L 19: Low Power Circuit Optimization

19
L 19: Low Power Circuit Optimization

description

L 19: Low Power Circuit Optimization. Power Optimization. Modeling and Technology Circuit Design Level logic Families low-power Flip-Flops low-power clock distribution Logic and Module Design Level Architecture and System Design Level Some Design Examples. Choice of Logic Family. - PowerPoint PPT Presentation

Transcript of L 19: Low Power Circuit Optimization

Page 1: L 19: Low Power  Circuit  Optimization

L 19: Low Power Circuit Optimization

Page 2: L 19: Low Power  Circuit  Optimization

Power Optimization

• Modeling and Technology• Circuit Design Level

– logic Families– low-power Flip-Flops– low-power clock distribution

• Logic and Module Design Level• Architecture and System Design Level• Some Design Examples

Page 3: L 19: Low Power  Circuit  Optimization

Choice of Logic Family• Power delay product improves as supply voltage decreases• The best logic style minimizes power-delay product

Page 4: L 19: Low Power  Circuit  Optimization

Static CMOS Full Adder

B

A

VDDC’ C

B’B’

A A’

A’ A’

BB

C C’

B

B’

A

B

A B

C

C

A Bsum

carry

Page 5: L 19: Low Power  Circuit  Optimization

NO Race dynamic CMOS logic(NORA)

• Full Adder

A

B

C

A B

phi

phi

phi carry

Phi’phi’

A B C

phi’

A

B

C

sum

Page 6: L 19: Low Power  Circuit  Optimization

Cascode Voltage Switch Logic(CVSL) Full Adder

phi phi

A

B

C’

A

B

C

A’

B’

sumsum’

A’

B

C’

phi

A

B’

C

B B’

Carry’ Carry

phi

phi phi

Page 7: L 19: Low Power  Circuit  Optimization

Differential Cascode Voltage Switch Logic

• (DCVSL)

A

B

C’

A

B

C

A’

B’

sumsum’

A’

B

C’

A

B’

C

B B’

Carry’ Carry

Page 8: L 19: Low Power  Circuit  Optimization

CMOS NonThreshold Logic(CNTL) Full Adder

A

B

C’

A

B

C

A’

B’

sumsum’

A’

B

C’

A

B’

C

B B’

Carry’ Carry

Page 9: L 19: Low Power  Circuit  Optimization

Logic Family• Full Adder Transistor Count and Area

Transistors Rank Area(m2) Rank

CMOS

NORA

CVSL

DCVS

CNTL

30

22

24

22

34

4

1

3

1

5

21,294

14,319

25,740

21,080

40,020

3

1

4

2

5

Simulated(ns) Rank Measured(ns) Rank

CMOS

NORA

CVSL

DCVS

CNTL

46.34

45.9

45.4

61.5

54.1

3

2

1

5

4

60

47.2

49.2

72.6

87.0

3

1

2

4

5

• Delays when 16-bit ripple carry adder was made

Page 10: L 19: Low Power  Circuit  Optimization

Logic Family• Peak switching current

simulated(mA) Rank Measure(mA) Rank

CMOS

NORA

CVSL

DCVS

CNTL

2.42

2.74

1.08

1.19

1.25

4

5

1

2

3

1.30

1.20

1.06

1.22

1.18

5

3

1

4

2

Current(A) Rank

CMOS

NORA

CVSL

DCVS

CNTL

98

948

925

116

1320

1

4

3

2

5

• Average measures current

Page 11: L 19: Low Power  Circuit  Optimization

A A’ Z Z’

A

A’

Z

Z’

Q’ Q

A B

B

B’

B’ A’

(AB)’ AB

Complementary Pass Transistor Logic(CPL)

Page 12: L 19: Low Power  Circuit  Optimization

A

B

B’

B’ A’

AB(AB)’

VDDVDD

VDD

VDD-VTN

High Level Degradation

Page 13: L 19: Low Power  Circuit  Optimization

B

A

B’

A’

AB

B’B

A

(AB)’

A’

Dual Path Transistor Logic(DPL)

Page 14: L 19: Low Power  Circuit  Optimization

A B

B

B’

B’ A’

(AB)’ AB

NMOS CPLNetwork

O’ O

Swing Restored Pass Transistor

• Logic(SRPL)

Page 15: L 19: Low Power  Circuit  Optimization

• Power consumption of Flip-Flop

– power consumed for the internal state change

– power consumed for the clocking

• Because the stage change is infrequent, the clocking capacitance must be reduced.

• Conventional C2MOS Flip-Flop

At each clock, the switched capacitance is 10MOS gates

Low-Power Flip-Flops

clk clkb

D

clk

clkb clkb

clk

clkb

clk clk

clkb

Q

Page 16: L 19: Low Power  Circuit  Optimization

Low-Power Flip-Flops• Gated D Flip-Flop

• SSTC(Static Single-Transistor Clocked Flip-Flop

D Q

Clk

D

CK

At each clock, the switchedcapacitance 2 MOS gates, but Slow and about 40 transistors

Db

clk

QQb

D x xbx xb

The switched capacitance is 2 MOS gates and

16 transistors

Page 17: L 19: Low Power  Circuit  Optimization

Power Optimization

• Modeling and Technology

• Circuit Design Level

• Logic and Module Design Level– logic synthesis– module design optimization

• Architecture and System Design Level

• Some Design Examples

Page 18: L 19: Low Power  Circuit  Optimization

Module Design Optimization

• Power dissipation

– layout

• 2um CMOS MOSIS

– condition

• 1,000 pseudo-random input

• averaging the result

• Result– CSA has lowest power

dissipation• power supply current

falls to zero faster

• Arithmetic component : Adder

Adder Type

Ripple CarryCarry Skip-ICarry Skip-II

Carry LookaheadCarry Select

Conditional Sum

Delay(nsec)

54.2728.3821.8417.1319.5620.05

Area(mm2)

0.25270.44920.51490.74541.05321.4784

Current(mW)

0.1170.1090.1260.1710.2160.304

•Carry Skip-I : constant block size•Carry Skip-II : variable block size

Page 19: L 19: Low Power  Circuit  Optimization

Module Design Optimization

• Power estimation– conditions

• 50,000 random distribution input • Result

– wallace multiplier• more attractive when operand size is large• irregular layout and large layout area

• array multiplier– becomes unattractive as operand size

increase– has higher average number of logic

transitions– has much higher delay

• Arithmetic component : Multiplier

8b16b32b8b16b32b

Wallace

ModifiedArray

Multiplier Type

50 98

198 35 51 63

Delay(in gate) Size(gates)

567 2,405 9,918

613 2,569

10,413

Transition

583 7,348

99,102 573

3,874 19,548