Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational...

14
www.quantumwise.com Atomic-scale model for the contact resistance of the nickel-graphene interface Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S

Transcript of Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational...

Page 1: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

www.quantumwise.com

Atomic-scale model for

the contact resistance of

the nickel-graphene interface

Kurt Stokbro, Mads Engelund, and Anders Blom

QuantumWise A/S

Page 2: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 1

Motivation and overview

Purpose: Understand contact resistance between graphene and metals

Device-like geometries

Study different edge geometries

Covalently bonded (chemisorbed) graphene on Ni surfaces

» ~1% lattice mismatch between Ni (111) and graphene

» Novel MTJ design?arXiv:1201.6279

Page 3: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 2

Optimized system geometries

Ni (111) – zigzag, 8 Å overlap

Ni (100) – armchair, 8 Å overlap, H-termination

Ni (111) – zigzag, 4 Å overlap

Ni (111) – zigzag, 4 Å overlap, H-termination

Page 4: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 3

Computational details

Code: Atomistix ToolKit

DFT» LSDA (Perdew-Zunger)

» DZP basis set (SIESTA-type)• 15 orbitals per Ni atom, 13 per C

• 9 k-points in the infinite graphene sheet direction

» Extended basis set range for proper work function

Non-equilibrium Green’s function (NEGF) method to compute transport properties

» FFT in XY, multigrid/Dirichlet in Z (transport direction)

Page 5: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 4

Transport• Exact description of semi-infinite electrodes via self-energies

• Non-equilibrium electron distribution using NEGF

Electronic structure• DFT, Extended Hückel, TB, …

HH DD

Bulk region

Bulk region

NEGF transport methodology

M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Physical Review B 65, 165401 (2002)

DFT device modelling, most important features

Electron current (Landauer formalism)

Electrostatic screening

Page 6: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 5

Transmission spectra

• Summed over spin

• 501 k-points in B

• Similar low-bias slope for all systems: 0.06 G0/(eVÅ)

• Ideal graphene sheet: 0.12 G0/(eVÅ)

Page 7: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 6

Transmission coefficients

E − Ef = 0.05 eVNote: System (b) has larger overlap (8 Å) than (a) (4 Å)

Page 8: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 7

Current density

System (b) @ E − Ef = 0.05 eV. Current incident from the right.Current density drops at surface – overlap region is not important for contact resistance.

π

Page 9: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 8

Charge transfer

Electrostatic potential inside the graphene sheet

Net Mulliken charges; per atom (bars) and accumulated from the far-right (red line)

In all cases: electron transfer from graphene to Ni (red curve, C>15 Å)

For non-terminated graphene: electron accumulation at the edge

For H-terminated graphene: electron depletion at the edge

Page 10: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 9

Contact resistance model (1)

The system can be divided into two parts:» (MG) the metal surface with the bonded graphene atoms

» (G) the non-bonded graphene

(MG)

(G)

←←→

Page 11: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 10

Contact resistance model (2)

Diagonalize (MG) into left- and right-going modes.

An incoming left-going electron from (G) may couple with either the left- or right-going modes in system (MG).

In the strong coupling regime, the carbon atoms in (MG) will be enough perturbed by the metal surface that neither left- nor right-going modes bear any resemblance to the modes in (G).

Thus, incoming electrons from (G) will have roughly the same coupling strength with left- and right-going modes in (MG), and thus approximately half of the incoming current is transmitted through the system (and half is reflected).

In conclusion, the contact resistance is twice the ideal value, independently of contact area and other contact details.

Page 12: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 11

Model system

Non-self-consistent extended Hückel model

Graphene on Al K. Stokbro, D. E. Petersen, S. Smidstrup, A. Blom, M. Ipsen, and K. Kaasbjerg, PRB 82, 075420 (2010).

E − Ef = 0.05 eV

Page 13: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 12

Contact resistance

Finally: compute the contact resistance

Cf. experimental data: 800 Ωµmalso independent of contact area[K. Nagashio et al., APL 97, 143514 (2010)]

R≈600 Ωµm

Page 14: Kurt Stokbro, Mads Engelund, and Anders Blom QuantumWise A/S · QuantumWise Slide 3 Computational details Code: Atomistix ToolKit DFT »LSDA (Perdew-Zunger) »DZP basis set (SIESTA-type)

QuantumWise Slide 13

Summary

The contact resistance between Ni and graphene is independent of the contact area and direction of the graphene sheet

The value is ~600 Ωµm = 2x the ideal quantum contact resistance

Both observations are in excellent agreement with experimental data

Model calculations predict that this result is generic for strongly bonded graphene on metal surfaces (Co, Pd, Ni, Ti)