L Molenkamp 04 16 05 - Condensed Matter...

32
Spintronic Nanostructures Laurens W. Molenkamp Physikalisches Institut (EP3) Würzburg University

Transcript of L Molenkamp 04 16 05 - Condensed Matter...

Spintronic Nanostructures

Laurens W. MolenkampPhysikalisches Institut (EP3)

Würzburg University

Overview

- Introduction: Spin injection in Semiconductors

- Spin RTDs using II-VI DMSs

- Nanoconstrictions in GaMnAs

- Tunnel AMR in GaMnAs

- Conclusion and outlook

Materials at EP3: II-VI MBE

MBE of:(Al,Ga,In)(As,Sb)

(Zn,Be,Mn)Se on (Al,Ga)As substrates/heterostructures(Cd,Be,Mn)Se on InAs/GaSb substrates/heterostructures

(Hg,Mn,Cd)Te on ZnCdTe substratesmagnetic III-Vs: (Al,Ga,In)Mn(As,Sb)

Heuslers (NiMnSb on InGaAs/InP)(U)HV deposition/sputtering/CVD of

Fe, Co, Ni, Au, W, Al, Ti, Cr, SiO, SiO2, Si3N4

(mostly stacks without breaking vacuum)

Materials for Spintronics

Lithography

300 m2 CleanroomAll usual Optical Lithography, Aligners,

Evaporators, etc.E-beam: LEO 1525 FEG w/ Elphy+

pattern generatorDry etching: RIE (CHF3) and CAIBE(Cl2)

systemsResolution down to 5 nm

Spininjection: Load line model

Loadline: crossing point between I-V curves determines operating current of circuit

Spininjection: Load line model

-model transport as two independent spin channels

-Spin injection occurs because of different spin channel conductivity in the ferromagnet

Spininjection from a metal into a sc: impedance mismatch

for spin injection, one needs:

-ferromagnetic semicond.

-‚half-metal‘

-spin-preservingtunnelbarrier

II-VI Dilute magnetic semiconductors(DMS)

The 100% spin-aligner– II-VI Semiconductors with magnetic components

(e. g. ZnMnSe), which are non-magnetic orantiferromagnetically aligned at zero B-field.

– For B ≠ 0: Finite magnetization, ‘giant’ Zeeman splitting of up to 100 meV of which 10 - 20 meV in the conduction band

– Low Fermi energy at high doping due to impuritybands: half-metallic behavior at high B-field.

⇒ β = 100% for kΤ << ∆ΕC

+

∆−=

)(25)(*

02/5

max0 TTTk

BgBB

EggB

BMn

B

µµ

gMn: g factor for MnB5/2: Brillouin function for S=5/2(∆E)max: saturation spin splitting

energyT0: scaling temperature

(accounts for spin spin interaction)

First demonstration of electrical spin injection R.Fiederling et al., Nature 402, 787 (1999).

Spin-LED: the first spin injection device

The spin-LED exhibits very robust spin-injection,up to 90% efficiency.Modeling more complex than load-line, high field (drift) effects

Spin-LED Data

EC

ZnSe

BeZnSe ZnMnSe

Growth direction

BeZnSe

ZnSe

(Zn,Be,Mn)Se-based Spin-switch RTD

Voltage-adjustable spin selectiveinjector and detector?

Spin-switch RTD in the (Zn,Be,Mn)Se-System

GaAs Substrate

ZnSe (i)

Zn0.97Be0.03Se (1e19)

Zn0.97Be0.03Se (1e18)

Zn0.97Be0.03Se (1e18)

ZnSe (2e19)

ZnSe (2e19)

Zn0.7Be0.3Se (i)

Zn0.7Be0.3Se (i)ZnMnSe (i)

ZnSe (i)

30 nm15 nm10 nm5 nm9 nm5 nm

10 nm10 nm50 nm300 nm

EC

all doping n-type

Spin-switch RTD in the (Zn,Be,Mn)Se-System

The dots are fits assuming each spin-channel has the same resonance behavior as the B=0 T signal. The fits yield the exact resonance spliting.

0.00 0.05 0.10 0.15 0.200

25

50

75

100

125

6T

3T

0T

4% MnT=1.3K

Voltage (V)

Cur

rent

(µA

)

0.00 0.05 0.10 0.15 0.200

255075

100125150

6T

3T

0T

8% MnT=1.3K

Voltage (V)

Cur

rent

(µA

)

A. Slobodskyy et al., PRL 90, 246601 (2003)

Spin-switch RTD in the (Zn,Be,Mn)Se-System

Splitting follows Brillouin function that belongs to the Mn concentration:Spin-switch RTD functions in all respects as anticipated..

0 1 2 3 4 5 60

4

8

12

16

20 1.3K_8% 4.2K_8% 8K_8%

1.3K_4% 4K_4% 8K_4%

Zeem

an s

plitt

ing

(meV

)

Field (T)

III-V DMS: (Ga,Mn)As

– GaAs with typically 1 to 8% Mn– Grown at ~220° to prevent MnAs formation.– Exhibits carrier mediated ferromagnetism. – Mn substitues on Ga sites (acceptor) or goes in interstitially

(donor) – Tc around 70K as grown, 150 K with annealing is routine.

Current WR: Nottingham 173K; Tanaka 250K in 2D layers.– Always p-type .– Basically metallic transport T4k ~ Troom

– Complex anisotropy both in transport and magnetism.

•Spin-valve effects important for device applications

•Large magnetoresistance expected from ‘ballistic’ domain walls in (Ga,Mn)As(Flatté & Vignale APL, PRL 2001/2)

•Constrictions: pin and shrink domain wall (Bruno, PRL 1999)

Magnetic point contacts

Nanofab:

Negative e-beam lithography, dry etching

(Ga,Mn)As from Furdyna, Notre Dame

-80 -40 0 40 8014.9

15.0

15.1

R xx (k

Ω)

-80 -40 0 40 8048.6

48.8

49.0

49.2

49.4

49.6

49.8

Rxx

(kΩ

)

Magnetic Field (mT)

Experimental Results: Spin-valve effect

Switching dominated by shape anisotropyStrong domain wall pinning

Amplitude of effect strongly depends on resistance of constrictions

(same sample, constrictions narrowed by re-etching)

+1.5%

C. Rüster et al., PRL 91, 216602 (2003).

-100 -80 -60 -40 -20 0 20 40 60 80 100

79

80

81

82

83

84

85

Rxx

(kΩ

)

Magnetic Field (mT)

+8%

Modeling – Lower Resistance Regime

•Valet-Fert: spin accumulation at abrupt junction of regions with oppositemagnetization

•Parabolic band model:

=∝

ββ 2 MR

↓↑↓↑

↓↑

+

∆=

+−

=FF

spin

FF

FF

EEE

EEEE

β

• Experiment fits w/ reasonable numbers:

•∆Espin=30 meV (from MCD data)

•EF =150 meV (1%), 90 meV (8%) (parabolic hole band)

Model explains evolution of R and MR with etching

Michael Flatté, Zhi Gang Yu

spin polarization

-1200 -800 -400 0 400 800 12000.0

2.0x107

4.0x107

6.0x107

8.0x107

1.0x108

Rxx (Ω

)

Magnetic Field (Oe)

Etching into TMR regime: Giant spin-valve effect

Further etching: contacts become tunnel bariers –and magnetoresistance increases to 2000%!

Modeling – tunneling regimeAssumption: shallow parabolic barrier :

⋅⋅⋅−=

hLEmT H

2/3

2/1*2

22exp π

Transmission probability through a parabolic barrier :

barrier theof thicknessbarrier theofheight

==

LEHwith

Main point: different tunneling distances for minority and majority holes

•Use the spin splitting as in the low R samples, meV 30∆E =

Model yields as parameters: nm 11...17L meV; 31EB ≈≈

barriers for

holes!

TAMR in (Ga,Mn)As/AlOx/metal

-60 -40 -20 0 20 40 602860

2880

2900

2920

2940

2960

2980

3000

Res

ista

nce

(Ω)

B (mT)

AlOx

GaMnAs

Au Au

ContactDevice

A tunnel barrier between a non-magnetic metal (Au) and ferromagnetic(Ga,Mn)As can exhibit a huge magnetoresistance that can show the signature of a spin valve.

GaMnAs

Contact

Device

Dependence of the magnetoresistance effect on the in-plane field angle(angle with respect to [100]).

-100 -80 -60 -40 -20 0 20 40 60 80 100290030003100320033003400350036003700

170 deg.

0 deg.

R (Ω)

B(mT)100 80 60 40 20 0 -20 -40 -60 -80 -100

290030003100320033003400350036003700

350 deg.

180 deg.

R(Ω)

B(mT)

Spin-Valve like TMR in (Ga,Mn)As/AlOx/Non-magnet devices

Magnetization shows double switching.

B1

2 3

4

1

2 3

-30 -20 -10 0 10 20 30-1.0x10-5

-7.5x10-6

-5.0x10-6

-2.5x10-6

0.0

2.5x10-6

5.0x10-6

7.5x10-6

1.0x10-5

M(e

mu)

B(mT)

Cubic + small uniaxial anisotropy

Magnetic Behaviour

-Cubic + small uniaxial anisotropy

-“double step switching“

-Coherent rotation a la Stoner-Wohlfarth.

-Domain wall nucleation and propagation.

∆E

Barrier against coherent rotation

ε

Domain wall propagation energy

Total dos of valence band strongly anisotropic.

B // [100 ] B // [110 ]

Abolfath et al., Phys. Rev. B 63, 054418 (2000).

T. Jungwirth, J. Sinova

Theory: TAMR in (Ga,Mn)As/AlOx/metal devices

Increasing in-plane momentum conservation

[100]

0]1[1_

0]1[0_

0]11[__

00]1[_

10]1[_

[010]

[110]

°90

°0

: AngleΦ

~3000Ω

~2900Ω

Comparing Theory and Experiment

C. Gould et al., Phys. Rev. Lett. 93, 117203 (2004).

A READ-WRITE MEMORY DEVICE!

Resistance at B=0mTResistance at B=0mT

2.90

2.95

3.00

2.90

2.95

3.00

B=0mT R

(kO

hm)

T=4.2K, V=10mV270

90

0

[010]

[100]

TAMR in ‚GMR‘ Sample

top: B in plane

bottom: B perpendicular

C. Rüster et al, PRL 94, 027203 (2005).

TAMR in ‚GMR‘ Sample

Effect blows up for low T, low bias: Efros-Shklovski gap.

Conclusions

– Spin LED

– Spin RTD: voltage adjustable spin-switch

– Very large magnetoresistance in GaMnAs nano-constrictions

– TAMR results from double step switching + anisotropic dos

– gives bistable hysteresis for single FM layer; is huge for two FM layers

Collaborators:Charles Gould, Georg Schmidt, Karl Brunner,Romain Giraud, Peter Grabs, Katrin Pappert, Christian Rüster, Gisela Schott, Anatoly and Taras SlobodskyyTatjana Borzenko, Volkmar Hock,

Funding:BMBF, DFG (SFB 410), EU, DARPA SPINS Program, ONR