K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke...

59
K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to study molecular interactions : microscopy

Transcript of K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke...

Page 1: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

K.U.LEUVEN

Johan HofkensSatoshi Habuchi

Laboratory of Photochemistry and SpectroscopyKatholieke Universiteit Leuven - Belgium

Theories and methods to study molecular interactions :

microscopy

Page 2: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Overview

1. Microscope principle

- Lenses and geometrical optics

- Resolution of optical microscope

- Image brightness

2. Application for studies of molecular interactions

- Köhler illumination

- Fluorescence microscopy

- Confocal microscopy

- Fluorescent probes

- Ca2+ measurements in cells

- Nucleocytoplasmic shuttling of MAPK

Page 3: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Why doing microscopy

Microscope is an instrument to produce magnified images of small objects.

- Magnified image

- Separate details in an image

- Make details visible to eye or camera

Page 4: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Microscope Optical Components

Light source

Collector lens

Condenser

Objective

Eyepiece

Field Diaphragm

Aperture Diaphragm

Objective back focal plane

Intermediate image plane

Page 5: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Lenses and Geometrical Optics

Page 6: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Lenses and Geometrical Optics

Refraction of light

Direction change of a ray of light passing from one transparent medium to another with different optical density. A ray from less to more dense medium is bent perpendicular to the surface.

Snell’s Law

1

2

2

1

2

1 ==sin

sin

n

n

V

V

θ

θ

V: velocity of light in material

n: refractive index material

θ1

θ2

Page 7: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Lenses and Geometrical Optics

Focal length

• Light from an object that is very far from the front of a lens will be brought to a focus at a fixed point behind the lens. This is known as the focal point (F) of the lens.

• The distance from the center of the lens to the focal plane is know as the focal length (f).

Page 8: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Lenses and Geometrical Optics

Magnification of a lens

baf

111

a

b

h

hM =

′=

Lens formula Magnification

Page 9: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Lenses and Geometrical Optics

Real image and virtual image

• When the distance between the object and the lens is longer than the focal length, the rays become convergent, giving the real image (inverted).

• When the distance between the object and the lens is shorter than the focal length, the rays can not be convergent, giving the virtual image (non inverted) which always appear upright to the observer.

Real image Virtual image

Page 10: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Lenses and Geometrical Optics

Microscope conjugate field planes

fobj : < 10 mm

optical tube length : 160 mm

feye : few cm

Example

fobj : 8 mm, feye : 25 mm

208

160obj M

object to eye distance : 250 mm

1025

250eye M

2001020eyeobj MMM

Page 11: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Lenses and Geometrical Optics

Infinity-corrected optical system

• The region between the objective and tube lens (infinity space) provides a path of parallel light rays.

• Complex optical components can be placed without loosing the performance of the microscope.

Page 12: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

Page 13: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

Diffraction

Light rays bend around edges – new wavefronts are generated at sharp edges

Page 14: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

Interference

Constructive interference Destructive interference

Page 15: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

Airy pattern formation

Condenser

Objective

Aperture Diaphragm

Intermediate image plane

Direct light

Diffracted light

Objective back focal plane

Page 16: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

Rayleigh criterion

The limit at which two Airy disks can be resolved into separate entities is often called the Rayleigh criterion.

Resolution

R = 0.61λ / NAλ : wavelength

NA : numerical aperture

Page 17: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

Numerical aperture (NA)

Numerical Aperture (NA) = n(sin μ)

n : refractive index of the imaging medium

μ : one-half angle of the angular aperture A

Page 18: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

NA and resolution

NA = 0.10 NA = 0.18 NA = 0.36

R = 0.61λ / NA

High NA : better resolution

Page 19: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

NA and resolution

Resolution and Numerical Apertureby Objective Type

λ = 550 nm

Page 20: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

Wavelength and resolutionR = 0.61λ / NA

wavelength = 400 nm wavelength = 550 nm wavelength = 700 nm

Short wavelength : better resolution

Page 21: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

Wavelength and resolution

Resolution versus Wavelength

NA = 0.95

Page 22: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

Axial resolution

The axial range, through which an objective can be focused without any appreciable change in image sharpness, is referred as the objective depth of field.

High NA : better axial resolution

Page 23: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Resolution of Optical Microscopy

NA and immersion medium

Low refractive index High refractive index

NA = n(sin μ)

NA = 1.0 sin(65°) = 0.90

n = 1.00

μ = 65°

NA = 1.51 sin(65°) = 1.38

n = 1.51

μ = 65°

Low resolution High resolution

Page 24: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Image Brightness

Page 25: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Image Brightness

( )2MNA∝Brightness

Magnification

10x

NA

0.15

0.45

20x 0.40

0.85

40x 0.70

1.30

60x 0.80

1.40

100x 0.85

1.40

Transmitted light intensity

2.25

20.24

4.00

18.06

3.10

10.56

1.80

5.44

0.72

1.96

Page 26: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Köhler Illumination

Page 27: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Köhler Illumination

Köhler illumination (specimen illuminating light rays)

This technique is recommended by all

manufactures of modern laboratory

microscopes because it can produce

specimen illumination that is uniformly bright

and free from glare, allowing the user to

realize the microscope’s full potential.

Page 28: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Köhler Illumination

Köhler illumination (image-forming light rays)

Page 29: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Köhler Illumination

Aperture diaphragm

Aperture adjustment and proper focusing of the condenser are of critical importance in realizing the full potential of the objective. Specifically, appropriate use of the aperture diaphragm is most important in securing correct illumination, contrast, and depth of field.

Page 30: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Köhler Illumination

Condenser alignment and field diaphragm opening size

Correct height of the condenser is critical to quantitative microscopy and optimum photomicrography.

The field diaphragm controls only the width of the bundle of light rays reaching the condenser – it does not affect the optical resolution, and the intensity of illumination. Proper adjustment of the field diaphragm is important for preventing glare.

Adjust the height of the condenser

Move the image of the field diaphragm to the center

Open the field diaphragm until it is just beyond the field of view

Page 31: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Fluorescence Microscopy

Page 32: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Fluorescence Microscopy

Fluorescence

Page 33: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Fluorescence Microscopy

Epi fluorescence and transmitted light microscopy

Transmitted light microscopy Epi fluorescence microscopy

Page 34: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Fluorescence Microscopy

Epi fluorescence microscopy

Advantage

• The objective, first serving as a well corrected condenser and then as the image-forming light gatherer, is always in correct alignment relative to each of these functions.

• Most of the unwanted or unused excitation light reaching the specimen travels away from the objective.

• The area being illuminated is restricted to the area being observed

• The full NA of the objective is utilizable.

• It is possible to combine with transmitted light observation.

Page 35: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Fluorescence Microscopy

Light source

Page 36: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Fluorescence Microscopy

FluorophoreA good fluorophore

- Large extinction coefficient ( ≈ 105 cm-1M-1)

- High fluorescence quantum yield ( > 0.8)

- Large shift of the fluorescence vs. absorption, Stokes shift ( > 40 nm)

- Low quantum yield of photobleaching ( < 10-6)

Page 37: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Fluorescence Microscopy

Filters

Page 38: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Fluorescence Microscopy

Detector

Area detector Point detector

Page 39: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Fluorescence Microscopy

Fluorescence imagesHuman Cervical Adenocarcinoma Cells (HeLa Line)

EGFP : Green

Mito Tracker Red CMXRos : Red

• Peroxisomes

• Intracellular microtublar network

Hoechst 33342 : Blue

• DNA in the nucleus

Transformed African Green Monkey Kidney Fibroblast Cells (COS-7)

Cy3 : Red

Alexa Fluor 488 : Green

• Microtubles

• Cytoskeletal filamentous actin network

DAPI : Blue

• DNA

Page 40: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Confocal Microscopy

Page 41: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Confocal Microscopy

Confocal principle Excitation light passes through a pinhole aperture that is situated in a conjugate plane with a scanning point on the specimen.

As the laser is reflected by a dichromatic mirror and scanned across the specimen in a defined focal plane, secondary fluorescence emitted from points on the specimen (in the same focal plane) pass back through the dichromatic mirror and are focused as a confocal point at the detector pinhole aperture.

The significant amount of fluorescence emission that occurs at points above and below the objective focal plane is not confocal with the pinhole (termed Out-of-Focus Light Rays). Because only a small fraction of the out-of-focus fluorescence emission is delivered through the pinhole aperture, most of this extraneous light is not detected by the photomultiplier and does not contribute to the resulting image.

Page 42: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Confocal Microscopy

Resolution in confocal microscopy

Rlat = 0.61λ / NA

Epi fluorescence microscopy Confocal fluorescence microscopy

Rlat = 0.43λ / NA

Axial Point Spread Function Intensity Profiles

Page 43: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Confocal Microscopy

Confocal microscope scanning system

Page 44: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Confocal Microscopy

Confocal images

Page 45: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Application for Studies of molecular Interactions

Page 46: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Amine-Reactive Probes Thiol-Reactive Probes

Fluorescent Probes

General fluorescent probes

target

probe

+

Page 47: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Fluorescent Probes

Organelle-specific fluorescent probes

Mitochondrion-Selective Probes

Page 48: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Fluorescent Probes

Genetically encoded fluorescent probes

Green fluorescent protein (GFP)

target GFPcDNA

vector

expression

Page 49: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Ca2+ Measurements in Cells

Page 50: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Ca2+ Measurements in Cells

Cameleon protein• Fluorescent indicators for measuring Ca2+ concentration.

- Energy donor : ECFP

ECFP EYFPCaM M13

440 nm 475 nm

ECFP

EYFP440 nm

530 nm

- Energy acceptor : EYFP

- Linker : calmodulin (CaM) + calmodulin-binding peptide M13 (myosin light chain kinase)

+4Ca2+

-4Ca2+

Page 51: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Ca2+ Measurements in Cells

Cameleon protein

Energy transfer efficiency Ca2+ concentration

Page 52: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Ca2+ Measurements in Cells

Ca2+ propagation in cells

HeLa cells are stimulated with histamine

Page 53: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Ca2+ Measurements in Cells

Ca2+ propagation in cells

Page 54: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Nucleocytoplasmic Shuttling of MAPK

Page 55: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Nucleocytoplasmic Shuttling of MAPK

MAPK cascades

The Mitogen-activated Protein Kinase (MAPK) Cascades

Page 56: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Nucleocytoplasmic Shuttling of MAPK

Fused protein

MAPK

Dronpa

MAPK-Dronpa is initially distributed throughout the cytosol and nucleus.

Dronpa : GFP-like fluorescent protein

COS7 cells

Page 57: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Nucleocytoplasmic Shuttling of MAPK

Photoswitching of Dronpa

Intense excitation at 488 nm changes Dronpa to the dim state but even weak irradiation at 400 nm restores it to the bright deprotonated form.

Fluorescence could be switched on and off repeatedly.

Page 58: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Nucleocytoplasmic Shuttling of MAPK

Monitoring the nuclear import and export of MAPK

C ►N

N ►C

Page 59: K.U.LEUVEN Johan Hofkens Satoshi Habuchi Laboratory of Photochemistry and Spectroscopy Katholieke Universiteit Leuven - Belgium Theories and methods to.

Nucleocytoplasmic Shuttling of MAPK

Monitoring the nuclear import and export of MAPK

Only the nuclear accumulation of MAPK is confirmed by the normal fluorescence images.

The acceleration of the bidirectional flow of MAPK across the nuclear envelope is vidualized by reversible protein highlighting.