L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August...

14
LEARNING ESTABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015

Transcript of L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August...

Page 1: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

LEARNING ESTABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIORChapter 51, Section 2

August 31, 2015

Page 2: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

INNATE BEHAVIOR

Definition: animal behavior that is developmentally fixed and under strong genetic control.

Exhibited in virtually the same form by all individuals in a population despite internal and external environmental differences during development and throughout their lifetimes.

Examples: Fixed action patterns, reflexes, instinct, etc.

Page 3: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

EXPERIENCE AND BEHAVIOR Tinbergen’s second question: How does the animal’s experience

during growth and development influence the response? One approach to this question is a cross-fostering study, in

which the young of one species are placed in the care of adults form another species. The extent to which the offspring’s behavior changes provides a

measure of how the social and physical environment influences behavior.

Example: Male California mice and White-footed mice

Page 4: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

LEARNING OVERVIEW

Definition: the modification of behavior as a result of specific experiences. Capacity of learning depends on nervous system

organization established during development following instructions encoded in the genome.

Learning itself involves the formation of memories by specific changes in neuronal connectivity.

The essential challenge for research into learning is not the decide between nature and nurture, but rather to explore the contributions of both nature and nurture in shaping learning and behavior.

Page 5: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

LEARNING: IMPRINTING The ability of offspring to

recognize and be recognized by a parent is essential for survival.

Imprinting: the establishment of a long-lasting behavioral response to a particular individual or object.

Example: Graylag geese (Lorenz)

Example: Whooping crane

https://www.youtube.com/watch?v=ihh1xBXwt_0

https://www.youtube.com/watch?v=uurn-Nrljbw

Page 6: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

LEARNING: SPATIAL LEARNING

An organism’s fitness may be enhanced by the capacity for spatial learning, the establishment of a memory that reflects the environment’s spatial structure.

Example: female digger wasp

Experiment

Pinecone

Results

Nest

NestNo nest

Page 7: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

LEARNING: ASSOCIATIVE LEARNING Definition: the ability to associate one

environmental feature with another. Example: Blue jays and monarch butterflies

Classical conditioning: an arbitrary stimulus becomes associated with a particular outcome.

Operant conditioning: an animal first learns to associate one of its behaviors with a reward or punishment and then tends to repeat or avoid that behavior.

https://www.youtube.com/watch?v=MOgowRy2WC0

Page 8: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

LEARNING: COGNITION AND PROBLEM SOLVING

The most complex forms of learning involve cognition- the process of knowing that involves awareness, reasoning, recollection, and judgment. Example: Bees and the Y-shaped maze

The information-processing ability of a nervous system can also be revealed in problem solving, the cognitive activity of devising a method to proceed from on state to another r in the face or obstacles. Example: Ravens and the food hanging by a string

https://www.youtube.com/watch?v=AVaITA7eBZE

Page 9: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

LEARNING: SOCIAL LEARNING

Definition: type of learning through observing others Example: Young wild

chimpanzees Example: Vervet monkeys in

Amboseli National Park Culture is a system of

information transfer through observation or teaching that influences behavior of individuals in a population. Culture can alter behavior and

influence the fitness of individuals.

Page 10: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

SELECTION FOR INDIVIDUAL SURVIVAL AND REPRODUCTIVE SUCCESS CAN EXPLAIN DIVERSE BEHAVIORSChapter 51, Section 3

August 31, 2015-Septermber 1, 2015

Page 11: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

OVERVIEW

Tinbergen’s third question: how behavior enhances survival and reproduction in a population. The focus shifts from proximate causation- the

“how” questions- to ultimate causation- the “why” questions.

Food-obtaining behavior, or foraging, includes not only eating but also any activities an animal used to search for, recognize, and capture food items.

Page 12: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

EVOLUTION OF FORAGING BEHAVIOR Variation in a gene

called forager (for) dictates how far Drosophila larvae travel when foraging. Larvae carrying the forR allele travel far.

Larvae carrying the forS allele do not travel far.

Larvae populations kept at a low density foraged over shorter distances than those in populations kept at high density. The forR allele frequency increased in the

high-density groups. The forS allele frequency increased in the low-

density groups.

Page 13: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

OPTIMAL FORAGING MODEL

Foraging behavior is a compromise between the benefits of nutrition and the costs of obtaining food.

According to this optimal foraging model, natural selection should favor a foraging behavior that minimizes the costs of foraging and maximizes the benefits.Costs•Energy Expenditure•Risk of Predation

BenefitObtain enough food to survive/reproduce

VS.

Think Economics!!!

Page 14: L EARNING E STABLISHES SPECIFIC LINKS BETWEEN EXPERIENCE AND BEHAVIOR Chapter 51, Section 2 August 31, 2015.

BALANCING RISK AND REWARD One of the most significant potential costs to

a forager is risk of predation. Maximizing energy gain and minimizing energy

costs are of little benefit if the behavior causes the forager to be preyed upon.

Example: Mule deer that live in the mountains of western North America