KS40602 State Space Modeling

download KS40602 State Space Modeling

of 25

Transcript of KS40602 State Space Modeling

  • 8/9/2019 KS40602 State Space Modeling

    1/25

    KS40602/kent

    The state vpowerfulanalysis asystems.design of tcan be carmethod1. Linear s2. Non-lin3. Time in4. Time va5. Multiploutput syst The statemodern aeasier forcomputers.method othe transf system.

    The drawfunctionare,1. Transfeunder zero2. Tranapplicableinvariant s3. Transferestrictedsingle outp

    4. Doeinformatiointernal sta

    Transfer F1. Inp2. Ou

    State Spac

    1. Inp

    2. Ou3. Sta

    1.1

    eo/0809(2)

    ariable apptechniqued designThe analhe followinied using s

    stemar systemariant syst

    rying systeinput an

    em.

    space analpproachnalysis usi

    The conanalysis

    r functio

    acks in thodel and

    functioninitial confer fun

    to linestems.function

    to singleut systems.

    s notregard

    te of the sy

    nction:utput

    :uts

    putse Variable

    Introdu

    roach is afor the

    f controlysis andg systemstate space

    m

    multiple

    ysis is and alsog digital

    ventionalemploys

    of the

    transferanalysis

    is defineditions.tion isar time

    nalysis isinput and

    provideing thestem.

    tion

    1.1.1 Ove The usesystems iform and

    Models oterms of such as st Such morepresent One advnonzero iinvestigat In additipreferablcondition In contraspace mo Time-doare largeldesign sc In pole psystem p If all thereduces t If someobserver

    The sepathe full-smatrix.

    The statesystems.can be ca In thisvariablesvariables

    are neithvariables.

    rview

    f transfers suitablewhen the

    f real systetate varia

    ored energi

    els are putd in matri

    ntage of nitial conded.

    n, for hibecause

    ing than th

    st to an inel contain

    ain contry based oeme.

    lacement,les are pla

    states arethe comp

    f the statan be cons

    ation prinate feedba

    variablehe analys

    ried on mu

    ethod of represent

    that do not

    r measura

    functions then theodel order

    s are usules that coes.

    in the statenotation.

    he state-sitions on th

    h-order sit is lestransfer fu

    put-outputinformati

    l design mutilizing

    primaryed at speci

    availabletation of a

    s are nottructed.

    iple allowck-gain m

    analysis cis can be cltiple input

    nalysis, itphysicalrepresent

    le nor ob

    representodel is givis low.

    lly derivedrespond to

    space form

    ace forme system r

    stems, thesuscepti

    nction for

    transfer-fun on the in

    ethods usithe interna

    esign techfic location

    for feedbastatic feed

    measurable

    for indeptrix and t

    n be applrried withand multip

    is not nequantitieshysical qu

    ervable m

    State Sp

    State Sp

    linear, tien in the i

    from physidentifiabl

    and can b

    is that thesponse ca

    state spale to nu.

    ction modternal state

    g state spl states as

    ique, thes in the z-p

    k control,ack-gain m

    , a state e

    ndent come state-esti

    ied for aninitial conle output s

    essary thaof the sy

    antities and

    y be chos

    ce Modeling

    ce Modeling

    e invariantput-output

    ical laws inquantitie

    compactly

    effects obe readily

    e form ierical ill-

    el, a state-.

    ace modelpart of the

    losed loolane.

    the designatrix.

    stimator o

    putation omator gain

    y type of itions andstems.

    the statestem, butthose that

    n as state

    1

    1

  • 8/9/2019 KS40602 State Space Modeling

    2/25

    KS40602/kent

    1.2

    eo/0809(2)

    State M del

    1.2.1 Stat The stat(knownvariables

    0t t , c

    0t t > . Insystem at

    In the staconsistsspace repFig. 1.1.

    States var

    Input vari

    Output v

    The diff (column

    The statenumber o

    xdt

    dx1

    1 = &

    xdt

    dx2

    2 = &

    M

    nn x

    dt

    dx = &

    e Space F

    of a dyns state vaat 0t t = tompletely

    another wany time i

    e variablef m-inputs

    resentation

    iables

    ables

    riables

    Fig. 1.1 St

    rent variaatrix) as s

    variable ref first order

    ( x x f ,, 211

    ( x x f , 212=

    (n x x f , 21=

    rmulation

    amic systeriables) suether with

    etermines

    ord, a setstant are c

    ormulation, p-outputsof the syst

    = 1 x

    = 1u

    = 1 y

    te space re

    bles mayhown belo

    resentatiodifferentia

    n x x ;,.........3

    n x x ,........., 3

    x x ,........., 3

    is a mih that ththe knowl

    the behavi

    of variablelled state

    of a systeand n-stat

    m may be

    ),(),( 2 xt xt

    ),(),( 2 ut ut

    ),(),( 21 yt yt

    presentatio

    be repres.

    can be arrl equations

    uuu ,, 321

    uuu ,,; 21

    uuu ,,; 21

    State Sp

    State Sp

    imal setknowled

    edge of th

    or of the

    s which dariables.

    , in genere variablevisualized

    ).........( xt n).........(3 ut m).........(3 yt

    of a syste

    nted by t

    anged in thas shown b

    )mu,.........

    )mu,.........3

    )mu,.........3

    ce Modeling

    ce Modeling

    f variablee of theseinputs fo

    system fo

    scribes the

    l, a system. The states shown in

    )(t

    )(t

    )(t

    he vector

    e form of nelow.

    (1.1)

    2

    2

  • 8/9/2019 KS40602 State Space Modeling

    3/25

    State Space Modeling 3

    State Space Modeling 3 KS40602/kenteo/0809(2)

    The n numbers of differential equations may be written in vectornotation as

    ( ))(),()( t t f t UXX =& (1.2)

    The set of all possible values which the input vector )(t U canhave (assume) at time forms the input space of the system.

    Similarly, the set of all possible values which the output vector)(t Y can assume at time t forms the output space of the system

    and the set of al possible values which the state vector )(t X canassume at time t forms the state space of the system.

    1.2.2 State Space Model of Linear System

    The state model of a system consists of the state equation andoutput equation. The state equation of a system is a function of state variables and inputs as defined by Eqn. (1.2).

    For linear time invariant systems the first derivatives of statevariables can be expresses as a linear combination of statevariables and inputs.

    mmnn ububub xa xa xa x 121211112121111 .................. +++++=&

    mmnn ububub xa xa xa x 222212122221212 .................. +++++=& M

    mnmnnnnnnnn ububub xa xa xa x .................. 22112211 +++++=&

    (1.3)where the coefficients ija and ijb constants.

    In the matrix form the above equations can be expressed as

    +

    =

    mnmnn

    m

    m

    m

    nnnnn

    n

    n

    n

    n u

    u

    u

    u

    bbb

    bbb

    bbb

    bbb

    x

    x

    x

    x

    aaa

    aaa

    aaa

    aaa

    x

    x

    x

    x

    M

    LL

    MLLMM

    LL

    LL

    LL

    M

    LL

    MLLMM

    LL

    LL

    LL

    &

    M

    &

    &

    &

    3

    2

    1

    21

    33231

    22221

    11211

    3

    2

    1

    21

    33231

    22221

    11211

    3

    2

    1

    (1.4)

    The matrix Eqn. (1.4) can also be written as)()()( t Bt At UXX +=& (1.5)

    The equation )()()( t Bt At UXX +=& is called the state equation of Linear Time Invariant (LTI) system.

  • 8/9/2019 KS40602 State Space Modeling

    4/25

    State Space Modeling 4

    State Space Modeling 4 KS40602/kenteo/0809(2)

    The output at any time, )(t Y is the function of state variables andinputs.

    ( ))(),()( t t f t UXY = (1.6)

    Hence the output variables can be expressed as a linearcombination of state variables and inputs.

    mmnn ud ud ud xc xc xc y 121211112121111 .................. +++++=

    mmnn ud ud ud xc xc xc y 222212122221212 .................. +++++= M

    mnmnnnnnnnn ud ud ud xc xc xc y .................. 22112211 +++++=(1.7)

    where the coefficients ijc and ijd constants.

    In the matrix form the above equations can be expressed as

    +

    =

    m pm p p

    m

    m

    m

    n pn p p

    n

    n

    n

    n u

    u

    u

    u

    d d d

    d d d

    d d d

    d d d

    x

    x

    x

    x

    ccc

    ccc

    ccc

    cac

    y

    y

    y

    y

    M

    LL

    MLLMM

    LL

    LL

    LL

    M

    LL

    MLLMM

    LL

    LL

    LL

    M3

    2

    1

    21

    33231

    22221

    11211

    3

    2

    1

    21

    33231

    22221

    11211

    3

    2

    1

    (1.8)

    The matrix Eqn. (1.8) can also be written as)()()( t Dt C t UXY += (1.9)

    The equation )()()( t Dt C t UXY += is called the output equationof Linear Time Invariant (LTI) system.

    The state model of a system consists of state equation and outputequation. The state equation and output equation together calledas state model of the system.

    Hence the state model of a linear time invariant system (LTI)system is given by the following equations.

    )()()( t Bt At UXX +=& State equation)()()( t Dt C t UXY += Output equation

  • 8/9/2019 KS40602 State Space Modeling

    5/25

    KS40602/kent

    State Diag1. Block D2. Signal F

    1.3

    eo/0809(2)

    am:iagramlow Graph

    State Di gram

    1.3.1 Ele The pictcalled steither in

    The statevariablesvariables.directly f this diagrcomputer The s-dofunctionrelationdomain estate diag The statebasic ele Scalar : Tinput sig

    )(t ax .

    Adder : Tof the ad Integratare usedstate variadded by

    The timeshown insignal flo

    ents of St

    rial represte diagralock diagr

    diagramand provThe time

    om the diam can bes.

    ain stateof the sysetween ti

    quations cram).

    diagraments Scala

    he scalar ial )(t x is

    he adder iser is the su

    r : The into integratebles. The

    using an a

    domain aFig. 1.2.

    w graph ar

    Fig. 1.

    ate Diagra

    ntation of . The statm form or

    escribes tides physi

    domainferential eused for si

    diagram ctem. The

    e domaian be dire

    f a stater, Adder an

    used to multiplied

    used to adm of incom

    grator is uthe deriva

    initial condder after in

    d s-domaihe time dshown in

    2: Element

    m

    the statediagram

    in signal fl

    e relational interprtate diagruation govmulation o

    n be obtaistate diagr

    and s-dtly obtain

    odel is cd Integrato

    ltiply a siy the scal

    two or ming signals

    sed to intetives of stitions of thtegrator.

    elementsmain andig. 1.3.

    of Block

    State Sp

    State Sp

    odel of thof the systw graph f

    hips amonetations om may b

    erning thef the syste

    ned from tam providmain. (i.e.d from th

    nstructed.

    nal by a cr a to give

    re signals..

    grate the ste variablee state vari

    of block s-domain

    iagram

    ce Modeling

    ce Modeling

    system iem can berm.

    g the statethe state

    e obtainedsystem and

    in analog

    he transfes a direct

    , the time s-domain

    using three

    nstant. Thethe output

    The output

    ignal. Theyto get the

    able can be

    iagram arelements o

    5

    5

  • 8/9/2019 KS40602 State Space Modeling

    6/25

    KS40602/kent

    The state

    invariant sequations.

    )( At XX =&

    State equat

    )( C t XY =Output equ

    eo/0809(2)

    odel of li

    stem is gi

    )()( t Bt U+ion

    )()( t Dt U+ation

    near time

    en by the

    1.3.1 Mo The blocis shownrepresent

    In stateequationsn-numbernumbers

    Thereforedraw n-nas first dintegrator

    Fig. 1.3:

    el of Bloc

    time domin Fig 1.tion of the

    Fig. 1.4

    Fig. 1.5:

    pace modare forme

    s of firstf integrato

    the firstmbers of i

    erivativess is state v

    Elements

    Diagram

    in diagram. and thesystem is s

    : Block Di

    ignal Flow

    ling, n-nufor a nth

    derivativesrs.

    tep in conntegrators.f state va

    riables.

    f Signal Fl

    and Signa

    representatime dom

    hown in Fi

    gram of St

    Graph of

    mbers of rder syste, the state

    structing tMark the iriables and

    State Sp

    State Sp

    ow Graph

    l Flow Gra

    tion of thein signal1.5.

    te Model

    tate Model

    irst order. In orderdiagram

    e state dinput to the

    so the ou

    ce Modeling

    ce Modeling

    ph

    state modelflow graph

    differentialto integraterequires n-

    gram is tintegrator

    tput of the

    6

    6

  • 8/9/2019 KS40602 State Space Modeling

    7/25

    State Space Modeling 7

    State Space Modeling 7 KS40602/kenteo/0809(2)

    If initial conditions are given, then they can be added at theoutput of integrators using adders.

    In each state equation, the first derivative of state variable isexpressed as a function of state variables and inputs.

    Therefore from the knowledge of a state equation, the statevariables and inputs are multiplied by appropriate scalars andthen added to get the first derivative of a state variable.

    Now, the first derivative of the state variable is given as input tothe corresponding integrator. Similarly the input of all otherintegrators is obtained by considering the state equations one byone.

    Each output equation is a function of state variables and inputs.Therefore from the knowledge of an output equation, the statevariables and inputs are multiplied by appropriate scalars andthen added to get an output. Similar procedure is followed togenerate all other outputs.

  • 8/9/2019 KS40602 State Space Modeling

    8/25

    KS40602/kent

    Advantage1. Stateutilized f feedback.

    2. Designfeedback forward.

    3. Solutiogives tivariables.

    Disadvant1. Solutiomay beco

    1.4

    eo/0809(2)

    :variablesr the pu

    with statbecomes

    n of statee varia

    ge:n of statee a difficul

    State Sp

    can berpose of

    variablestraight

    equationtion of

    equationt task

    ace Rep In state sis arbitraphysical

    The physin the R,systemsadvantagthe syste 1. The sta

    2. The ibecomes

    3. The sowhich ha The dravariablesdifficult t In stateequationsthe systeobtained

    using theThe basicthe fundUsing theof the systhe electcurrent laor Kirchhnetwork.and C are

    Fig.

    esentati

    ace modely. One of ariables.

    ical variabland C ele

    are displs of choosas state v

    te variable

    plementattraight for

    lution of ste direct rel

    back inis that the

    ask.

    space moare obtain. The di

    from a bas

    fundamentmodel of mental el

    se elementtem is draical systew equationoffs voltaThe currengiven in Fi

    1.6: Curre

    on usin

    ing of systhe possibl

    s of electriments. Thecement,ing the phriables are

    can be util

    ion of desard.

    te equatioevance to t

    hoosing tsolution

    eling usid from th

    ferential eic model o

    l elementsn electricaements Res the electrn. Then ths can be

    s by choose law by c

    t-voltage rg. 1.6.

    t-Voltage

    Physica ms, the cchoices o

    cal systemphysical velocity asical varisummarize

    ized for th

    ign with st

    gives timhe physical

    he physicf state eq

    g physicadifferenti

    uations gf the syste

    of the systsystem ca

    sistor, Caical networ

    differentiformed b

    ing variouoosing valation of t

    elation in

    l VariablState Sp

    State Sp

    oice of staf state vari

    are currenariables of d accelerbles (or qd as below.

    purpose o

    ate variabl

    variationsystem.

    l quantitiation may

    l variablesl equationverning a

    m which i

    m.be obtain

    acitor ank or equival equation

    writingnodes in t

    ious closede basic ele

    lectrical S

    es ce Modeling

    ce Modeling

    e variableables is the

    t or voltagemechanicalation. Theantities) o

    feedback.

    e feedback

    f variable

    s as statebecome

    , the stategoverning

    system aredeveloped

    d by usingInductor.

    lent circuitgoverning

    Kirchhoffhe network path in the

    ments R,

    ystem

    8

    8

  • 8/9/2019 KS40602 State Space Modeling

    9/25

    KS40602/kent

    eo/0809(2)

    A minimstate modelectricalelements.

    The enerphysicalstate varidifferenticonstitute The inputsources.currents idissipatinvariables

    ExampleObtain th1.1.1 by c

    SolutionLet the th

    quantitiesLet the in At node

    21++ ii

    1 + x x

    3 x =&

    l numberel of the ssystem ar

    y storage evariables iables andl equatio

    s the state

    s to the syhe output

    n energy dg elementcan be any

    1.1e state mohoosing mi

    Fig. 1.1.1

    1.1ree state v

    as 11 i x = ;put variabl

    , apply Ki

    0=dt

    dv c

    03 =+ xC &

    111

    xC

    xC

    f state varistem. The

    e currents

    lements arthe diffe

    the equatins. Thesequation of

    stem are ein electric

    issipatingin electricvoltage or

    del of thenimal num

    Electrical

    riables 1 x ,

    22 i x = ;)(t eu = , i

    chhoffs C

    2

    ables are cbest choicand volta

    inductancential equns are rea

    set of the system.

    citing voltal systemlement. Tl network.urrent in t

    electrical nber of state

    Network E

    2 x and 3 x

    cv x =3 .nput to the

    rrent Law

    State Sp

    State Sp

    osen for os of statees in ene

    and capactions arerranged asirst order

    age sourcere usuallye resistancIn generale network.

    etwork shvariables.

    xample 1.1

    be related

    system.

    ce Modeling

    ce Modeling

    taining theariables ingy storage

    itance. Theeplaced byfirst ordeequation

    or currentvoltages oe is energythe output

    wn in Fig.

    to physical

    (1.1.1)

    (1.1.2)

    9

    9

  • 8/9/2019 KS40602 State Space Modeling

    10/25

    KS40602/kent

    eo/0809(2)

    At 1 st loo

    Rit e + 11)(

    1 xu +

    x1 =&

    At 2 nd lo

    L Ri + 222

    22 R x

    2 x =&

    Arrangin

    x

    x x

    =

    3

    2

    1

    &

    &&

    Let choosvariables

    1 x y =

    Arrangin

    =

    2

    1

    y

    y

    , apply Ki

    dt di

    L =+ 11

    111 x L =+ &

    L

    x

    L

    R

    1

    1

    1

    1 1+

    p, apply Ki

    cvdt

    di =2

    322 x x L =&

    22

    2

    2 1 L

    x L

    R +

    the state e

    C C

    L R

    L R

    11

    0

    0

    2

    21

    1

    e the voltawhich den

    11 R ; 2 y =

    the state e

    2

    1

    2

    1 0

    x

    x

    R

    chhoffs V

    cv

    3 x

    u

    L

    x1

    31

    rchhoffs

    3 x

    quations in

    x

    x x

    L

    L

    0

    1

    1

    3

    2

    1

    2

    1

    es across tted by 1 y

    22 R

    quations in

    oltage Law

    oltage La

    matrix for

    [u L

    +0

    0

    1

    1

    e resistanc

    11 Ri ; 2 y

    matrix for

    State Spa

    State Spa

    ,

    ,

    ,

    es as the o

    22 Ri= .

    ,

    e Modeling 1

    e Modeling 1

    (1.1.3)

    (1.1.4)

    (1.1.5)

    (1.1.6)

    (1.1.7)

    tput

    (1.1.8)

    0

    0

  • 8/9/2019 KS40602 State Space Modeling

    11/25

    KS40602/kent

    eo/0809(2)

    ExampleObtain th1.2.1 by c

    SolutionLet the stLet the in

    Let the o Connect

    Convert t

    At node 1

    21 + R

    vv

    1 R

    x x

    1 x =&

    1.2e state mohoosing 1v

    Fig. 1.2.1

    1.2te variable

    put variabl

    tput variab

    voltage so

    he voltage

    , apply Kir

    01 =dt dv

    C

    01 =+ xC &

    1

    11C

    xCR

    +

    del of the)(t and (2v

    Electrical

    s )(11 t v x = )(t vu = .

    le 1 )(t v y =

    urce at the

    ource to th

    hhoffs C

    2 x

    electrical n)t as state

    Network E

    ; 22 v x =

    1 x= .

    input.

    e current s

    rrent Law,

    State Spa

    State Spa

    etwork shariables.

    xample 1.2

    )t .

    urce.

    e Modeling 1

    e Modeling 1

    wn in Fig.

    (1.2.1)

    (1.2.2)

    1

    1

  • 8/9/2019 KS40602 State Space Modeling

    12/25

    KS40602/kent

    eo/0809(2)

    At node

    R

    vv 12 +

    R

    x x 2

    x2 =&

    Arrangin

    x

    x

    =

    2

    1

    &

    &

    The outp

    Arrangin

    [= 01 y

    , apply Kir

    dt

    dvC

    R

    v 22 +

    C R

    x ++ 21 &

    C x

    CR1

    1

    the state e

    C CR

    CRCR

    21

    11

    t 1 )(t v y =

    the state e

    ]

    2

    1

    x

    x

    hhoffs C

    Rt v )(=

    Ru=

    2

    CR x 12 +

    quations in

    x

    x

    +

    2

    1

    1 x= .

    quations in

    rrent Law,

    matrix for

    [ ]u R

    10

    matrix for

    State Spa

    State Spa

    ,

    ,

    e Modeling 1

    e Modeling 1

    (1.2.3)

    (1.2.4)

    (1.2.5)

    (1.2.6)

    2

    2

  • 8/9/2019 KS40602 State Space Modeling

    13/25

    KS40602/kent

    Advantage1. The statdirectly f from thegoverning

    2. The pha link bfunction dtime doma

    Disadvant1. The phphysical vand theref for measupurpose.

    1.5

    eo/0809(2)

    :space mo

    rmed byifferentialhe system.

    se variabltween theesign apprin design a

    ge:se variablriables of tre are not

    rement an

    State Sp

    el can beinspectionequations

    s providetransfer

    oach andproach.

    s are nothe systemavailable

    control

    ace Rep The phaswhich arderivativ Usually tstate vari The statethe systetransfer f There arvariables

    1.5.1 Pha Considerrelating t

    ya ynn

    +&&

    )1(

    1

    By choos

    )1(

    3

    2

    1

    =

    ===

    n

    n y x

    y x

    y x y x

    &

    M

    &&

    &

    Substitutigovernin

    xa xnn

    +1

    &

    xn =& The state

    a x

    x x

    x x

    x x

    n

    nn

    ==

    ==

    1

    1

    32

    21

    &

    &

    M

    &

    &

    esentati

    variablesobtained

    s.

    e variablebles are th

    model usinmodel is

    nction for

    three mand they ar

    se Variabl

    the folloe output y

    yan

    ++&

    )2(

    2

    ing the out

    ng the stthe syste

    xan

    ++12

    xa xa n 21

    equations

    xa nn

    12

    on usin

    are definedfrom one

    used is then derivati

    g phase vaalready kn

    .

    thods of e explained

    es Method

    ing nth o)(t to the i

    a n+ &L 2

    ut y and t

    n

    n y x && =

    te variabl, Eqn. (1.1

    xan

    +2

    L

    1 LL

    f the syste

    a n

    LL

    Phase V as those pof the sys

    system oues of the o

    iables canwn in the

    odelingin the foll

    1 (Bush-C

    der linearput )(t u o

    ya n ++ && 1

    heir derivat

    es in the),

    xan

    ++ 213

    a xa nn 32

    are

    xa x n

    132

    ariables State Spa

    State Spa

    rticular statem variab

    put and thtput.

    e easily differential

    system uwing secti

    ompanion)

    differentia system.

    bu yn =

    ives as stat

    differenti

    bu xan

    =1

    xa x n 121

    b xa n+

    1

    e Modeling 1

    e Modeling 1

    te variableles and it

    remaining

    termined iequation o

    sing phasens.

    l equation

    (1.10)

    variables,

    l equation

    bu

    u

    3

    3

  • 8/9/2019 KS40602 State Space Modeling

    14/25

    State Space Modeling 14

    State Space Modeling 14 KS40602/kenteo/0809(2)

    Arranging the state equations in the matrix form,

    [ ]u

    b x

    x

    x

    x

    x

    aaaaa x

    x

    x

    x

    x

    n

    n

    nnnnn

    n

    +

    =

    0

    0

    0

    0

    10000

    01000

    00100

    00010

    1

    3

    2

    1

    1321

    1

    3

    2

    1

    MM

    L

    L

    MMMMML

    L

    L

    &

    &

    M&

    &

    &

    (1.11) UXX B A +=&

    Matrix A (system matrix) has a very special form. It has all 1s inthe upper off-diagonal; its last row is comprised of the negativecoefficients of the original differential equation and all otherelements are zero. This form of matrix A is known as Bush formor Companion Form .

    Matrix B has the specialty that all its elements except the lastelement are zero. The output being 1 x y = , and the outputequation is given by

    [ ]

    =

    n x

    x

    x

    x

    y

    M

    LL3

    2

    1

    0001

    (1.12) XY C =

    The advantage in using phase variables for state space modelingis that the system state model can be written directly byinspection from the differential equation governing the system.

    Example 1.3

    Obtain the state model of the system with the transfer function

    12410

    )()(

    23 +++=

    ssssU sY

    using Phase Variables Method 1 (Bush-Companion).

    Solution 1.3

    Given that124

    10)()(

    23 +++=

    ssssU sY

    (1.3.1)

    ( ) )(10124)( 23 sU ssssY =+++ )(10)()(2)(4)( 23 sU sY ssY sY ssY s =+++ (1.3.2)

    Inverse Laplace Transform of Eqn. (1.3.2)u y y y y 1024 =+++ &&&&&& (1.3.3)

    UXY DC +=

    0=

    DQ

    XY C =

  • 8/9/2019 KS40602 State Space Modeling

    15/25

    State Space Modeling 15

    State Space Modeling 15 KS40602/kenteo/0809(2)

    Define state variables as follows, y x =1 ; y x &=2 ; y x &&=3

    Substitute 3 x y &&&& = ; 3 x y =&& ; 2 x y =& ; 1 x y = into Eqn. (1.3.3),

    u x x x x 1024 1233 =+++& u x x x x 1024 1233 +=&

    Hence, the state equations are

    21 x x =& ; 32 x x =& ; u x x x x 1024 1233 +=&

    Output equation is

    1 x y =

    The state model in the matrix form is

    [ ]u x

    x

    x

    x

    x

    x

    +

    =

    10

    00

    421

    100010

    3

    2

    1

    3

    2

    1

    &

    &

    &

    [ ]

    =

    3

    2

    1

    001

    x

    x

    x

    y

    1.5.2 Phase Variables Method 2 (Signal Flow Graph)

    Consider the following nth order linear differential equationrelating the output )(t y to the input )(t u of a system.

    ubububub

    ya ya ya ya ya y

    mm

    mm

    nnn

    nnn

    ++++=

    ++++++

    &LL&&

    &&&LL&&&

    1

    )1(

    10

    12

    )2(

    2

    )1(

    1 (1.13)

    Let n = m = 3, ubububub ya ya ya y 3210321 +++=+++ &&&&&&&&&&&& (1.14)

    Taking Laplace Transform of Eqn. (1.14) with zero initialcondition

    )()()()(

    )()()()(

    322

    13

    0

    322

    13

    sU bssU bsU sbsU sb

    sY assY asY sasY s

    +++

    =+++

    ( ) ( ) )()( 32213032213 sU bsbsbsbsY asasas +++=+++

    322

    13

    322

    13

    0

    )()(

    asasas

    bsbsbsbsU sY

    ++++++

    =

    +++=

    +++

    +++=

    33

    221

    3

    3

    2

    210

    33

    2213

    33

    221

    03

    11s

    a

    s

    a

    s

    as

    b

    s

    b

    s

    bb

    s

    a

    s

    a

    s

    as

    s

    b

    s

    b

    s

    bbs

    (1.15)

  • 8/9/2019 KS40602 State Space Modeling

    16/25

    KS40602/kent

    eo/0809(2)

    From thesystem is

    =sT 1)(

    where P

    The transwith thre

    1)(sT =

    Compari

    01 bP = ;

    sa

    P 111 =

    Hence, a1.7. Theloops are

    Let assigsignal floderivativequationsnodes, wvariables.

    Fig. 1

    Mansonsgiven by

    K

    K K P

    = path ga= 1 (su

    + (sumof two

    K = forK th for

    fer functiofeedback l

    ( 1211321

    PPPP

    +++

    g Eqn. (1.1

    s

    bP 12 = ;

    ; 12P =

    signal flosignal flowtouching l

    state variw graph. H

    of the sare formehose valu

    .7 Signal Fl

    gain form

    in of K th foof loop gaof gain pr

    non-touchihat part of ward path

    n of a systoops (touc

    )134

    PP+

    5) and (1.1

    22

    3 s

    bP = ;

    22

    s

    a; 13P =

    graph canis construops.

    ables at thence at thetate variab

    by summis corresp

    ow Graph

    ula, the tr

    ward pathin of all inducts of alg loops)

    the graph

    em with f ing each o

    7),

    33

    4 s

    bP = ;

    33

    s

    a

    be constrted such t

    output of input of e

    le will beng all the inds to fir

    f the Syste

    State Spa

    State Spa

    nsfer func

    ividual lool possible chich is not

    ur forwarher) is giv

    cted as shhat all K

    each integch integratavailable.

    ncoming sist derivati

    m with Eq

    e Modeling 1

    e Modeling 1

    tion of the

    (1.16)

    ps)ombination

    touching

    paths andn by

    (1.17)

    wn in Fig.1= and all

    rator in theor, the first

    The statenals to thee of state

    . (1.15)

    6

    6

  • 8/9/2019 KS40602 State Space Modeling

    17/25

    KS40602/kent

    eo/0809(2)

    Summing

    a x 11 (=& x1 =& Summing

    a x 22 =& x2 =& Summing

    a x 33 (=& x2 =&

    The outpoutput no x y 1= Arrangin

    x

    x

    x

    =

    3

    2

    1

    &

    &

    &

    [ y 01=

    up the inc

    ub x 01 ) ++ x x 211 ++

    up the inc

    ub x 01 ) ++ x x 312 ++

    up the inc

    ub x 01 ) ++b x ( 313 +

    t equationde.

    ub0

    the state e

    a

    a

    a

    3

    2

    1

    00

    10

    01

    ] x

    x

    x

    3

    2

    1

    0 +

    ming sign

    ub x 12 + ubab )011

    ming sign

    ub x 23 + bab )( 022

    ming sign

    u3 uba )03

    is given by

    quations a

    b

    b

    b

    x

    x

    x

    +

    3

    2

    1

    3

    2

    1

    u0

    ls at node

    ls at node

    ls at node

    the sum of

    d output e

    [ ]uba

    ba

    ba

    03

    02

    01

    State Spa

    State Spa

    1 x&

    2 x&

    3 x&

    incoming s

    uation in

    e Modeling 1

    e Modeling 1

    (1.18)

    (1.19)

    (1.20)

    ignals to

    (1.21)

    atrix form,

    (1.22)

    (1.23)

    7

    7

  • 8/9/2019 KS40602 State Space Modeling

    18/25

    KS40602/kent

    eo/0809(2)

    Consider= n is giv

    x

    x

    x

    x

    n

    n

    =

    1

    2

    1

    &

    &

    M

    &

    &

    [ y 01=

    ExampleObtain th

    )()( =

    ssU sY

    using Pha Solution

    Given tha

    )()(

    sU sY

    The signconstructconsistingraph wi

    22 s an

    Fig. 1.

    nth order dn below.

    a

    a

    a

    a

    n

    n

    1

    2

    1

    0

    0

    0

    1

    MM

    0 LL

    1.4state mod

    241023 ++ s

    se Variabl

    1.4

    t)()( =

    ssU sY

    +3 41

    1

    ss

    =4

    1

    1

    s

    l flow grd as shoof three

    l have thr

    d 31 s .

    .1 Signal F

    ifferential e

    0

    0

    1

    0

    LL

    LL

    M

    LL

    LL

    ] b

    x

    x

    x

    x

    n

    3

    2

    1

    0 +

    M

    el of the sy

    1+

    s Method

    241023 ++ s

    +

    32

    120

    ss

    32

    3

    12ss

    s

    ph for then in Fig.integratorse individu

    low Graph

    quation, th

    x

    x

    x

    x

    n

    n

    +

    1

    2

    1

    0

    1

    0

    0

    MM

    u0

    stem with t

    (Signal Fl

    1+

    above tra1.3.1 withand withal loops w

    of the Syst

    State Spa

    State Spa

    e general

    bab

    ab

    bab

    bab

    nn

    nn

    0

    11

    022

    011

    M

    he transfer

    w Graph).

    nsfer functa single fopath gainith loop g

    m with Eq

    e Modeling 1

    e Modeling 1

    odel for m

    [ ]u

    0

    (1.24)

    (1.25)

    unction

    (1.4.1)

    (1.4.2)

    ion can berward path

    310 s . Theins s4

    n. (1.4.2)

    8

    8

  • 8/9/2019 KS40602 State Space Modeling

    19/25

    KS40602/kent

    eo/0809(2)

    Assign ststate equthe inpucorrespon

    Hence, th

    114 x x =&

    12 2 x x =&

    x x 13 =&

    Output eq

    1 x y =

    The state

    x

    x

    x

    =

    3

    2

    1

    &

    &

    &

    [= 01 y

    1.5.3 Pha Considerrelating t

    bub

    ya ym

    nn

    +=

    +

    &

    &&

    10

    )1(

    1

    Let n = m a y 1+ &&&& Takingcondition

    )(

    )(3

    0

    3

    sU sb

    sY s +

    ate variabltions are ot of theding first d

    e state equ

    2 x+

    31 x+ u10

    uation is

    model in t

    001

    102

    014

    ]

    3

    2

    1

    0

    x

    x

    x

    se Variabl

    the folloe output y

    u

    yam

    n

    +

    ++

    LL&

    &

    )1(

    )2(

    2

    = 3,a ya 32 ++ &&

    aplace Tr

    )(

    )(2

    1

    21

    sU sb

    sY s

    +

    +

    s at the obtained by

    integratorerivative o

    tions are

    e matrix fo

    [ x

    x

    x

    +

    10

    0

    0

    3

    2

    1

    es Method

    ing nth o)(t to the i

    bub

    a

    m

    n

    ++

    +

    &

    &L

    1

    2

    bub y 0 += &&&

    ansform o

    )(

    )(

    2

    2

    ssU b

    assY

    +

    +

    tput of thsumming t

    and eqthe state v

    rm is

    ]u

    3 (Pole-Ze

    der linearput )(t u o

    u

    ya n ++ && 1

    bubu 21 ++ &&&

    Eqn. (1.

    )(

    )(

    3 sU b

    sY =

    State Spa

    State Spa

    integratoe incomin

    uating theariable.

    ro)

    differentia system.

    yn

    u3

    27) with

    e Modeling 1

    e Modeling 1

    (1/s). Thesignals t

    m to the

    l equation

    (1.26)

    (1.27)

    ero initial

    9

    9

  • 8/9/2019 KS40602 State Space Modeling

    20/25

    State Space Modeling 20

    State Space Modeling 20 KS40602/kenteo/0809(2)

    ( ) ( ) )()( 32213032213 sU bsbsbsbsY asasas +++=+++

    322

    13

    322

    13

    0

    )()(

    asasas

    bsbsbsb

    sU sY

    ++++++

    =

    Let)(

    )()()(

    )()(

    1

    1

    s X sY

    sU s X

    sU sY =

    where32

    21

    31 1

    )()(

    asasassU

    s X +++

    = (1.28)

    and 322

    13

    01 )(

    )(bsbsbsb

    s X sY +++= (1.29)

    Rearranging Eqn. (1.28),[ ] )()( 322131 sU asasass X =+++

    )()()()()( 131212113 sU s X assX as X sas X s =+++ (1.30)

    Inverse Laplace Transform of Eqn. (1.30)u xa xa xa x =+++ 1312111 &&&&&& (1.31)

    Let the state variables be 1 x , 2 x and 3 x ,

    where 12 x x &= ; 123 x x x &&& == ; 123 x x x &&&&&& ==

    Substitute into Eqn. (1.31)

    u xa xa xa x =+++ 1322313& u xa xa xa x += 1322313&

    Hence, the state equations are21 x x =& ; 32 x x =& ; u xa xa xa x += 1322313&

    Rearranging Eqn. (1.29),)()()()()( 13121

    211

    30 s X bssX bs X sbs X sbsY +++= (1.32)

    Inverse Laplace Transform of Eqn. (1.32)13121110 xb xb xb xb y +++= &&&&&& (1.33)

    Substitute the state variables into Eqn. (1.33)13223130 xb xb xb xb y +++= & (1.34)

    Substitute u xa xa xa x += 1322313& into Eqn. (1.34)( ) 1322311322310 xb xb xbu xa xa xab y ++++=

    ( ) ( ) ( ) ub xbab xbab xbab y 0301120221033 +++= (1.35)

    Hence, the output equation is( ) ( ) ( ) ub xbab xbab xbab y 0301120221033 +++=

  • 8/9/2019 KS40602 State Space Modeling

    21/25

    State Space Modeling 21

    State Space Modeling 21 KS40602/kenteo/0809(2)

    Arranging the state equations and output equation in matrix form,

    [ ]u

    x

    x

    x

    aaa x

    x

    x

    +

    =

    1

    0

    0

    100

    010

    3

    2

    1

    1233

    2

    1

    &

    &

    &

    (1.36)

    [ ] ub x

    x

    x

    babbabbab y 0

    3

    2

    1

    011022033+

    = (1.37)

    Consider n th order differential equation, the general model for m = n is given below.

    [ ]u

    x

    x

    x x

    aaaa x

    x

    x x

    n

    n

    nnn

    n

    +

    =

    1

    0

    00

    1000

    00000010

    1

    2

    1

    121

    1

    2

    1

    MM

    LL

    LL

    MMMM

    LL

    LL

    &

    &

    M

    &

    &

    (1.38)

    [ ] ub

    x

    x

    x

    x

    babbabbabbab y

    n

    n

    nnnn 0

    1

    2

    1

    0110220110 +

    =

    ML

    (1.39)

    Example 1.5Obtain the state model of the system with the transfer function

    )3)(1()4(10

    )()(

    +++=sss

    ssU sY

    using Phase Variables Method 3 (Pole-Zero).

    Solution 1.5

    Given that)3)(1(

    )4(10)()(

    +++=sss

    ssU sY

    (1.5.1)

    Let)(

    )()()(

    )()(

    1

    1

    s X sY

    sU

    s X

    sU sY

    =

    where)3)(1(

    1)()(1

    ++=

    ssssU s X

    (1.5.2)

    and )4(10)(

    )(1

    += ss X

    sY (1.5.3)

  • 8/9/2019 KS40602 State Space Modeling

    22/25

    State Space Modeling 22

    State Space Modeling 22 KS40602/kenteo/0809(2)

    Rearranging Eqn. (1.5.2),)(34)( 231 sU ssss X =++

    )()(3)(4)( 112

    13 sU ssX s X ss X s =++ (1.5.4)

    Inverse Laplace Transform of Eqn. (1.5.4)u x x x =++ 111 34 &&&&&& (1.5.5)

    Let the state variables be 1 x , 2 x and 3 x ,

    where 12 x x &= ; 123 x x x &&& == ; 123 x x x &&&&&& ==

    Substitute into Eqn. (1.5.5)u x x x =++ 233 34&

    u x x x += 233 34&

    Hence, the state equations are21 x x =& ; 32 x x =& ; u x x x += 233 34&

    Rearranging Eqn. (1.5.3),)(40)(10)( 11 s X ssX sY += (1.5.6)

    Inverse Laplace Transform of Eqn. (1.5.6)

    11 4010 x x y += & (1.5.7)

    Substitute the state variables into Eqn. (1.5.7)

    12 4010 x x y += (1.5.8)

    Hence, the output equation is

    12 4010 x x y +=

    Arranging the state equations and output equation in matrix form,

    [ ]u x

    x

    x

    x

    x

    x

    +

    =

    1

    0

    0

    430

    100

    010

    3

    2

    1

    3

    2

    1

    &

    &

    &

    [ ]

    =

    3

    2

    1

    01040

    x

    x

    x

    y

  • 8/9/2019 KS40602 State Space Modeling

    23/25

    KS40602/kent

    1.6

    eo/0809(2)

    State Sp ace Rep 1.6.1 Ca In canonidiagonalthe transf By Partiathe n th or

    bsU sY =

    )()(

    where C 1denomin

    The Eqn.

    = bsU sY

    )()(

    b=

    Hence,

    )( 0bsY =

    L

    The bloc

    Fi

    esentati

    onical Fo

    cal form omatrix. Thr function

    l fraction eer system

    s

    C

    ++

    +1

    1

    C C LL,, 2tor polyno

    (1.40) can

    +

    +

    ss

    C

    1 11

    s

    sC

    ++

    1 11

    0

    (111

    1)(s

    ++

    ++

    L

    diagram o

    g. 1.7: Blo

    on usin

    m

    state modelements

    of the syste

    pansion, tan be expr

    s

    C

    ++

    L2

    2

    n are residuial (or pol

    be rearrang

    +

    +

    s

    C

    1

    2

    s

    sC

    ++1 2

    2

    ( )

    )

    11

    11

    C ss

    C ss

    nn

    f Eqn. (1.4

    k Diagram

    Canoni

    l, the syston the diam.

    e transferssed as sh

    n

    n

    s

    C +

    +L

    es and ,1es of the sy

    d as belo

    + 2

    LL

    s

    sC

    n

    n

    +

    +1

    L

    )(

    1)(1

    sU

    sU

    +

    ) is shown

    of Canoni

    al VariaState Spa

    State Spa

    m matrixonal are t

    function Y wn in Eqn

    n LL,2

    stem).

    .

    +

    ss

    C

    n

    n

    1

    ( )11

    2ss

    +

    in Fig. 1.7.

    al State M

    les e Modeling 2

    e Modeling 2

    will bee poles o

    )() sU s o

    . (1.40).

    (1.40)

    are roots o

    )(2 sU C +

    (1.41)

    del

    3

    3

  • 8/9/2019 KS40602 State Space Modeling

    24/25

    State Space Modeling 24

    State Space Modeling 24 KS40602/kenteo/0809(2)

    Assign state variables at the output of integrator. The input of theintegrator will be the first derivative of state variable.

    The state equations are formed by adding the incoming signals tothe integrator and equating to first derivative of state variable.

    The state equations are,

    u x x

    u x x

    u x x

    nnn+=

    +=+=

    &

    M

    &

    &

    222

    111

    The output equation is,

    ub xC xC xC y nn 02211 ++++= LL

    The canonical form of the state model in the matrix form is givenbelow.

    [ ]u

    x

    x

    x

    x

    x

    x

    x

    x

    n

    n

    n

    n

    n

    n

    +

    =

    1

    1

    1

    1

    000

    000

    000

    000

    1

    2

    1

    1

    2

    1

    1

    2

    1

    MM

    LL

    LL

    MMMM

    LL

    LL

    &

    &

    M

    &

    &

    (1.42)

    [ ] ub

    x

    x

    x

    x

    C C C C y

    n

    n

    nn 0

    1

    2

    1

    121+

    =

    MLL (1.43)

    The advantage of canonical form is that the state equations areindependent of each other. The disadvantage is that the canonicalvariables are not physical variables and so they are not availablefor measurement and control.

    Advantage:

    1. State equations independentto each other.

    Disadvantage:1. Not measurable

  • 8/9/2019 KS40602 State Space Modeling

    25/25

    n

    ExampleObtain th

    )()( =

    ssU sY

    using Ca Solution

    Given tha

    By partial

    4)()( =

    sU sY

    )(sY =

    Fig. 1. Assign stFig. 1.6.1state variby addincorrespon The state

    The outp

    The state

    x

    x

    x

    =

    3

    2

    1

    &

    &

    &

    1.6state mod

    3)(1()4(10

    +++ss

    s

    onical Var

    1.6

    t)()( =

    ssU sY

    fraction e

    11530+

    ss

    3401 U

    s

    .1: Block

    ate variabl. At the inbles willincoming

    ding first d

    equations

    t equation

    model in t

    30

    01

    00

    el of the sy

    ) iables.

    3)(1()4(10

    +++ss

    s

    pansion Y

    335

    +s

    11

    1

    )

    s

    ss

    +

    iagram of

    s at the ouut of the ine availablesignals toerivative o

    re u x =1 ;&

    is3

    40 x y =

    e matrix fo

    [ x

    x

    x

    +

    1

    1

    1

    3

    2

    1

    stem with t

    )

    )() sU s ca

    (151

    U

    Eqn. (1.6.2

    put of thetegrator, th. The statehe integratthe state v

    x x += 22&

    21 15 x +

    rm is show

    ];

    = y

    State Spa

    he transfer

    n be expres

    11

    1

    )

    s

    s

    ++

    ) in Canoni

    integratorfirst deriv

    equations aor and equariable.

    xu =3 ; &

    3 x

    n as below.

    1530

    e Modeling 2

    unction

    (1.6.1)

    sed as

    )(35

    3sU

    (1.6.2)

    cal Form

    s shown inative of there obtainedating to the

    u x +3

    3

    2

    1

    35

    x

    x

    x

    (1.6.3)

    5