kneebiomechanic-120622054413-phpapp02

download kneebiomechanic-120622054413-phpapp02

of 114

Transcript of kneebiomechanic-120622054413-phpapp02

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    1/114

    Dr. Pukhrambam Ratan khuman (PT)

    M.P.T., (Ortho & Sports)

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    2/114

    introduction

    Participating bones

    Femur

    Tibia

    Patella

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 2

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    3/114

    Knee complex

    Tibio-femoral joint

    Patello-femoral joint

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 3

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    4/114

    Tibio-femoral/Knee joint

    Ginglymus(Hinge) ?

    A freely moving joint in which the bones are so

    articulated as to allow extensive movement in

    one plane. Arthodial(Gliding) ?

    6 degrees of freedom

    3 Rotations

    3 Translations

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 4

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    5/114

    Knee degree of freedom

    Rotations

    Flex/Ext1501400

    Varus/Valgus6080 in extension

    Int/ext rotation250300 in flexion

    Translations

    AP 5 - 10mm

    Compression/Distraction 2 - 5mm Medial/Lateral 1-2mm

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 5

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    6/114

    General Features of

    Tibio-femoral Joint Double condyloid knee joint is also referred to as

    Medial & Lateral Compartmentsof the knee.

    Double condyloid joint with 30 freedom ofAngular(Rotatory) motion.

    Flexion/Extension PlaneSagittal plane

    AxisCoronal axis

    Medial/lateral (int/ext) rotation PlaneTransverse plane

    AxisLongitudinal axis

    Abduction/Adduction PlaneFrontal plane

    AxisAntero-posterior axis.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 6

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    7/114

    Femoral articular surface

    Femur is proximal articular surface of the knee

    joint with large medial & lateral condyles.

    Because of obliquity of shaft, the femoral

    condyles do not lie immediately below the

    femoral head but are slightly medial to it.

    The medial condyle extend further distally, so

    that, despite the angulation of the femurs shaft,the distal end of the femur remains essentially

    horizontal.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 7

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    8/11413 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 8

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    9/114

    In sagittal plane - Condyles have a convex shape

    In the frontal plane - Slight convexity

    The lateral femoral condyle

    Shifted anteriorly in relation to medial Articular surface is shorter

    Inferiorly, the lateral condyle appears to be longer

    Two condyles are separated

    Inferiorly by Intercondylar notch

    Anteriorly by an asymmetrical, shallow groove called

    the Patellar Groove or Surface

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 9

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    10/11413 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 10

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    11/114

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    12/114

    9o

    The tibial plateaus are predominantly

    flat, but convexity at anterior &

    posterior margins

    Because of this lack of bony stability,

    accessory joint structures (menisci) are

    necessary to improve joint congruency.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 12

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    13/114

    Menisci of knee joint

    2 asymmetrical fibro cartilaginous joint diskcalled Menisci are located on tibial plateau.

    The medial meniscus is a semicircle & the

    lateral is 4/5 of a ring (Williams, PL, 1995).

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 13

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    14/114

    Both menisci are

    Open towards intercondylararea

    Thick peripherally Thin centrally forming

    cavities for femoral condyle

    By increasing congruence,

    menisci play in reducingfriction between the jointsegment & serve as shockabsorber.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 14

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    15/114

    Meniscal attachment

    Common attachment of medial & lateral

    Intercondylar tubercles of the tibia

    Tibial condyle via coronary ligaments

    Patella via patellomeniscal or patellofemoral ligament

    Transverse ligament between two menisci

    Anterior cruciate ligament (ACL)

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 15

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    16/114

    Meniscal attachment

    Unique attachment of medial menisci

    Medial collateral ligament (MCL)

    Semitendinous muscle

    Unique attachment of lateral menisci

    Anterior & posterior meniscofemoral ligament

    Posterior cruciate ligament (PCL)

    Popliteus muscle

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 16

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    17/11413 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 17

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    18/114

    Young children whose menisci have ample

    of blood supply have low incidence of injury

    In adult, only the peripheral vascularized

    region is capable of inflammation, repair &remodeling following a tearing injury.

    Menisci are well innervated with free nerve

    ending & 3 mechanoreceptors (Ruffinecorpuscle, Pacinian corpuscle & Golgi tendon organs)

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 18

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    19/114

    TF alignment & weight

    bearing force

    The anatomic/ longitudinal axis

    FemurOblique, directed inferiorly & medially

    TibiaDirected vertically

    The femoral & tibial longitudinal axis form an anglemedially at the knee joint of 18501900, i.e. 50100

    creating Physiological Valgus at knee

    In bilateral static stanceequal weight

    distribution on medial & lateral condyle

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 19

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    20/114

    Deviation in normal force distribution

    TF angle > 1900Genu Valgumcompress

    lateral condyle

    TF angle < 1800Genu Varumcompressmedial condyle

    Compressive force in dynamic knee joint

    23 time body weight in normal gait 56 time body weight in activities (like

    Running, Stair Climbing etc.)

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 20

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    21/114

    Knee joint capsule

    Joint capsule encloseTF & PF is large lax

    Outer portionfirmly attached to the inferioraspect of femur & superior portion of tibia.

    Posterior attachment Proximally to posterior margins of the femoral

    condyles and intercondylar notch.

    Distally to posterior tibial condyle.

    Anterior attachment

    SuperiorlyPatella, tendon of quadriceps muscles Inferiorly patellar tendon complete the anterior

    portion of the joint capsule.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 21

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    22/114

    The antero-medial & antero-lateral portions

    of the capsule, are often separately identified

    as the medial and lateral patellar

    retinaculae or together as the extensorretinaculum.

    The joint capsule is reinforced medially,

    laterally & posteriorly by capsular ligaments.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 22

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    23/114

    Extensor retinaculum

    2 layerssuperficial & deeper

    Deeper layer

    Connecting the capsule anteriorly to menisci &

    tibia via coronary ligament (known aspatellomeniscal or patellotibial band)

    Superficial layer

    Mixed with vastus medialis & lateralis muscle &distal continue to posterior femoral condyle

    (patellofemoral ligament)

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 23

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    24/114

    Synovial lining

    The intricacy of fibrous layercapsule is surpassed by itssynovial lining except posteriorly.

    Synovium adheres to anterioraspect & side to the ACL & PCL.

    Embryologically, the synoviallining of the knee joint capsule is

    divided by septa into 3 separatecompartment

    Superior patellofemoral compartment

    2 separate medial & lateraltibiofemoral compartment

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 24

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    25/114

    Ligament of knee joint

    Collateral ligament

    Medial collateral ligament (MCL)

    Lateral collateral ligament (LCL)

    Cruciate ligament Anterior cruciate ligament (ACL)

    Posterior cruciate ligament (PCL)

    Posterior capsular ligament

    Meniscofemoral ligament

    Iliotibial band

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 25

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    26/114

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 26

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    27/114

    MCL

    Attachment

    Originmedial aspect of medial femoralcondyle

    Insertionproximal tibia Function

    Resist valgus stress force (specially inextended knee)

    Check lateral rotation of tibia Also restrain anterior displacement of tibia

    when ACL is absent.

    MCL

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 27

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    28/114

    LCL

    Attachment

    Originlateral femoralcondyle

    Insertionposteriorly to head

    of fibula

    Function

    Resist varus stress force acrossthe knee

    Check combined lateralrotation with posteriordisplacement of tibia inconjunction with tendon of

    popliteal muscle.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 28

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    29/114

    Cruciate ligament

    Cruciate= Resembling a cross inLatin.

    Located within the joint capsule &

    are therefore calledIntracapsularLigaments.

    Cruciate ligament provide stability insagittal plane

    The ACL & PCL are centrallylocated within the capsule but lieoutside the synovial cavity.

    ACL

    PCL

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 29

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    30/114

    ACL

    Attachment

    Originfrom anterior surface the tibia in the

    intercondylar area just medial to medial meniscus.

    It spans the knee laterally to PCL & runs in a superior& posterior direction

    Insertionto posteriorly on lateral condyle of femur

    ACL is divided into 2 bands

    Antero-medial band (AMB)

    Postero-lateral band (PLB)

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 30

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    31/114

    Function of acl

    Primarily

    Check femur from being displaced posteriorly on the tibia

    Conversely, the tibia from being displaced anteriorly on femur.

    It tightens during extension, preventing excessive

    hyperextension of the knee.

    ACL carried 87% of load when anterior translatoryforce was applied to tibia with extended knee.

    Check tibial medial rotation by twisting around PCL

    ACL injury is common when knee is in flexed & tibiarotated in either direction

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 31

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    32/114

    PCL

    Attachment

    Originfrom posterior tibia in intercondylar area

    and runs in a superior and anterior direction on

    medial side of ACL. Insertion - to anterior femur on the medial condyle

    PCL is divided into 2 bands

    Antero-medial band (AMB)

    Postero-lateral band (PLB)

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 32

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    33/114

    Function of pcl

    Primarily

    Check femur from being displaced anteriorly on the tibiaor

    Tibia from being displaced posteriorly on femur.

    It tightens during flexion & is injured much lessfrequently than ACL.

    PCL carry 93% of load when posterior translatoryforce was applied to tibia with extended knee.

    PCL play a role in both restraining & producingrotation of the tibia.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 33

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    34/114

    Summary of ACL & PCL attachments

    ACLRuns from anterior tibia to posterior femur

    PCLRuns from posterior tibia to anterior femur

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 34

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    35/114

    Posterior capsular ligament

    Oblique popliteal ligament

    Posterior oblique ligament

    Arcuate ligament:

    Arcuate ligament lateral branch

    Arcuate ligament medial branch

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 35

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    36/114

    Oblique popliteal ligament

    Attachment

    OriginThe central part of posterior aspect of

    the joint capsule

    Insertion - Posterior medial tibial condyle

    Function

    Reinforces posteromedial knee joint capsule

    obliquely on a lateral-to-medial diagonal from

    proximal to distal

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 36

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    37/114

    Posterior oblique ligament

    Attachment

    OriginNear the proximal origin of the MCL

    and adductor tubercle

    InsertionPosteromedial tibia, posterior capsule& posteromedial aspect of the medial meniscus

    Function

    Reinforces the posteromedial knee joint capsule

    obliquely on a medial-to-lateral diagonal from

    proximal to distal

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 37

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    38/114

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 38

    Arcuate LigamentLateral Branch Medial branch

    Distal

    Attachment From posterior aspect of the head of the fibula

    Proximal

    Attachment

    To tendon of popliteus

    muscle & posterior capsule

    Into oblique popliteal lig on

    medial side of joint

    FunctionReinforces the postero-lateral knee joint capsule

    obliquely on a medial to lateral from proximal to distal

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    39/114

    Meniscofemoral ligament (MFl)

    There are 2 portions of

    MFL, at least one in 91%

    of knees & 30% knee

    having both. MFL are not true

    ligaments because they

    attach bone to meniscus,

    rather than bone to bone.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 39

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    40/114

    Meniscofemoral ligament (MFl)

    Attachment OriginBoth originate from posterior horn of lateral

    meniscus

    Insertionto lateral aspect of medial femoral condyle

    The LigamentofHumphry or Antero-MFL is the

    ligament run anterior to PCL on tibia

    The Ligament of Wrisberg orPostero-MFL is the

    ligament run posterior to PCL, also known as3rdCruciate

    Ligament of Robert

    Function

    They may assist PCL in restraining posterior tibial translation

    Also assist popliteus muscle by checking tibial lateral rotation13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 40

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    41/114

    Bursa associated with knee

    Pre-patellar bursa

    Located between the skin & anterior surface of patella

    They allows free movement of skin over patella duringknee flexion & extension

    Subcutaneous bursa

    Located between patellar ligament & overlying skin

    Deep infra-patellar bursa

    Located between patellar ligament & tibial tuberosity

    Helps in reducing friction between the patellarligament & tibial tuberosity

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 41

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    42/114

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 42

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    43/114

    Function of knee joint

    Osteokinemetic of knee joint

    Primary motions

    Flexion / Extension

    Medial / Lateral Rotation

    Secondary motions

    Antero-posterior displacement of femur or tibia

    Abduction / Adduction through valgus or varus force

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 43

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    44/114

    Flexion & extension

    Axisno fixed axis but move through ROM

    (frontal axis)

    Plansagittal plan

    ROM of flexion / extension

    Flexion13001400

    Extension50100 (Consider normal, beyond

    this termed as Genurecurvatum) In close kinematic chain (OKC)flexion /

    extension range is limited by ankle range.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 44

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    45/114

    Medial / lateral rotation

    AxisLongitudinal / Vertical axis

    PlanTransvers plan

    ROM at 900 knee flexion

    Lateral rotation00400

    Medial rotation00300

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 45

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    46/114

    TF CKC Flexion

    Early 00 - 250 knee flexion

    Posterior rollingof femoral

    condyles on the tibia

    As flexion continues Posterior Rollingaccompanied by

    simultaneousAnterior glide of femur

    Create a pure Spin of femur on the

    posterior tibia

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 46

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    47/114

    TF CKC extension

    Extension from flexion is areversal of flexion motion.

    Early extension

    Anterior rollingof femoralcondyles on tibial plateau

    As extension continues

    Anterior Rollingaccompanied by

    simultaneousPosterior glide offemur

    Produce a pure Spin of femoralcondyles on tibial plateau

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 47

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    48/114

    Tf ock flexion / extension

    When tibia is flexed on a fixed femur

    The tibia performedBoth Posterior Rolling &

    Glidingon relatively fixed femoral condyles.

    When tibia is Extended on a fixed femur

    The tibia performedBoth Anterior Rolling &

    Glidingon relatively fixed femoral condyles.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 48

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    49/114

    13 August 2013 49Dr. Ratankhuman M.P.T., (Ortho & Sports)

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    50/114

    Locking of knee joint

    CKC femoral extension from 300 flexion Larger medial femoral condyle continue rolling & gliding

    posteriorly when smaller lateral side stopped.

    These result in medial rotation of femur on tibia, seen in last

    50

    of extension. The medial rotation of femur at final stage of extension is

    not voluntary or produce by muscular force, which isreferred as Automatic orTerminal Rotation.

    The rotation within the joint bring the joint into a closed

    packed or Locked position.

    The consequences of automatic rotation is also known asLocking MechanismorScrew Home Mechanism.

    OKClateral rotation of tibia on fixed femur

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 50

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    51/114

    Unlocking of knee joint

    To initiate flexion, knee must be unlocked.

    A flexion force will automatically result in lateral

    rotation of femur

    Because the larger medial condyle will move beforethe shorter lateral condyle.

    Popliteus is the primary muscle to unlocked the knee.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 51

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    52/114

    13 August 2013 52Dr. Ratankhuman M.P.T., (Ortho & Sports)

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    53/114

    TF CKC Flexion: ACL Control

    At full extension

    Angle of ACL

    inclination greatest

    Anterior directedcomponent force will

    eventuallyRestrain

    Posterior Femoral Roll

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 53

    TF CKC Flexion: ACL Control

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    54/114

    TF CKC Flexion: ACL Control

    cont

    As TF flexion increases

    Angle of ACL inclination

    decreases

    Anterior directedcomponent force increases

    sufficient enough to

    produceAnterior Femoral

    Slide

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 54

    Hyperextension Impact on

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    55/114

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 55

    Hyperextension Impact onACL

    End ROM extension

    brings the mid-

    substance of the ACL in

    contact with the femoralintercondylar shelf

    (notch of Grant)

    This contact point actsas a fulcrum to tension

    load the ACL

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    56/114

    TF CKC Flexion: PCL Control

    Angle Of PCL Inclination

    is greatest at full flexion.

    Anterior directed

    component force willeventuallyRestrain

    Posterior Femoral Roll

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 56

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    57/114

    TF CKC Extension: PCL Control

    As TF extension increases

    Angle Of PCL Inclination

    decreases

    Posterior directed componentforce increases sufficient enough

    toProduce Posterior Femoral

    Slide

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 57

    TF OKC Extension Arthrokinematics

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    58/114

    TF OKC Extension Arthrokinematics

    sagittal plan

    Extension

    Meniscal migrate Anteriorly

    Because of meniso-patellarligament

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 58

    Menisco-patellarLigaments

    TF OKC flexion Arthrokinematics

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    59/114

    TF OKC flexion Arthrokinematics

    sagittal plan

    FlexionMenisci migrate posteriorly because of

    Semimembranosis attachment to medial meniscus

    Popliteus attachment to lateral meniscus

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 59

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    60/114

    Knee axial rotation

    13 August 2013 60Dr. Ratankhuman M.P.T., (Ortho & Sports)

    Axial rotation of knee

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    61/114

    Axial rotation of knee

    arthrokinemetic

    Axisvertical axis

    Plantransvers plan

    ROMMaximum range is

    available at 90 of knee flexion.

    The magnitude rotation diminishes

    as the knee approaches both full

    extension and full flexion.

    Medial condyle acts as pivot point

    while the lateral condyles move

    through a greater arc of motion,

    regardless of direction of rotation.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 61

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    62/114

    rotation of tibia

    During Tibial lateral rotation on the femur Medial tibial condyle moves slightly anteriorly on

    the relatively fixed medial femoral condyle, whereas

    lateral tibial condyle moves a larger distance

    posteriorly.

    During tibial medial rotation

    Medial tibial condyle moves only slightly

    posteriorly, whereas the lateral condyle movesanteriorly through a larger arc of motion.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 62

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    63/114

    During both medial and lateral rotation

    The menisci reduce friction & distribute femoral

    condyle force created on the tibial condyle

    without restricting the motion. Meniscus also maintain the relationship of tibia

    & femoral condyles just as they did in flexion

    and extension.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 63

    Valgus (Abduction)/Varus

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    64/114

    Valgus (Abduction)/Varus

    (Adduction)

    AxisAntero-posterior axis

    PlanFrontal plane

    ROM

    8 at full extension

    13 with 20 of knee flexion.

    Excessive frontal plane motion could

    indicate ligamentous insufficiency

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 64

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    65/114

    13 August 2013 65Dr. Ratankhuman M.P.T., (Ortho & Sports)

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    66/114

    pFj function

    It work primarily as an anatomical pulley

    It reduce friction between quadriceps tendon

    & femoral condyle.

    The ability of patella to perform its functionwithout restricting knee motion depends on

    its mobility.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 66

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    67/114

    PFJ articulating surface

    The triangular shape patella is a largest sesamoidbone in body is a least congruent joint too.

    Posterior surface is divided by a vertical ridge intomedial & lateral patellar facets.

    The ridge is located slightly towards the medialfacet making smaller medial facet

    The medial & lateral facet are flat & slightly

    convex side to side & top to bottom. At least 30% of patella have 2nd ridge separating

    medial facet from the extreme medial edge knownas Odd Facet of Patella.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 67

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    68/114

    Femoral articulating surface

    Patella articulate in femurwith intercondylar grooveor femoral sulcus onanterior surface of distalfemur.

    Femoral surface areconcave side to side &

    convex top to bottom butlateral facet is more convexthen medial surface.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 68

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    69/114

    PFJ congruence

    The vertical position of patella in femoral sulcus

    is related to length of patellar tendon,

    approximately 1:1 is (referred to as Insall-Salvati

    index) An excessive long tendon produce an abnormally

    high position of patella on femoral sulcus known

    as patella alta.

    In neutral or extended knee, the patella has little

    or no contact with the femoral sulcus beneath.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 69

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    70/114

    At 100200 of flexioncontact with

    inferior margin of medial & lateral

    facet. By 900 of flexionall portion of

    patella contact with femur except the

    odd facet.

    Beyond 900 of flexionmedial

    condyle inter the intercondylar notch

    & odd facet achieves contact for the

    first time. At 1350 of flexioncontact is on

    lateral & odd facet with medial facet

    completely out of contact.13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 70

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    71/114

    13 August 2013 71Dr. Ratankhuman M.P.T., (Ortho & Sports)

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    72/114

    Medial-lateral PFJ stability

    PFJ is under permanent control of 2 restraining

    mechanism across each other at right angel.

    Transvers group of stabilizer

    Longitudinal group of stabilizer

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 72

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    73/114

    Transvers stabilizer

    Medial & lateral retinaculum

    Vastus Medialis & Lateralis

    The lateral PF ligament contributes 53% of totalforce when in full extension of knee.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 73

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    74/114

    Longitudinal stabilization

    Patellar tendoninferiorly

    Quadriceps tendonsuperiorly

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 74

    Medial-lateral positioning of

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    75/114

    Medial lateral positioning of

    patella / patellar tracking

    When the knee is fully extended & relax, thepatella should be able to passively displacedmedially or laterally not more then one half ofpatella.

    Imbalance in passive tension or change in lineof pull of dynamic structures will substantiallyinfluence the patella.

    Abnormal force may influence the excursion ofpatella even in its more secure location withinintercondylar notch in flexion.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 75

    Medial & lateral force on

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    76/114

    Medial & lateral force on

    patella

    Since the action line of quadriceps & patellar

    ligament do not co-inside, patella tend to pulled

    slightly laterally & increase compression on

    lateral patellar facets. Larger force on patella may cause it to

    subluxation or dislocate off the lateral lip of

    femur.

    Genu valgum increase the obliquity of femur &

    oblique the pull of quadriceps.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 76

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    77/114

    Femoral anteversion & tibial torsion creates anincreased obliquity in patella predisposing toexcessive lateral pressure or to subluxation ordislocation.

    Excessive tension in lateral retinaculum (orweakness of VMO) may cause the patella to tiltlaterally.

    Insufficient height of lateral lips of femoral

    sulcus may create patellar subluxation or fullydislocation, even with relatively small lateralforce.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 77

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    78/114

    Muscles of knee

    &its function

    13 August 2013 78Dr. Ratankhuman M.P.T., (Ortho & Sports)

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    79/114

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 79

    Muscles of the Knee

    Area One-joint Muscle Two-joint Muscle

    Anterior

    Vastus Lateralis

    Rectus Femorisvastus Medialis

    Vastus Intermedialis

    PosteriorBiceps Femoris

    (Short)

    Biceps Femoris (Long)Semimembranosus

    Semitendinosus

    Sartorius

    GracilisGastrocnemius

    Lateral Tensor Fascia Latae

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    80/114

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 80

    Muscles of Posterior Knee

    Knee FlexorsSemimembranosus, Semitendinosus, BicepsFemoris (Long & Short Heads), Sartorius,

    Gracilis, Popliteus & Gastrocnemius Muscles

    Flex + Tibial

    Medial Rotators

    Popliteus, Gracilis, Sartorius, Semimembranosus

    & Semitendinosus Muscles

    Flex + Tibial

    Lateral RotatorBiceps Femoris

    Flex +

    Abductor

    Biceps Femoris, Lateral Head Gastrocnemius &

    Popliteus

    Flex +

    Adductor

    Semimembranosus, Semitendinosus, Medial Head

    Gastrocnemius, Sartorius & Gracilis

    p

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    81/114

    M

    us

    cl

    e

    s

    13 August 2013 81Dr. Ratankhuman M.P.T., (Ortho & Sports)

    p

    o

    s

    t

    er

    i

    or

    t

    h

    ig

    h

    Knee flexor groups

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    82/114

    Knee flexor groups

    7 muscles flex the knee [Semimembranosus,Semitendinosus, Biceps Femoris (Long & ShortHeads), Sartorius, Gracilis, Popliteus &Gastrocnemius Muscles].

    5 muscles of flexors (Popliteus, Gracilis,Sartorius, Semimembranosus & SemitendinosusMuscles)

    They have the potential to medially rotate the tibia ona fixed femur

    Whereas the biceps femoris is capable of rotating thetibia laterally.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 82

    Knee flexor groups cont

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    83/114

    Knee flexor groups cont

    The lateral muscles (Biceps Femoris,

    Lateral Head of Gastrocnemius, &

    Popliteus)

    Capable of producing valgus moments at knee The medial muscles (Semimembranosus,

    Semitendinosus, Medial Head of

    Gastrocnemius, Sartorius & Gracilis)

    Can generate varus moments

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 83

    biceps femoris or Lateral

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    84/114

    c s or s or r

    Hamstring

    Proximal attachments: By two heads: Long headto the tuberosity of ischium,

    having a common tendon of attachmentwith semitendinosus.

    Short headto the lower portion of shaft of

    femur & to lateral intermuscular septum. Distal attachments:

    2 heads unite to be attached to the head offibula, to the lateral condyle of the tibia &to the fascia of leg.

    AXN: Hip extension & external rotation

    Knee flexion & external rotation.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 84

    Semitendinosus or medial

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    85/114

    hamstring

    Proximal attachment:

    Tuberosity of ischium, having a

    common tendon with the long

    head of the biceps.

    Distal attachment:

    Medial aspect of tibia near the

    knee joint, distal to the attachment

    of the gracilis.

    AXN:

    Hip extension and internal rotation

    Knee flexion and internal rotation.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 85

    semimembranosus

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    86/114

    semimembranosus

    Proximal attachment:

    Tuberosity of the ischium

    Distal attachment:

    Medial condyle of the tibia.

    AXN:

    Knee flexion and internal rotation

    Hip extension and internal rotation.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 86

    Gastrocnemius

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    87/114

    Gastrocnemius

    Proximal attachments:

    Above the femoral condyles and span the knee joint

    on the flexor side.

    The muscular portion of the gastrocnemius may beseen contracting in resisted flexion of the knee.

    Because the gastrocnemius is more important as a

    plantar flexor of the ankle than as a knee flexor

    Distal attachments: To the posterior calcaneus

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 87

    Popliteus

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    88/114

    Popliteus

    Proximal attachment: By a strong tendon from the lateral condyle of

    the femur.

    The muscle fibers take a downward medialcourse and are attached into proximal posterior

    portion of body of tibia. Distal attachment:

    widespread in a proximal-distal direction,giving the muscle a somewhat triangularshape.

    AXN: Medial rotation and flexion of knee.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 88

    Muscle passing medial knee

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    89/114

    Muscle passing medial knee

    13 August 2013 89Dr. Ratankhuman M.P.T., (Ortho & Sports)

    Anterior Muscles

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    90/114

    Anterior Muscles

    Quadriceps musclescomprise 4 muscles that

    cross the anterior knee

    Rectus femoris Vastus lateralis

    Vastus Intermedialis

    Vastus Medialis

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 90

    Quadriceps muscle

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    91/114

    Quadriceps muscle

    Functions Together, the 4 components of quadriceps femoris muscle

    function to extend the knee.

    Rectus femorisbeing a 2 joint muscle, it also involved in hipflexion along with knee extension.

    Angle of pull of Quadriceps Vastus lateralisPull 350 Lateralto long axis of femur

    Vastus IntermediusPullParallel to Shaftof femur, makingpurest knee extensor.

    Vastus MedialisPull depended on segment of muscle Upper fibers Vastus Medialis Longus (VML) angled 150180 Medially

    Distal fibers Vastus Medialis Oblique (VMO) angled 500550 Medially

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 91

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    92/114

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 92

    Patellar Influence on

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    93/114

    Quadriceps Function

    Patella lengthens the MA of quadriceps byincreasing the distance of quadriceps tendon &

    patellar tendon from the axis of the knee joint.

    The patella, as an anatomic pulley, deflects theaction line of quadriceps away from the joint centre,

    increasing the angle of pull & enhancing extension

    torque generation.

    Pull of quadriceps also creates anterior translationof tibia on femur increasing ACL restraint

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 93

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    94/114

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 94

    Quadriceps activities

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    95/114

    During weight-bearing

    When an erect posture is attained Minimal activity of quadriceps because the LOG

    passes just anterior to knee axis results in agravitational extension torque that maintains the joint

    in extension. In weight-bearing with the knee slightly flexed

    The LOG pass posterior to knee joint axis

    As the gravitational torque tend to promote kneeflexion, the activity of quadriceps is necessary tocounterbalance the gravitational torque and maintainthe knee joint in equilibrium.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 95

    LOG & Movement arm (MA)

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    96/114

    during squatting

    13 August 2013 96Dr. Ratankhuman M.P.T., (Ortho & Sports)

    Quadriceps activities during

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    97/114

    nonweight-bearing

    TheMA of resistance is minimalwhen the kneeis flexed to 900 but increases as knee extension

    progresses.

    Therefore, greater quadriceps force is requiredas the knee approaches full extension.

    The opposite happens during weight-bearing

    activities.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 97

    LOG & Movement arm (MA)

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    98/114

    during non-weight bearing

    13 August 2013 98Dr. Ratankhuman M.P.T., (Ortho & Sports)

    Quadriceps Strengthening:

    Weight-Bearing versus NonWeight-

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    99/114

    Weight-Bearing versus NonWeight-

    Bearing

    Weight-bearing quadriceps exercises as squat

    & leg press resulted in a posterior shear force

    at knee throughout the entire ROM

    There wasNo Anterior Shearanywhere inthe ROM.

    In contrast, anterior shear force in a non

    weight bearing knee extension exercisemaximal anterior shear occurring between

    200 and 100.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 99

    Quadriceps Strengthening:

    Weight-Bearing versus Non

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    100/114

    Weight-Bearing versus Non

    Weight-Bearing cont

    APosterior Shear Force was also foundduring NonWeight-Bearing Exercise, only

    between 600 and 1010 of flexion.

    Weight Bearing Exercises are oftenprescribed afterACL or PCL injurybecause

    of less stressful, more like functional

    movements & safer than nonweight-bearingexercises.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 100

    Other muscles helping

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    101/114

    knee extension

    The actions of the Gluteus Maximus& Soleus Muscles can influence

    knee motion in weight-bearing.

    Although they do not cross the kneejoint, these muscles are capable of

    assisting with knee extension.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 101

    Iliotibial Band or IT tract

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    102/114

    Iliotibial Band or IT tract

    Proximally

    The IT band is from TensorFascia Lata (TFL), GluteusMaximus & Gluteus Mediusmuscles.

    Distally Attach to lateral intermuscular

    septum & inserts into theAnterolateral Tibia (GerdysTubercle).

    IT band also attaches topatella via lateral PF ligamentof lateral retinaculum.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 102

    ITB

    GM

    TFL

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    103/114

    AXN:

    Reinforcing anterolateral aspect of knee joint

    Assisting ACL in checking posterior femoral or

    anterior tibial translation when the knee joint is nearly

    full extension.

    With the knee in flexion, the combination of IT band,

    LCL & popliteal tendon increases the stability of

    lateral knee.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 103

    AXN line for itb

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    104/114

    AXN line for itb

    In extended knee IT band moves anterior to the knee joint axis.

    In flexed knee

    IT band moves posteriorly over the lateral femoralcondyle as the knee is flexed.

    The IT band, therefore, remains consistently

    taut, regardless of hip or kneesposition.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 104

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    105/114

    13 August 2013 105Dr. Ratankhuman M.P.T., (Ortho & Sports)

    Stabilization of knee joint

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    106/114

    Stabilization of knee joint

    Classification of supporting structure of knee Functional

    Static stabilizer

    Dynamic stabilizer

    Structural

    Capsular method

    Extra-capsular method

    Location Medial joint compartment

    Lateral joint compartment

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 106

    Static stabilizer

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    107/114

    Static stabilizer

    It include the passive structures, such as Capsule

    Ligaments

    Meniscopatellar lig, PF lig,

    MCL & LCL,

    ACL & PCL,

    Oblique poplitial &

    Transverse lig.

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 107

    Dynamic stabilizer

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    108/114

    Dynamic stabilizer

    It includes following muscles & oponeuroses Quadriceps femoris,

    IT band,

    Extensor retinaculum, Poplitius,

    Pes anserinus,

    Hamstrings and also

    Gastrocnemius

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 108

    Medial joint stabilizers

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    109/114

    Medial joint stabilizers

    Structure includes Medial patellar retinaculum,

    MCL,

    Oblique poplitial ligament & PCL

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 109

    Lateral joint stabilizers

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    110/114

    Lateral joint stabilizers

    The structure included in static & dynamicstabilization of knee

    IT band,

    Biceps femoris, Popliteus,

    LCL,

    Meniscofemoral arcuate,

    ACL &

    Lateral patellar retinaculum

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 110

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    111/114

    Knee Joint StabilizersDi ti St t F ti

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    112/114

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 112

    Direction Structures Functions

    Varus/valgus

    stabilizers

    Medial collateral ligament

    Anterior cruciate ligament Posterior cruciate ligament

    Arcuate ligament

    Posterior oblique ligament

    Sartorius muscle

    Gracilis muscle

    Semitendinosus muscle Semimembranosus muscle

    Medial head of gastrocnemius muscle

    Limits valgus of tibia

    Lateral collateral ligament

    Iliotibial band

    Anterior cruciate ligament

    Posterior cruciate ligament

    Arcuate ligament

    Posterior oblique ligament

    Biceps femoris muscle

    Lateral head of gastrocnemius muscle

    Limit Varus of tibia

    Knee Joint Stabilizers

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    113/114

    13 August 2013 Dr. Ratankhuman M.P.T., (Ortho & Sports) 113

    Direction Structures Functions

    Internal/external

    rotational stabilizers

    Anterior cruciate ligament

    Posterior cruciate ligament

    Posteromedial capsule

    Meniscofemoral ligament

    Biceps femoris

    Limit medial rotation of

    tibia

    Posterolateral capsule

    Medial collateral ligament

    Lateral collateral ligament

    Popliteus muscle

    Sartorius muscle Gracilis muscle Semitendinosus

    muscle

    Semimembranosus muscle

    Limit lateral rotation of

    tibia

    References

  • 7/27/2019 kneebiomechanic-120622054413-phpapp02

    114/114

    References

    Joint Structure and Function: A ComprehensiveAnalysis,Fourth Edition, Cynthia C. Norkin, 2005

    Joint Structure and Function: A Comprehensive

    Analysis, Third Edition, Cynthia C. Norkin

    Clinical Kinesiology andAnatomy,Fourth Edition,

    Lynn S. Lippert, 2006

    Basic Biomechanics of the Musculoskeletal

    System, third edition, Margareta Nordin