. Mater, 2015

High yield (93% based on Al)

+ Al(OH)(CH3COO)2

H2O

reflux (24h)

MIL-160 13.82 g

93 % (dry)

eco-compatible and friendly less corrosive

16

Initially reported conditions:

Page 17: Laboratory pilot scale evaluation of heat reallocation ...

CAU-10(Al)

MIL-160(Al)

Water sorption properties of MIL-160(Al) and CAU-10

Origin of the increased hydrophilicity?

MIL-160(Al) more hydrophilic adsorbent:

water uptake at lower p/p0 Larger uptake at saturation: 0.37 g/g vs 0.32 g/g

A. Cadiau et al., Adv. Mater, 2015

- Adsorption site: μ2-OH (more accessible compared to CAU-10)

- Additional interactions between H(H2O) & O(furan)

MIL-160

Water sorption isotherms at 298K

G. Maurin

17

Page 18: Laboratory pilot scale evaluation of heat reallocation ...

5 10 15 20 25 30

MIL-160(Al): hydrothermal stability and cycling stability

No loss after more than 10 cycles

A. Cadiau et al., Adv. Mater, 2015

Hydrothermal treatment: boiling water for 1 day

18

Wight, %

Time, h

Temperature, °C

T adsorption at 30°C (RH 80%)

T desorption at 100°C (RH 0.03%)

250

100

0 0,2 0,4 0,6 0,8 1

p/p0

ml/g

N2 sorption porosimetry Porosity maintained

X-ray powder diffraction Preservation of structure

2 Theta – scale (°)

Page 19: Laboratory pilot scale evaluation of heat reallocation ...

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

19

Page 20: Laboratory pilot scale evaluation of heat reallocation ...

Energy storage application: operating conditions

20

Working fluid: water Closed energy storage system T condenser =T evaporator=10°C

P=1,25 kPa

Δm, mg

Time, h

Temperature, °C

T desorption at 80°C (solar collectors)

T adsorption at 30°C T min for space-heating

in winter

Gravimetric lift: Δm = m adsorbed – m desorbed

Page 21: Laboratory pilot scale evaluation of heat reallocation ...

MIL-160 : the best choice from physical sorption materials

0,06

0,12

0,20

0,32 0,34

0,36 0,37

51

87

144

244

284 300 308

0

50

100

150

200

250

300

0

0,1

0,2

0,3

0,4

0,5Cycling loading lift

Energy storage capacity

Hydrophilic character of MOFs

Highest cycling loading lift Highest energy storage capacity Excellent cycling stability Green bio sourced synthesis

Condition of lift: ads. at 30°C, 1.25 kPa des. at 80°C, 1.25 kPa

Cycling lift, g/g Energy storage capacity, Wh/kg

21

Page 22: Laboratory pilot scale evaluation of heat reallocation ...

Scale-up and shaping of MIL-160(Al) Scale-up:

Multiplying all amounts by ca. 10 times Larger scale glass reactor (2L) 400 g of MIL-160

Granulation method MIL-160(Al)+ silica sol solution Granulation using the rotating fan Drying

KRICT, Korea, J-S Chang Granules of MIL-160(Al): 0.5-1.8 mm 22

Page 23: Laboratory pilot scale evaluation of heat reallocation ...

Characterization of MIL-160(Al) before and after shaping PXRD Nitrogen sorption porosimetry IR TGA

0

120

240

360

0 0,5 1

p/p0

MIL-160 shaped_adsMIL-160 shaped_desMIL-160 powder_adsMIL-160 powder_des

Powder: SBET=1150 m2.g-1

Shaped: SBET=1010 m2.g-1

MIL-160(Al) powder

MIL-160(Al) shaped

4 10 20 30 40 50 60

2 Theta – scale (°)

Va/cm3(STP) g-1

N2 sorption porosimetry X-ray powder diffraction

Preservation of structure Porosity maintained 23

Page 24: Laboratory pilot scale evaluation of heat reallocation ...

Water sorption and energy storage properties of MIL-160(Al)

Gravimetric loading lift of powder and shaped MIL-160(Al)

Lift conditions: Adsorption: 30°C / p=1.25 kPa Desorption: 80°C/p=1.25 kPa

300 Wh/kg 292 Wh/kg

MIL-160(Al) powder 0.36 g/g

MIL-160(Al) shaped 0.32 g/g

High energy storage capacity:

24

Page 25: Laboratory pilot scale evaluation of heat reallocation ...

Water sorption properties of MIL-160(Al)

Critical data for modelling of different operating conditions (T, P)

Water sorption isotherms at different temperatures (30-80°C, step of 10°C)

0

0,1

0,2

0,3

0,4

0 1000 2000 3000 4000 5000 6000 7000 8000

p, Pa

60°C 40°C 50°C

30°C

70°C

80°C

Adsorption capacity, g/g

25

Page 26: Laboratory pilot scale evaluation of heat reallocation ...

Pilot test open-system prototype

I. Dry air generator II. Controlled air humidification system III. Adsorption column

Adsorption process: T=30°C, p=1.32 kPa Air flow rate: 215 l/min

The measurement of input and output air temperatures → the thermal power curve

26

Page 27: Laboratory pilot scale evaluation of heat reallocation ...

H= A*Cp*ΔT H: thermal power (W) A: air mass flow rate (kg/s) Cp: air heat capacity (J/kg*K) ΔT: temperature difference between input and output air

Pilot test open-system prototype

Input and output air temperatures

The thermal power curve

0

30

60

90

0:00 0:30 1:00 1:30 2:00 2:31time

343 Wh/kg (141 kWh/m3)

Thermal heat power, W

Energy storage capacity Energy storage density

27

Page 28: Laboratory pilot scale evaluation of heat reallocation ...

0

100

200

300

400

T ads=30°C/ p=1.25 kPa T des=80°C/ p=1.25 kPa This work

Literature T ads = 40°C/ p=1.20 kPa

T des=90°C

Comparison with other materials

Energy storage capacity, Wh/kg

28

Page 29: Laboratory pilot scale evaluation of heat reallocation ...

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation: which?

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

29

Page 30: Laboratory pilot scale evaluation of heat reallocation ...

MIL-160(Al): heat-pump applications

MIL-160: one of the best MOF so far at lift 1, close to SAPO-34

Gravimetric water loading lift (g/kg)

A. Cadiau

T ads=40°C/ p=1.2 kPa T des=95°C/ p=5.6 kPa

30

Page 31: Laboratory pilot scale evaluation of heat reallocation ...

I • Energy reallocation: principles, promising materials

II • Metal Organic Frameworks for energy reallocation: which?

III • New bio-sourced MOF MIL-160(Al): structure, synthesis,

water sorption properties, hydrothermal stability

IV • MIL-160(Al) for energy storage application

V • MIL-160(Al) for heat-pump application

VI • Conclusions

Table of content

31

Page 32: Laboratory pilot scale evaluation of heat reallocation ...

Conclusions:

I. New hydrothermally stable hydrophilic MOF: MIL-160(Al) • Alternative strategy of hydrophilic MOF synthesis • Green bio-sourced synthesis with high yield (93%) II. Excellent properties of MIL-160(Al) for heat pump application • Enhanced hydrophilicity • Excellent stability under numerous cycles • Performance comparable and even higher than SAPO-34

III. A series of MOFs towards space heating application • MIL-160(Al): best candidate (highest cycling loading lift, stability, green and

cheap synthesis) • Energy capacity: 300 Wh/kg • Scape-up (400 g) and Shaping • Pilot test with an open reactor (348 Wh/kg or 144 kWh/m3) • Higher performance compared to zeolites, SAPO-34 and AlPO-18

32

Page 33: Laboratory pilot scale evaluation of heat reallocation ...

Acknowledgements: • Porous Solid team, UVSQ, France C. Serre, N. Steunou, T. Devic, F. Nouar, S. Wang, C. Martineau, A. Cadiau, M. Affram

• Service thermodynamique, UMONS, Belgium M. Frère, A. Srylnyk, E. Courbon, G. De Weireld

• University of Montpellier: D. Damasceno-Borges, G. Maurin (DFT, GCMC, MD)

• TU Delft, ND: J. Gascon, F. Kaptjeen, M. De Lange (Heat transfer calculations)

• KRICT, Korea: J-S Chang, Y-K Hwang (Heat transfer) • European Community Programme (FP7), SoTherCo and SoTherCo partners

Thank you for attention! 33