Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf ·...

126
Kirillov-Reshetikhin modules and quantum affine algebras Bernard Leclerc Universit ´ e de Caen SLC 78 Saint-Nabor, 27/03/2017

Transcript of Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf ·...

Page 1: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Kirillov-Reshetikhin modules andquantum affine algebras

Bernard LeclercUniversite de Caen

SLC 78Saint-Nabor, 27/03/2017

Page 2: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Saint-Melany August 1991

Page 3: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Saint-Melany August 1991

Page 4: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Saint-Melany August 1994

Page 5: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

SLC 34 Saint-Nabor March 1995

Page 6: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix
Page 7: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of g

• g simple complex Lie algebra, with Cartan matrix C = [cij ]i ,j∈I .

• P =⊕

i∈I Zϖ i weight lattice of g.

• Simple finite-dimensional g-modules L(λ ) are labelled by

λ ∈ P+ =⊕i∈I

Nϖ i

• Finite-dimensional g-modules have a weight-space decomposition

M =⊕µ∈P

character of M: χ(M) := ∑µ∈P

dim(Mµ )eµ

• For λ ∈ P+, χ(L(λ )) is given by Weyl’s character formula.

Page 8: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of g

• g simple complex Lie algebra, with Cartan matrix C = [cij ]i ,j∈I .

• P =⊕

i∈I Zϖ i weight lattice of g.

• Simple finite-dimensional g-modules L(λ ) are labelled by

λ ∈ P+ =⊕i∈I

Nϖ i

• Finite-dimensional g-modules have a weight-space decomposition

M =⊕µ∈P

character of M: χ(M) := ∑µ∈P

dim(Mµ )eµ

• For λ ∈ P+, χ(L(λ )) is given by Weyl’s character formula.

Page 9: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of g

• g simple complex Lie algebra, with Cartan matrix C = [cij ]i ,j∈I .

• P =⊕

i∈I Zϖ i weight lattice of g.

• Simple finite-dimensional g-modules L(λ ) are labelled by

λ ∈ P+ =⊕i∈I

Nϖ i

• Finite-dimensional g-modules have a weight-space decomposition

M =⊕µ∈P

character of M: χ(M) := ∑µ∈P

dim(Mµ )eµ

• For λ ∈ P+, χ(L(λ )) is given by Weyl’s character formula.

Page 10: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of g

• g simple complex Lie algebra, with Cartan matrix C = [cij ]i ,j∈I .

• P =⊕

i∈I Zϖ i weight lattice of g.

• Simple finite-dimensional g-modules L(λ ) are labelled by

λ ∈ P+ =⊕i∈I

Nϖ i

• Finite-dimensional g-modules have a weight-space decomposition

M =⊕µ∈P

character of M: χ(M) := ∑µ∈P

dim(Mµ )eµ

• For λ ∈ P+, χ(L(λ )) is given by Weyl’s character formula.

Page 11: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of g

• g simple complex Lie algebra, with Cartan matrix C = [cij ]i ,j∈I .

• P =⊕

i∈I Zϖ i weight lattice of g.

• Simple finite-dimensional g-modules L(λ ) are labelled by

λ ∈ P+ =⊕i∈I

Nϖ i

• Finite-dimensional g-modules have a weight-space decomposition

M =⊕µ∈P

character of M: χ(M) := ∑µ∈P

dim(Mµ )eµ

• For λ ∈ P+, χ(L(λ )) is given by Weyl’s character formula.

Page 12: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of g

• g simple complex Lie algebra, with Cartan matrix C = [cij ]i ,j∈I .

• P =⊕

i∈I Zϖ i weight lattice of g.

• Simple finite-dimensional g-modules L(λ ) are labelled by

λ ∈ P+ =⊕i∈I

Nϖ i

• Finite-dimensional g-modules have a weight-space decomposition

M =⊕µ∈P

character of M: χ(M) := ∑µ∈P

dim(Mµ )eµ

• For λ ∈ P+, χ(L(λ )) is given by Weyl’s character formula.

Page 13: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Characters

• χ(M) is a Laurent polynomial in the yi := eϖi .

Example: g = sl3 (type A2).

χ(L(ϖ1)) = y1 + y−11 y2 + y−1

2

χ(L(ϖ2)) = y2 + y−12 y1 + y−1

1

Example: g = so5 (type B2).

χ(L(ϖ1)) = y1 + y−11 y2

2 + 1 + y1y−22 + y−1

1

χ(L(ϖ2)) = y2 + y1y−12 + y−1

1 y2 + y−12

Page 14: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Characters

• χ(M) is a Laurent polynomial in the yi := eϖi .

Example: g = sl3 (type A2).

χ(L(ϖ1)) = y1 + y−11 y2 + y−1

2

χ(L(ϖ2)) = y2 + y−12 y1 + y−1

1

Example: g = so5 (type B2).

χ(L(ϖ1)) = y1 + y−11 y2

2 + 1 + y1y−22 + y−1

1

χ(L(ϖ2)) = y2 + y1y−12 + y−1

1 y2 + y−12

Page 15: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Characters

• χ(M) is a Laurent polynomial in the yi := eϖi .

Example: g = sl3 (type A2).

χ(L(ϖ1)) = y1 + y−11 y2 + y−1

2

χ(L(ϖ2)) = y2 + y−12 y1 + y−1

1

Example: g = so5 (type B2).

χ(L(ϖ1)) = y1 + y−11 y2

2 + 1 + y1y−22 + y−1

1

χ(L(ϖ2)) = y2 + y1y−12 + y−1

1 y2 + y−12

Page 16: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Characters

• χ(M) is a Laurent polynomial in the yi := eϖi .

Example: g = sl3 (type A2).

χ(L(ϖ1)) = y1 + y−11 y2 + y−1

2

χ(L(ϖ2)) = y2 + y−12 y1 + y−1

1

Example: g = so5 (type B2).

χ(L(ϖ1)) = y1 + y−11 y2

2 + 1 + y1y−22 + y−1

1

χ(L(ϖ2)) = y2 + y1y−12 + y−1

1 y2 + y−12

Page 17: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Characters

• χ(M) is a Laurent polynomial in the yi := eϖi .

Example: g = sl3 (type A2).

χ(L(ϖ1)) = y1 + y−11 y2 + y−1

2

χ(L(ϖ2)) = y2 + y−12 y1 + y−1

1

Example: g = so5 (type B2).

χ(L(ϖ1)) = y1 + y−11 y2

2 + 1 + y1y−22 + y−1

1

χ(L(ϖ2)) = y2 + y1y−12 + y−1

1 y2 + y−12

Page 18: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Characters

• χ(M) is a Laurent polynomial in the yi := eϖi .

Example: g = sl3 (type A2).

χ(L(ϖ1)) = y1 + y−11 y2 + y−1

2

χ(L(ϖ2)) = y2 + y−12 y1 + y−1

1

Example: g = so5 (type B2).

χ(L(ϖ1)) = y1 + y−11 y2

2 + 1 + y1y−22 + y−1

1

χ(L(ϖ2)) = y2 + y1y−12 + y−1

1 y2 + y−12

Page 19: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of Uq(g)

• C category of finite-dimensional Uq(g)-modules.(q ∈ C∗, not a root of 1)

• Lattice of `-weights: P :=⊕

z∈C∗⊕

i∈I Z(ϖi ,z).

Theorem (Chari-Pressley)

• Simples of C are parametrized by P+ =⊕

i ,z N(ϖi ,z).

• K0(C ) = polynomial ring in the [L(ϖi ,z)] (i ∈ I, z ∈ C∗).

• M ∈ C has an `-weight-space decomposition M =⊕

λ∈P Mλ

.

Definition (Frenkel-Reshetikhin)

χq(M) := ∑λ∈P dimM

λeλ = q-character of M .

• [M] = [N] in K0(C ) ⇐⇒ χq(M) = χq(N).

Page 20: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of Uq(g)

• C category of finite-dimensional Uq(g)-modules.(q ∈ C∗, not a root of 1)

• Lattice of `-weights: P :=⊕

z∈C∗⊕

i∈I Z(ϖi ,z).

Theorem (Chari-Pressley)

• Simples of C are parametrized by P+ =⊕

i ,z N(ϖi ,z).

• K0(C ) = polynomial ring in the [L(ϖi ,z)] (i ∈ I, z ∈ C∗).

• M ∈ C has an `-weight-space decomposition M =⊕

λ∈P Mλ

.

Definition (Frenkel-Reshetikhin)

χq(M) := ∑λ∈P dimM

λeλ = q-character of M .

• [M] = [N] in K0(C ) ⇐⇒ χq(M) = χq(N).

Page 21: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of Uq(g)

• C category of finite-dimensional Uq(g)-modules.(q ∈ C∗, not a root of 1)

• Lattice of `-weights: P :=⊕

z∈C∗⊕

i∈I Z(ϖi ,z).

Theorem (Chari-Pressley)

• Simples of C are parametrized by P+ =⊕

i ,z N(ϖi ,z).

• K0(C ) = polynomial ring in the [L(ϖi ,z)] (i ∈ I, z ∈ C∗).

• M ∈ C has an `-weight-space decomposition M =⊕

λ∈P Mλ

.

Definition (Frenkel-Reshetikhin)

χq(M) := ∑λ∈P dimM

λeλ = q-character of M .

• [M] = [N] in K0(C ) ⇐⇒ χq(M) = χq(N).

Page 22: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of Uq(g)

• C category of finite-dimensional Uq(g)-modules.(q ∈ C∗, not a root of 1)

• Lattice of `-weights: P :=⊕

z∈C∗⊕

i∈I Z(ϖi ,z).

Theorem (Chari-Pressley)

• Simples of C are parametrized by P+ =⊕

i ,z N(ϖi ,z).

• K0(C ) = polynomial ring in the [L(ϖi ,z)] (i ∈ I, z ∈ C∗).

• M ∈ C has an `-weight-space decomposition M =⊕

λ∈P Mλ

.

Definition (Frenkel-Reshetikhin)

χq(M) := ∑λ∈P dimM

λeλ = q-character of M .

• [M] = [N] in K0(C ) ⇐⇒ χq(M) = χq(N).

Page 23: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of Uq(g)

• C category of finite-dimensional Uq(g)-modules.(q ∈ C∗, not a root of 1)

• Lattice of `-weights: P :=⊕

z∈C∗⊕

i∈I Z(ϖi ,z).

Theorem (Chari-Pressley)

• Simples of C are parametrized by P+ =⊕

i ,z N(ϖi ,z).

• K0(C ) = polynomial ring in the [L(ϖi ,z)] (i ∈ I, z ∈ C∗).

• M ∈ C has an `-weight-space decomposition M =⊕

λ∈P Mλ

.

Definition (Frenkel-Reshetikhin)

χq(M) := ∑λ∈P dimM

λeλ = q-character of M .

• [M] = [N] in K0(C ) ⇐⇒ χq(M) = χq(N).

Page 24: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of Uq(g)

• C category of finite-dimensional Uq(g)-modules.(q ∈ C∗, not a root of 1)

• Lattice of `-weights: P :=⊕

z∈C∗⊕

i∈I Z(ϖi ,z).

Theorem (Chari-Pressley)

• Simples of C are parametrized by P+ =⊕

i ,z N(ϖi ,z).

• K0(C ) = polynomial ring in the [L(ϖi ,z)] (i ∈ I, z ∈ C∗).

• M ∈ C has an `-weight-space decomposition M =⊕

λ∈P Mλ

.

Definition (Frenkel-Reshetikhin)

χq(M) := ∑λ∈P dimM

λeλ = q-character of M .

• [M] = [N] in K0(C ) ⇐⇒ χq(M) = χq(N).

Page 25: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of Uq(g)

• C category of finite-dimensional Uq(g)-modules.(q ∈ C∗, not a root of 1)

• Lattice of `-weights: P :=⊕

z∈C∗⊕

i∈I Z(ϖi ,z).

Theorem (Chari-Pressley)

• Simples of C are parametrized by P+ =⊕

i ,z N(ϖi ,z).

• K0(C ) = polynomial ring in the [L(ϖi ,z)] (i ∈ I, z ∈ C∗).

• M ∈ C has an `-weight-space decomposition M =⊕

λ∈P Mλ

.

Definition (Frenkel-Reshetikhin)

χq(M) := ∑λ∈P dimM

λeλ = q-character of M .

• [M] = [N] in K0(C ) ⇐⇒ χq(M) = χq(N).

Page 26: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Finite-dimensional representations of Uq(g)

• C category of finite-dimensional Uq(g)-modules.(q ∈ C∗, not a root of 1)

• Lattice of `-weights: P :=⊕

z∈C∗⊕

i∈I Z(ϖi ,z).

Theorem (Chari-Pressley)

• Simples of C are parametrized by P+ =⊕

i ,z N(ϖi ,z).

• K0(C ) = polynomial ring in the [L(ϖi ,z)] (i ∈ I, z ∈ C∗).

• M ∈ C has an `-weight-space decomposition M =⊕

λ∈P Mλ

.

Definition (Frenkel-Reshetikhin)

χq(M) := ∑λ∈P dimM

λeλ = q-character of M .

• [M] = [N] in K0(C ) ⇐⇒ χq(M) = χq(N).

Page 27: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters

• χq(M) is a Laurent polynomial in the Yi ,z := e(ϖi ,z).

Example: g = sl3 (type A2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq2Y2,zq + Y−1

2,zq3

Example: g = so5 (type B2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq4Y2,zqY2,zq3 + Y2,zqY−1

2,zq5

+Y1,zq2Y−12,zq3Y−1

2,zq5 + Y−11,zq6

χq(L(ϖ2,z)) = Y2,z + Y1,zqY−12,zq2 + Y−1

1,zq5Y2,zq4 + Y−12,zq6

• There is no Weyl type character formula for χq

(L(λ )

).

But

Frenkel-Mukhin’s algorithm for minuscule representations.

Nakajima’s geometric description for g of type A,D,E .

Page 28: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters

• χq(M) is a Laurent polynomial in the Yi ,z := e(ϖi ,z).

Example: g = sl3 (type A2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq2Y2,zq + Y−1

2,zq3

Example: g = so5 (type B2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq4Y2,zqY2,zq3 + Y2,zqY−1

2,zq5

+Y1,zq2Y−12,zq3Y−1

2,zq5 + Y−11,zq6

χq(L(ϖ2,z)) = Y2,z + Y1,zqY−12,zq2 + Y−1

1,zq5Y2,zq4 + Y−12,zq6

• There is no Weyl type character formula for χq

(L(λ )

).

But

Frenkel-Mukhin’s algorithm for minuscule representations.

Nakajima’s geometric description for g of type A,D,E .

Page 29: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters

• χq(M) is a Laurent polynomial in the Yi ,z := e(ϖi ,z).

Example: g = sl3 (type A2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq2Y2,zq + Y−1

2,zq3

Example: g = so5 (type B2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq4Y2,zqY2,zq3 + Y2,zqY−1

2,zq5

+Y1,zq2Y−12,zq3Y−1

2,zq5 + Y−11,zq6

χq(L(ϖ2,z)) = Y2,z + Y1,zqY−12,zq2 + Y−1

1,zq5Y2,zq4 + Y−12,zq6

• There is no Weyl type character formula for χq

(L(λ )

).

But

Frenkel-Mukhin’s algorithm for minuscule representations.

Nakajima’s geometric description for g of type A,D,E .

Page 30: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters

• χq(M) is a Laurent polynomial in the Yi ,z := e(ϖi ,z).

Example: g = sl3 (type A2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq2Y2,zq + Y−1

2,zq3

Example: g = so5 (type B2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq4Y2,zqY2,zq3 + Y2,zqY−1

2,zq5

+Y1,zq2Y−12,zq3Y−1

2,zq5 + Y−11,zq6

χq(L(ϖ2,z)) = Y2,z + Y1,zqY−12,zq2 + Y−1

1,zq5Y2,zq4 + Y−12,zq6

• There is no Weyl type character formula for χq

(L(λ )

).

But

Frenkel-Mukhin’s algorithm for minuscule representations.

Nakajima’s geometric description for g of type A,D,E .

Page 31: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters

• χq(M) is a Laurent polynomial in the Yi ,z := e(ϖi ,z).

Example: g = sl3 (type A2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq2Y2,zq + Y−1

2,zq3

Example: g = so5 (type B2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq4Y2,zqY2,zq3 + Y2,zqY−1

2,zq5

+Y1,zq2Y−12,zq3Y−1

2,zq5 + Y−11,zq6

χq(L(ϖ2,z)) = Y2,z + Y1,zqY−12,zq2 + Y−1

1,zq5Y2,zq4 + Y−12,zq6

• There is no Weyl type character formula for χq

(L(λ )

).

But

Frenkel-Mukhin’s algorithm for minuscule representations.

Nakajima’s geometric description for g of type A,D,E .

Page 32: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters

• χq(M) is a Laurent polynomial in the Yi ,z := e(ϖi ,z).

Example: g = sl3 (type A2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq2Y2,zq + Y−1

2,zq3

Example: g = so5 (type B2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq4Y2,zqY2,zq3 + Y2,zqY−1

2,zq5

+Y1,zq2Y−12,zq3Y−1

2,zq5 + Y−11,zq6

χq(L(ϖ2,z)) = Y2,z + Y1,zqY−12,zq2 + Y−1

1,zq5Y2,zq4 + Y−12,zq6

• There is no Weyl type character formula for χq

(L(λ )

).

But

Frenkel-Mukhin’s algorithm for minuscule representations.

Nakajima’s geometric description for g of type A,D,E .

Page 33: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters

• χq(M) is a Laurent polynomial in the Yi ,z := e(ϖi ,z).

Example: g = sl3 (type A2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq2Y2,zq + Y−1

2,zq3

Example: g = so5 (type B2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq4Y2,zqY2,zq3 + Y2,zqY−1

2,zq5

+Y1,zq2Y−12,zq3Y−1

2,zq5 + Y−11,zq6

χq(L(ϖ2,z)) = Y2,z + Y1,zqY−12,zq2 + Y−1

1,zq5Y2,zq4 + Y−12,zq6

• There is no Weyl type character formula for χq

(L(λ )

).

But

Frenkel-Mukhin’s algorithm for minuscule representations.

Nakajima’s geometric description for g of type A,D,E .

Page 34: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters

• χq(M) is a Laurent polynomial in the Yi ,z := e(ϖi ,z).

Example: g = sl3 (type A2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq2Y2,zq + Y−1

2,zq3

Example: g = so5 (type B2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq4Y2,zqY2,zq3 + Y2,zqY−1

2,zq5

+Y1,zq2Y−12,zq3Y−1

2,zq5 + Y−11,zq6

χq(L(ϖ2,z)) = Y2,z + Y1,zqY−12,zq2 + Y−1

1,zq5Y2,zq4 + Y−12,zq6

• There is no Weyl type character formula for χq

(L(λ )

). But

Frenkel-Mukhin’s algorithm for minuscule representations.

Nakajima’s geometric description for g of type A,D,E .

Page 35: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters

• χq(M) is a Laurent polynomial in the Yi ,z := e(ϖi ,z).

Example: g = sl3 (type A2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq2Y2,zq + Y−1

2,zq3

Example: g = so5 (type B2).

χq(L(ϖ1,z)) = Y1,z + Y−11,zq4Y2,zqY2,zq3 + Y2,zqY−1

2,zq5

+Y1,zq2Y−12,zq3Y−1

2,zq5 + Y−11,zq6

χq(L(ϖ2,z)) = Y2,z + Y1,zqY−12,zq2 + Y−1

1,zq5Y2,zq4 + Y−12,zq6

• There is no Weyl type character formula for χq

(L(λ )

). But

Frenkel-Mukhin’s algorithm for minuscule representations.

Nakajima’s geometric description for g of type A,D,E .

Page 36: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Kirillov-Reshetikhin modules

Notation: For i ∈ I, k ∈ N, and z ∈ C∗ put

W (i)k ,z := L

((ϖi ,z) + (ϖi ,zq2) + · · ·+ (ϖi ,zq2k−2)

).

Theorem (Kuniba-Nakanishi-Suzuki, Nakajima, Hernandez)

The [W (i)k ,z ] satisfy an infinite system of equations, called T-system.

In type A,D,E :[W (i)

k ,z

][W (i)

k ,zq2

]=[W (i)

k+1,z

][W (i)

k−1,zq2

]+∏

j 6=i

[W (j)

k ,zq

]−cij

Page 37: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Kirillov-Reshetikhin modules

Notation: For i ∈ I, k ∈ N, and z ∈ C∗ put

W (i)k ,z := L

((ϖi ,z) + (ϖi ,zq2) + · · ·+ (ϖi ,zq2k−2)

).

Theorem (Kuniba-Nakanishi-Suzuki, Nakajima, Hernandez)

The [W (i)k ,z ] satisfy an infinite system of equations, called T-system.

In type A,D,E :[W (i)

k ,z

][W (i)

k ,zq2

]=[W (i)

k+1,z

][W (i)

k−1,zq2

]+∏

j 6=i

[W (j)

k ,zq

]−cij

Page 38: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Kirillov-Reshetikhin modules

Notation: For i ∈ I, k ∈ N, and z ∈ C∗ put

W (i)k ,z := L

((ϖi ,z) + (ϖi ,zq2) + · · ·+ (ϖi ,zq2k−2)

).

Theorem (Kuniba-Nakanishi-Suzuki, Nakajima, Hernandez)

The [W (i)k ,z ] satisfy an infinite system of equations, called T-system.

In type A,D,E :[W (i)

k ,z

][W (i)

k ,zq2

]=[W (i)

k+1,z

][W (i)

k−1,zq2

]+∏

j 6=i

[W (j)

k ,zq

]−cij

Page 39: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Kirillov-Reshetikhin modules

Notation: For i ∈ I, k ∈ N, and z ∈ C∗ put

W (i)k ,z := L

((ϖi ,z) + (ϖi ,zq2) + · · ·+ (ϖi ,zq2k−2)

).

Theorem (Kuniba-Nakanishi-Suzuki, Nakajima, Hernandez)

The [W (i)k ,z ] satisfy an infinite system of equations, called T-system.

In type A,D,E :[W (i)

k ,z

][W (i)

k ,zq2

]=[W (i)

k+1,z

][W (i)

k−1,zq2

]+∏

j 6=i

[W (j)

k ,zq

]−cij

Page 40: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Infinite quivers attached to Cartan matrices

C = (cij | i , j ∈ I), Cartan matrix (An,Bn, . . . ,F4,G2)

D = diag(di), di ∈ Z>0, min(di) = 1, such that DC is symmetric

Q, quiver with vertex set I×Z, and arrows:

(i , r)→ (j ,s) ⇐⇒ cij 6= 0 and s = r + dicij

Q, one of the two connected components of Q

Page 41: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Infinite quivers attached to Cartan matrices

C = (cij | i , j ∈ I), Cartan matrix (An,Bn, . . . ,F4,G2)

D = diag(di), di ∈ Z>0, min(di) = 1, such that DC is symmetric

Q, quiver with vertex set I×Z, and arrows:

(i , r)→ (j ,s) ⇐⇒ cij 6= 0 and s = r + dicij

Q, one of the two connected components of Q

Page 42: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Infinite quivers attached to Cartan matrices

C = (cij | i , j ∈ I), Cartan matrix (An,Bn, . . . ,F4,G2)

D = diag(di), di ∈ Z>0, min(di) = 1, such that DC is symmetric

Q, quiver with vertex set I×Z, and arrows:

(i , r)→ (j ,s) ⇐⇒ cij 6= 0 and s = r + dicij

Q, one of the two connected components of Q

Page 43: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Infinite quivers attached to Cartan matrices

C = (cij | i , j ∈ I), Cartan matrix (An,Bn, . . . ,F4,G2)

D = diag(di), di ∈ Z>0, min(di) = 1, such that DC is symmetric

Q, quiver with vertex set I×Z, and arrows:

(i , r)→ (j ,s) ⇐⇒ cij 6= 0 and s = r + dicij

Q, one of the two connected components of Q

Page 44: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Infinite quivers attached to Cartan matrices

C = (cij | i , j ∈ I), Cartan matrix (An,Bn, . . . ,F4,G2)

D = diag(di), di ∈ Z>0, min(di) = 1, such that DC is symmetric

Q, quiver with vertex set I×Z, and arrows:

(i , r)→ (j ,s) ⇐⇒ cij 6= 0 and s = r + dicij

Q, one of the two connected components of Q

Page 45: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

C =

(2 −1−1 2

) ... (2,3)

yy(1,2)

%%(2,1)

yy

OO

(1,0)

%%

OO

(2,−1)

OO

yy(1,−2)

OO

%%(2,−3)

yy

OO

(1,−4)

OO

...

Page 46: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

C =

(2 −1−1 2

)

... (2,3)

yy(1,2)

%%(2,1)

yy

OO

(1,0)

%%

OO

(2,−1)

OO

yy(1,−2)

OO

%%(2,−3)

yy

OO

(1,−4)

OO

...

Page 47: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

C =

(2 −1−1 2

) ... (2,3)

yy(1,2)

%%(2,1)

yy

OO

(1,0)

%%

OO

(2,−1)

OO

yy(1,−2)

OO

%%(2,−3)

yy

OO

(1,−4)

OO

...

Page 48: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

C =

(2 −1−2 2

)... (2,5)

%%

...

(2,3)

yy

OO

(1,3)

yy(1,1)

%%

(2,1)

OO

%%(2,−1)

OO

yy

(1,−1)

yy

OO

(1,−3)

OO

%%

(2,−3)

OO

%%(2,−5)

OO

yy

(1,−5)

OO

(1,−7)

OO

......

Page 49: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

C =

(2 −1−2 2

)

... (2,5)

%%

...

(2,3)

yy

OO

(1,3)

yy(1,1)

%%

(2,1)

OO

%%(2,−1)

OO

yy

(1,−1)

yy

OO

(1,−3)

OO

%%

(2,−3)

OO

%%(2,−5)

OO

yy

(1,−5)

OO

(1,−7)

OO

......

Page 50: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

C =

(2 −1−2 2

)... (2,5)

%%

...

(2,3)

yy

OO

(1,3)

yy(1,1)

%%

(2,1)

OO

%%(2,−1)

OO

yy

(1,−1)

yy

OO

(1,−3)

OO

%%

(2,−3)

OO

%%(2,−5)

OO

yy

(1,−5)

OO

(1,−7)

OO

......

Page 51: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Semi-infinite quivers

infinite quiver Γ : same graph as Q, but change of vertexlabelling: (i , r) is changed into (i , r + di). New vertex set W .

semi-infinite quiver Γ−, fullsubquiver of Γ with vertex setW− = {(i ,s) ∈W | s ≤ 0}.

Page 52: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Semi-infinite quivers

infinite quiver Γ : same graph as Q, but change of vertexlabelling: (i , r) is changed into (i , r + di). New vertex set W .

semi-infinite quiver Γ−, fullsubquiver of Γ with vertex setW− = {(i ,s) ∈W | s ≤ 0}.

Page 53: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Semi-infinite quivers

infinite quiver Γ : same graph as Q, but change of vertexlabelling: (i , r) is changed into (i , r + di). New vertex set W .

semi-infinite quiver Γ−, fullsubquiver of Γ with vertex setW− = {(i ,s) ∈W | s ≤ 0}.

Page 54: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

C =

(2 −1−1 2

)(2,0)

yy(1,−1)

%%(2,−2)

yy

OO

(1,−3)

%%

OO

(2,−4)

OO

yy(1,−5)

OO

%%(2,−6)

yy

OO

(1,−7)

OO

...

Page 55: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

C =

(2 −1−2 2

)(2,0)

&&(2,−2)

xx

OO

(1,−1)

xx(1,−3)

&&

(2,−4)

OO

&&(2,−6)

OO

xx

(1,−5)

xx

OO

(1,−7)

OO

&&

(2,−8)

OO

&&(2,−10)

OO

xx

(1,−9)

OO

(1,−11)

OO

......

Page 56: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters of KR-modules

• z := {zi ,s | (i ,s) ∈W−}, set of indeterminates

DefinitionA , cluster algebra with initial seed (z,Γ−)

• monomial change of variables : zi ,r = ∏k>0,r+kdi≤0 Yi ,qr+kdi

• h dual Coxeter number of g.

Theorem (Hernandez-L)There exists an explicit sequence of mutations S such that:

µS (Σ) has the same quiver as Σ

For m ≥ h /2, the cluster variables of µmS (Σ) are the

q-characters of all KR-modules (up to spectral shift)

algorithm to calculate q-characters of KR-modules by “successiveapproximations”.

Page 57: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters of KR-modules

• z := {zi ,s | (i ,s) ∈W−}, set of indeterminates

DefinitionA , cluster algebra with initial seed (z,Γ−)

• monomial change of variables : zi ,r = ∏k>0,r+kdi≤0 Yi ,qr+kdi

• h dual Coxeter number of g.

Theorem (Hernandez-L)There exists an explicit sequence of mutations S such that:

µS (Σ) has the same quiver as Σ

For m ≥ h /2, the cluster variables of µmS (Σ) are the

q-characters of all KR-modules (up to spectral shift)

algorithm to calculate q-characters of KR-modules by “successiveapproximations”.

Page 58: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters of KR-modules

• z := {zi ,s | (i ,s) ∈W−}, set of indeterminates

DefinitionA , cluster algebra with initial seed (z,Γ−)

• monomial change of variables : zi ,r = ∏k>0,r+kdi≤0 Yi ,qr+kdi

• h dual Coxeter number of g.

Theorem (Hernandez-L)There exists an explicit sequence of mutations S such that:

µS (Σ) has the same quiver as Σ

For m ≥ h /2, the cluster variables of µmS (Σ) are the

q-characters of all KR-modules (up to spectral shift)

algorithm to calculate q-characters of KR-modules by “successiveapproximations”.

Page 59: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters of KR-modules

• z := {zi ,s | (i ,s) ∈W−}, set of indeterminates

DefinitionA , cluster algebra with initial seed (z,Γ−)

• monomial change of variables : zi ,r = ∏k>0,r+kdi≤0 Yi ,qr+kdi

• h dual Coxeter number of g.

Theorem (Hernandez-L)There exists an explicit sequence of mutations S such that:

µS (Σ) has the same quiver as Σ

For m ≥ h /2, the cluster variables of µmS (Σ) are the

q-characters of all KR-modules (up to spectral shift)

algorithm to calculate q-characters of KR-modules by “successiveapproximations”.

Page 60: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters of KR-modules

• z := {zi ,s | (i ,s) ∈W−}, set of indeterminates

DefinitionA , cluster algebra with initial seed (z,Γ−)

• monomial change of variables : zi ,r = ∏k>0,r+kdi≤0 Yi ,qr+kdi

• h dual Coxeter number of g.

Theorem (Hernandez-L)There exists an explicit sequence of mutations S such that:

µS (Σ) has the same quiver as Σ

For m ≥ h /2, the cluster variables of µmS (Σ) are the

q-characters of all KR-modules (up to spectral shift)

algorithm to calculate q-characters of KR-modules by “successiveapproximations”.

Page 61: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters of KR-modules

• z := {zi ,s | (i ,s) ∈W−}, set of indeterminates

DefinitionA , cluster algebra with initial seed (z,Γ−)

• monomial change of variables : zi ,r = ∏k>0,r+kdi≤0 Yi ,qr+kdi

• h dual Coxeter number of g.

Theorem (Hernandez-L)There exists an explicit sequence of mutations S such that:

µS (Σ) has the same quiver as Σ

For m ≥ h /2, the cluster variables of µmS (Σ) are the

q-characters of all KR-modules (up to spectral shift)

algorithm to calculate q-characters of KR-modules by “successiveapproximations”.

Page 62: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters of KR-modules

• z := {zi ,s | (i ,s) ∈W−}, set of indeterminates

DefinitionA , cluster algebra with initial seed (z,Γ−)

• monomial change of variables : zi ,r = ∏k>0,r+kdi≤0 Yi ,qr+kdi

• h dual Coxeter number of g.

Theorem (Hernandez-L)There exists an explicit sequence of mutations S such that:

µS (Σ) has the same quiver as Σ

For m ≥ h /2, the cluster variables of µmS (Σ) are the

q-characters of all KR-modules (up to spectral shift)

algorithm to calculate q-characters of KR-modules by “successiveapproximations”.

Page 63: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters of KR-modules

• z := {zi ,s | (i ,s) ∈W−}, set of indeterminates

DefinitionA , cluster algebra with initial seed (z,Γ−)

• monomial change of variables : zi ,r = ∏k>0,r+kdi≤0 Yi ,qr+kdi

• h dual Coxeter number of g.

Theorem (Hernandez-L)There exists an explicit sequence of mutations S such that:

µS (Σ) has the same quiver as Σ

For m ≥ h /2, the cluster variables of µmS (Σ) are the

q-characters of all KR-modules (up to spectral shift)

algorithm to calculate q-characters of KR-modules by “successiveapproximations”.

Page 64: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

q-characters of KR-modules

• z := {zi ,s | (i ,s) ∈W−}, set of indeterminates

DefinitionA , cluster algebra with initial seed (z,Γ−)

• monomial change of variables : zi ,r = ∏k>0,r+kdi≤0 Yi ,qr+kdi

• h dual Coxeter number of g.

Theorem (Hernandez-L)There exists an explicit sequence of mutations S such that:

µS (Σ) has the same quiver as Σ

For m ≥ h /2, the cluster variables of µmS (Σ) are the

q-characters of all KR-modules (up to spectral shift)

algorithm to calculate q-characters of KR-modules by “successiveapproximations”.

Page 65: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The rules are tricky, but they are a much more efficient wayof getting the answer than by counting beans.

Richard Feynman, QED the strange theory of light andmatter, 1985.

Page 66: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type A2

(2,0)

zz(1,−1)

$$(2,−2)

zz

OO

(1,−3)

$$

OO

(2,−4)

zz

OO

(1,−5)

OO

$$(2,−6)

zz

OO

(1,−7)

OO

...

(2,0)

��

(1,−1)

::

(2,−2)

zz(1,−3)

$$

OO

(2,−4)

zz

OO

(1,−5)

OO

$$(2,−6)

zz

OO

(1,−7)

OO

...

(2,0)

��

(1,−1)

::

(2,−2)

OO

��

(1,−3)

::

OO

(2,−4)

zz(1,−5)

OO

$$(2,−6)

zz

OO

(1,−7)

OO

...

Page 67: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type A2

(2,0)

zz(1,−1)

$$(2,−2)

zz

OO

(1,−3)

$$

OO

(2,−4)

zz

OO

(1,−5)

OO

$$(2,−6)

zz

OO

(1,−7)

OO

...

(2,0)

��

(1,−1)

::

(2,−2)

zz(1,−3)

$$

OO

(2,−4)

zz

OO

(1,−5)

OO

$$(2,−6)

zz

OO

(1,−7)

OO

...

(2,0)

��

(1,−1)

::

(2,−2)

OO

��

(1,−3)

::

OO

(2,−4)

zz(1,−5)

OO

$$(2,−6)

zz

OO

(1,−7)

OO

...

Page 68: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type A2

(2,0)

zz(1,−1)

$$(2,−2)

zz

OO

(1,−3)

$$

OO

(2,−4)

zz

OO

(1,−5)

OO

$$(2,−6)

zz

OO

(1,−7)

OO

...

(2,0)

��

(1,−1)

::

(2,−2)

zz(1,−3)

$$

OO

(2,−4)

zz

OO

(1,−5)

OO

$$(2,−6)

zz

OO

(1,−7)

OO

...

(2,0)

��

(1,−1)

::

(2,−2)

OO

��

(1,−3)

::

OO

(2,−4)

zz(1,−5)

OO

$$(2,−6)

zz

OO

(1,−7)

OO

...

Page 69: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type A2

(2,0)

��

(1,−1)

::

(2,−2)

OO

��

(1,−3)

::

OO

(2,−4)

OO

��

(1,−5)

OO

::

(2,−6)

zz(1,−7)

OO

...

(2,0)

��

(1,−1)

::

(2,−2)

OO

��

(1,−3)

::

OO

(2,−4)

OO

��

(1,−5)

OO

::

(2,−6)

OO

(1,−7)

OO

:: ...

(2,0)

zz(1,−1)

��

(2,−2)

OO

��

(1,−3)

::

(2,−4)

OO

��

(1,−5)

OO

::

(2,−6)

OO

(1,−7)

OO

:: ...

Page 70: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type A2

(2,0)

��

(1,−1)

::

(2,−2)

OO

��

(1,−3)

::

OO

(2,−4)

OO

��

(1,−5)

OO

::

(2,−6)

zz(1,−7)

OO

...

(2,0)

��

(1,−1)

::

(2,−2)

OO

��

(1,−3)

::

OO

(2,−4)

OO

��

(1,−5)

OO

::

(2,−6)

OO

(1,−7)

OO

:: ...

(2,0)

zz(1,−1)

��

(2,−2)

OO

��

(1,−3)

::

(2,−4)

OO

��

(1,−5)

OO

::

(2,−6)

OO

(1,−7)

OO

:: ...

Page 71: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type A2

(2,0)

��

(1,−1)

::

(2,−2)

OO

��

(1,−3)

::

OO

(2,−4)

OO

��

(1,−5)

OO

::

(2,−6)

zz(1,−7)

OO

...

(2,0)

��

(1,−1)

::

(2,−2)

OO

��

(1,−3)

::

OO

(2,−4)

OO

��

(1,−5)

OO

::

(2,−6)

OO

(1,−7)

OO

:: ...

(2,0)

zz(1,−1)

��

(2,−2)

OO

��

(1,−3)

::

(2,−4)

OO

��

(1,−5)

OO

::

(2,−6)

OO

(1,−7)

OO

:: ...

Page 72: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type A2

(2,0)

zz(1,−1)

$$(2,−2)

OO

zz(1,−3)

OO

��

(2,−4)

OO

��

(1,−5)

::

(2,−6)

OO

(1,−7)

OO

:: ...

(2,0)

zz(1,−1)

$$(2,−2)

OO

zz(1,−3)

OO

$$(2,−4)

OO

zz(1,−5)

OO

��

(2,−6)

OO

(1,−7)

:: ...

(2,0)

zz(1,−1)

$$(2,−2)

OO

zz(1,−3)

OO

$$(2,−4)

OO

zz(1,−5)

OO

$$(2,−6)

OO

zz(1,−7)

OO

...

Page 73: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type A2

(2,0)

zz(1,−1)

$$(2,−2)

OO

zz(1,−3)

OO

��

(2,−4)

OO

��

(1,−5)

::

(2,−6)

OO

(1,−7)

OO

:: ...

(2,0)

zz(1,−1)

$$(2,−2)

OO

zz(1,−3)

OO

$$(2,−4)

OO

zz(1,−5)

OO

��

(2,−6)

OO

(1,−7)

:: ...

(2,0)

zz(1,−1)

$$(2,−2)

OO

zz(1,−3)

OO

$$(2,−4)

OO

zz(1,−5)

OO

$$(2,−6)

OO

zz(1,−7)

OO

...

Page 74: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type A2

(2,0)

zz(1,−1)

$$(2,−2)

OO

zz(1,−3)

OO

��

(2,−4)

OO

��

(1,−5)

::

(2,−6)

OO

(1,−7)

OO

:: ...

(2,0)

zz(1,−1)

$$(2,−2)

OO

zz(1,−3)

OO

$$(2,−4)

OO

zz(1,−5)

OO

��

(2,−6)

OO

(1,−7)

:: ...

(2,0)

zz(1,−1)

$$(2,−2)

OO

zz(1,−3)

OO

$$(2,−4)

OO

zz(1,−5)

OO

$$(2,−6)

OO

zz(1,−7)

OO

...

Page 75: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type B2

(2,0)

%%(2,−2)

yy

OO

(1,−1)

yy(1,−3)

%%

(2,−4)

OO

%%(2,−6)

OO

yy

(1,−5)

yy

OO

(1,−7)

OO

%%

(2,−8)

OO

%%(2,−10)

OO

yy

(1,−9)

OO

(1,−11)

OO

......

(2,0)

��

(2,−2)

OO

��

(1,−1)oo

(1,−3) // (2,−4)

��

OO

(2,−6)

OO

��

(1,−5)oo

OO

(1,−7)

OO

// (2,−8)

��

OO

(2,−10)

OO

(1,−9)oo

OO

(1,−11)

OO

......

Page 76: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type B2

(2,0)

%%(2,−2)

yy

OO

(1,−1)

yy(1,−3)

%%

(2,−4)

OO

%%(2,−6)

OO

yy

(1,−5)

yy

OO

(1,−7)

OO

%%

(2,−8)

OO

%%(2,−10)

OO

yy

(1,−9)

OO

(1,−11)

OO

......

(2,0)

��

(2,−2)

OO

��

(1,−1)oo

(1,−3) // (2,−4)

��

OO

(2,−6)

OO

��

(1,−5)oo

OO

(1,−7)

OO

// (2,−8)

��

OO

(2,−10)

OO

(1,−9)oo

OO

(1,−11)

OO

......

Page 77: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type B2

(2,0)

��

(2,−2)

OO

// (1,−1)

��

(1,−3) // (2,−4)

��

OO

(2,−6)

OO

// (1,−5)

OO

��

(1,−7)

OO

// (2,−8)

��

OO

(2,−10)

OO

// (1,−9)

OO

(1,−11)

OO

......

(2,0)

%%(2,−2)

OO

��

(1,−1)

yy(1,−3)

99

(2,−4)

OO

%%(2,−6)

OO

��

(1,−5)

yy

OO

(1,−7)

OO

99

(2,−8)

OO

%%(2,−10)

OO

(1,−9)

OO

(1,−11)

OO

99

......

Page 78: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type B2

(2,0)

��

(2,−2)

OO

// (1,−1)

��

(1,−3) // (2,−4)

��

OO

(2,−6)

OO

// (1,−5)

OO

��

(1,−7)

OO

// (2,−8)

��

OO

(2,−10)

OO

// (1,−9)

OO

(1,−11)

OO

......

(2,0)

%%(2,−2)

OO

��

(1,−1)

yy(1,−3)

99

(2,−4)

OO

%%(2,−6)

OO

��

(1,−5)

yy

OO

(1,−7)

OO

99

(2,−8)

OO

%%(2,−10)

OO

(1,−9)

OO

(1,−11)

OO

99

......

Page 79: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The sequence S : type B2

(2,0)

%%(2,−2)

OO

yy

(1,−1)

yy(1,−3)

%%

(2,−4)

OO

%%(2,−6)

OO

yy

(1,−5)

yy

OO

(1,−7)

OO

%%

(2,−8)

OO

%%(2,−10)

OO

yy

(1,−9)

OO

(1,−11)

OO

......

Page 80: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The algorithm : type A2

(2,0)

yy(1,−1)

%%(2,−2)

OO

yy(1,−3)

OO

%%(2,−4)

yy

OO

(1,−5)

OO

......

Page 81: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The algorithm : type A2

Y2,0

uuY1,−1

))Y2,−2Y2,0

OO

uuY1,−3Y1,−1

OO

))Y2,−4Y2,−2Y2,0

uu

OO

Y1,−5Y1,−3Y1,−1

OO

......

Page 82: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The algorithm : type A2

Y2,−2+Y−12,0 Y1,−1

��

Y1,−1

55

Y2,−2Y2,0

uuY1,−3Y1,−1

OO

))Y2,−4Y2,−2Y2,0

uu

OO

Y1,−5Y1,−3Y1,−1

OO

......

Page 83: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The algorithm : type A2

Y2,−2+Y−12,0 Y1,−1

yy

Y1,−1

22

Y2,−4Y2,−2+Y2,−4Y−12,0 Y1,−1+Y−1

2,−2Y−12,0 Y1,−3Y1,−1

OO

��

Y1,−3Y1,−1

OO

22

Y2,−4Y2,−2Y2,0

rrY1,−5Y1,−3Y1,−1

OO

......

Page 84: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The algorithm : type A2

Y2,−2+Y−12,0 Y1,−1

yy

Y1,−1

22

Y2,−4Y2,−2+Y2,−4Y−12,0 Y1,−1+Y−1

2,−2Y−12,0 Y1,−3Y1,−1

OO

yy

Y1,−3Y1,−1

OO

22

Y2,−6Y2,−4Y2,−2+···+Y−12,−4Y−1

2,−2Y−12,0 Y1,−5Y1,−3Y1,−1

OO

Y1,−5Y1,−3Y1,−1

OO

22...

...

Page 85: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The algorithm : type A2

Y2,−2+Y−12,0 Y1,−1

rrY1,−3+Y−1

1,−1Y2,−2+Y−12,0

��

Y2,−4Y2,−2+Y2,−4Y−12,0 Y1,−1+Y−1

2,−2Y−12,0 Y1,−3Y1,−1

OO

xx

Y1,−3Y1,−1

22

Y2,−6Y2,−4Y2,−2+···+Y−12,−4Y−1

2,−2Y−12,0 Y1,−5Y1,−3Y1,−1

OO

Y1,−5Y1,−3Y1,−1

OO

22...

...

Page 86: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The algorithm : type A2

Y2,−2+Y−12,0 Y1,−1

rrY1,−3+Y−1

1,−1Y2,−2+Y−12,0

,,Y2,−4Y2,−2+Y2,−4Y−1

2,0 Y1,−1+Y−12,−2Y−1

2,0 Y1,−3Y1,−1

OO

rrY1,−5Y1,−3+···+Y−1

2,−2Y−12,0

OO

��

Y2,−6Y2,−4Y2,−2+···+Y−12,−4Y−1

2,−2Y−12,0 Y1,−5Y1,−3Y1,−1

OO

Y1,−5Y1,−3Y1,−1

22...

...

Page 87: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The algorithm : type A2

Y2,−2+Y−12,0 Y1,−1

rrY1,−3+Y−1

1,−1Y2,−2+Y−12,0

,,Y2,−4Y2,−2+Y2,−4Y−1

2,0 Y1,−1+Y−12,−2Y−1

2,0 Y1,−3Y1,−1

OO

rrY1,−5Y1,−3+···+Y−1

2,−2Y−12,0

OO

,,Y2,−6Y2,−4Y2,−2+···+Y−1

2,−4Y−12,−2Y−1

2,0 Y1,−5Y1,−3Y1,−1

OO

rrY1,−7Y1,−5Y1,−3+···+Y−1

2,−4Y−12,−2Y−1

2,0

OO

......

Page 88: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The algorithm : type A2

Y2,−4+Y−12,−2Y1,−3+Y−1

1,−1

rrY1,−5+Y−1

1,−3Y2,−4+Y−12,−2

,,Y2,−6Y2,−4+···+Y−1

1,−3Y−11,−1

OO

rrY1,−7Y1,−5+···+Y−1

2,−4Y−12,−2

OO

,,Y2,−8Y2,−6Y2,−4+···+Y−1

1,−5Y−11,−3Y−1

1,−1

OO

rrY1,−9Y1,−7Y1,−5+···+Y−1

2,−6Y−12,−4Y−1

2,−2

OO

......

Page 89: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The CC-DWZ philosophy

A cluster algebra with initial seed ((x1, . . . ,xn),Q).

A, an associative algebra of the form CQ/I where I is an idealgiven by a superpotential of Q.

z, cluster variable of A M , indecomposable A-moduleexpansion of z in terms of xi ’s is encoded in the topology ofvarieties of submodules of M:

monomials m ←→ dimension vectors d of submodulescoefficient of m = Euler characteristic of the variety ofsubmodules of dimension d

Theorem (Hernandez-L)Geometric character formulas for q-characters of KR-modules

Page 90: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The CC-DWZ philosophy

A cluster algebra with initial seed ((x1, . . . ,xn),Q).

A, an associative algebra of the form CQ/I where I is an idealgiven by a superpotential of Q.

z, cluster variable of A M , indecomposable A-moduleexpansion of z in terms of xi ’s is encoded in the topology ofvarieties of submodules of M:

monomials m ←→ dimension vectors d of submodulescoefficient of m = Euler characteristic of the variety ofsubmodules of dimension d

Theorem (Hernandez-L)Geometric character formulas for q-characters of KR-modules

Page 91: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The CC-DWZ philosophy

A cluster algebra with initial seed ((x1, . . . ,xn),Q).

A, an associative algebra of the form CQ/I where I is an idealgiven by a superpotential of Q.

z, cluster variable of A M , indecomposable A-moduleexpansion of z in terms of xi ’s is encoded in the topology ofvarieties of submodules of M:

monomials m ←→ dimension vectors d of submodulescoefficient of m = Euler characteristic of the variety ofsubmodules of dimension d

Theorem (Hernandez-L)Geometric character formulas for q-characters of KR-modules

Page 92: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The CC-DWZ philosophy

A cluster algebra with initial seed ((x1, . . . ,xn),Q).

A, an associative algebra of the form CQ/I where I is an idealgiven by a superpotential of Q.

z, cluster variable of A M , indecomposable A-module

expansion of z in terms of xi ’s is encoded in the topology ofvarieties of submodules of M:

monomials m ←→ dimension vectors d of submodulescoefficient of m = Euler characteristic of the variety ofsubmodules of dimension d

Theorem (Hernandez-L)Geometric character formulas for q-characters of KR-modules

Page 93: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The CC-DWZ philosophy

A cluster algebra with initial seed ((x1, . . . ,xn),Q).

A, an associative algebra of the form CQ/I where I is an idealgiven by a superpotential of Q.

z, cluster variable of A M , indecomposable A-moduleexpansion of z in terms of xi ’s is encoded in the topology ofvarieties of submodules of M:

monomials m ←→ dimension vectors d of submodulescoefficient of m = Euler characteristic of the variety ofsubmodules of dimension d

Theorem (Hernandez-L)Geometric character formulas for q-characters of KR-modules

Page 94: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The CC-DWZ philosophy

A cluster algebra with initial seed ((x1, . . . ,xn),Q).

A, an associative algebra of the form CQ/I where I is an idealgiven by a superpotential of Q.

z, cluster variable of A M , indecomposable A-moduleexpansion of z in terms of xi ’s is encoded in the topology ofvarieties of submodules of M:

monomials m ←→ dimension vectors d of submodules

coefficient of m = Euler characteristic of the variety ofsubmodules of dimension d

Theorem (Hernandez-L)Geometric character formulas for q-characters of KR-modules

Page 95: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The CC-DWZ philosophy

A cluster algebra with initial seed ((x1, . . . ,xn),Q).

A, an associative algebra of the form CQ/I where I is an idealgiven by a superpotential of Q.

z, cluster variable of A M , indecomposable A-moduleexpansion of z in terms of xi ’s is encoded in the topology ofvarieties of submodules of M:

monomials m ←→ dimension vectors d of submodulescoefficient of m = Euler characteristic of the variety ofsubmodules of dimension d

Theorem (Hernandez-L)Geometric character formulas for q-characters of KR-modules

Page 96: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

The CC-DWZ philosophy

A cluster algebra with initial seed ((x1, . . . ,xn),Q).

A, an associative algebra of the form CQ/I where I is an idealgiven by a superpotential of Q.

z, cluster variable of A M , indecomposable A-moduleexpansion of z in terms of xi ’s is encoded in the topology ofvarieties of submodules of M:

monomials m ←→ dimension vectors d of submodulescoefficient of m = Euler characteristic of the variety ofsubmodules of dimension d

Theorem (Hernandez-L)Geometric character formulas for q-characters of KR-modules

Page 97: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

χq

(W (1)

1,−3

)= Y1,−3 + Y−1

1,−1Y2,−2 + Y−12,0

= Y1,−3

(1 + A1,−2

−1 + A1,−2−1A2,−1

−1)

A1,r = Y1,r−1Y1,r+1Y−12,r , A2,r = Y2,r−1Y2,r+1Y−1

1,r .

K (1)1,−2 : (2,−1)

yy(1,−2)

Page 98: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

χq

(W (1)

1,−3

)= Y1,−3 + Y−1

1,−1Y2,−2 + Y−12,0

= Y1,−3

(1 + A1,−2

−1 + A1,−2−1A2,−1

−1)

A1,r = Y1,r−1Y1,r+1Y−12,r , A2,r = Y2,r−1Y2,r+1Y−1

1,r .

K (1)1,−2 : (2,−1)

yy(1,−2)

Page 99: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

χq

(W (1)

1,−3

)= Y1,−3 + Y−1

1,−1Y2,−2 + Y−12,0

= Y1,−3

(1 + A1,−2

−1 + A1,−2−1A2,−1

−1)

A1,r = Y1,r−1Y1,r+1Y−12,r , A2,r = Y2,r−1Y2,r+1Y−1

1,r .

K (1)1,−2 : (2,−1)

yy(1,−2)

Page 100: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

χq

(W (1)

1,−3

)= Y1,−3 + Y−1

1,−1Y2,−2 + Y−12,0

= Y1,−3

(1 + A1,−2

−1 + A1,−2−1A2,−1

−1)

A1,r = Y1,r−1Y1,r+1Y−12,r , A2,r = Y2,r−1Y2,r+1Y−1

1,r .

K (1)1,−2 : (2,−1)

yy(1,−2)

Page 101: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

K (1)2,−2 : (2,−1)

yy(1,−2)

(2,−3)

yy

OO

(1,−4)

OO

K (1)3,−2 : (2,−1)

yy(1,−2)

(2,−3)

yy

OO

(1,−4)

OO

(2,−5)

OO

yy(1,−6)

OO

χq

(W (1)

2,−5

) χq

(W (1)

3,−7

)

Page 102: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

K (1)2,−2 : (2,−1)

yy(1,−2)

(2,−3)

yy

OO

(1,−4)

OO

K (1)3,−2 : (2,−1)

yy(1,−2)

(2,−3)

yy

OO

(1,−4)

OO

(2,−5)

OO

yy(1,−6)

OO

χq

(W (1)

2,−5

) χq

(W (1)

3,−7

)

Page 103: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

K (1)2,−2 : (2,−1)

yy(1,−2)

(2,−3)

yy

OO

(1,−4)

OO

K (1)3,−2 : (2,−1)

yy(1,−2)

(2,−3)

yy

OO

(1,−4)

OO

(2,−5)

OO

yy(1,−6)

OO

χq

(W (1)

2,−5

)

χq

(W (1)

3,−7

)

Page 104: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type A2

K (1)2,−2 : (2,−1)

yy(1,−2)

(2,−3)

yy

OO

(1,−4)

OO

K (1)3,−2 : (2,−1)

yy(1,−2)

(2,−3)

yy

OO

(1,−4)

OO

(2,−5)

OO

yy(1,−6)

OO

χq

(W (1)

2,−5

) χq

(W (1)

3,−7

)

Page 105: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

K (1)1,−5 : (2,−3)

yy

(1,−3)

yy(1,−5) (2,−5)

OO

χq

(W (1)

1,−7

)

K (1)2,−5 : (2,−3)

yy

(1,−3)

yy(1,−5) (2,−5)

OO

(2,−7)

OO

yy

(1,−7)

yy

OO

(1,−9)

OO

(2,−9)

OO

χq

(W (1)

2,−11

)

Page 106: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

K (1)1,−5 : (2,−3)

yy

(1,−3)

yy(1,−5) (2,−5)

OO χq

(W (1)

1,−7

)

K (1)2,−5 : (2,−3)

yy

(1,−3)

yy(1,−5) (2,−5)

OO

(2,−7)

OO

yy

(1,−7)

yy

OO

(1,−9)

OO

(2,−9)

OO

χq

(W (1)

2,−11

)

Page 107: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

K (1)1,−5 : (2,−3)

yy

(1,−3)

yy(1,−5) (2,−5)

OO χq

(W (1)

1,−7

)

K (1)2,−5 : (2,−3)

yy

(1,−3)

yy(1,−5) (2,−5)

OO

(2,−7)

OO

yy

(1,−7)

yy

OO

(1,−9)

OO

(2,−9)

OO

χq

(W (1)

2,−11

)

Page 108: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

K (1)1,−5 : (2,−3)

yy

(1,−3)

yy(1,−5) (2,−5)

OO χq

(W (1)

1,−7

)

K (1)2,−5 : (2,−3)

yy

(1,−3)

yy(1,−5) (2,−5)

OO

(2,−7)

OO

yy

(1,−7)

yy

OO

(1,−9)

OO

(2,−9)

OO

χq

(W (1)

2,−11

)

Page 109: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

K (2)1,−7 : (2,−3)

yy(1,−5)

%%(2,−7)

χq

(W (2)

1,−8

)

K (2)2,−7 : (2,−3)

yy(1,−5)

%%

(2,−5)

OO

%%(2,−7) (1,−7)

yy(2,−9)

OO

χq

(W (2)

2,−10

)

Page 110: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

K (2)1,−7 : (2,−3)

yy(1,−5)

%%(2,−7)

χq

(W (2)

1,−8

)

K (2)2,−7 : (2,−3)

yy(1,−5)

%%

(2,−5)

OO

%%(2,−7) (1,−7)

yy(2,−9)

OO

χq

(W (2)

2,−10

)

Page 111: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

K (2)1,−7 : (2,−3)

yy(1,−5)

%%(2,−7)

χq

(W (2)

1,−8

)

K (2)2,−7 : (2,−3)

yy(1,−5)

%%

(2,−5)

OO

%%(2,−7) (1,−7)

yy(2,−9)

OO

χq

(W (2)

2,−10

)

Page 112: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

K (2)1,−7 : (2,−3)

yy(1,−5)

%%(2,−7)

χq

(W (2)

1,−8

)

K (2)2,−7 : (2,−3)

yy(1,−5)

%%

(2,−5)

OO

%%(2,−7) (1,−7)

yy(2,−9)

OO

χq

(W (2)

2,−10

)

Page 113: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

K (2)3,−7 : (2,−3)

xx(1,−5)

α

&&

(2,−5)

OO

&&(2,−7)

δ

OO

βxx

(1,−7)

xx(1,−9)

OO

&&

(2,−9)

γOO

(2,−11)

OO

α = γ =

(10

), β = δ =

(0 1

).

χq

(W (2)

3,−12

)

Page 114: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

K (2)3,−7 : (2,−3)

xx(1,−5)

α

&&

(2,−5)

OO

&&(2,−7)

δ

OO

βxx

(1,−7)

xx(1,−9)

OO

&&

(2,−9)

γOO

(2,−11)

OO

α = γ =

(10

), β = δ =

(0 1

).

χq

(W (2)

3,−12

)

Page 115: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type B2

K (2)3,−7 : (2,−3)

xx(1,−5)

α

&&

(2,−5)

OO

&&(2,−7)

δ

OO

βxx

(1,−7)

xx(1,−9)

OO

&&

(2,−9)

γOO

(2,−11)

OO

α = γ =

(10

), β = δ =

(0 1

).

χq

(W (2)

3,−12

)

Page 116: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type F4: the quiver Q−

(1,−1)

&&(2,−2)

xx

((

(3,−2)

|| ))

(4,−2)

��(1,−3)

OO

&&(2,−4)

OO

xx

""

(3,−4)

vv ��

(4,−4)

uu(1,−5)

OO

&&(2,−6)

OO

((

xx(3,−6)

OO

|| ))

(4,−6)

OO

��(1,−7)

OO

&&(2,−8)

OO

xx

""

(3,−8)

OO

vv ��

(4,−8)

OO

uu(1,−9)

OO

&&(2,−10)

OO

(3,−10)

OO

(4,−10)

OO

...

OO

......

...

OO

......

OO

Page 117: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type F4

K (1)1,−17 : (1,−1)

&&(2,−2)

&&(3,−4)

xx &&(2,−6)

xx

��

(4,−6)

��(1,−7)

&&(2,−8)

&&(3,−8)

xx(2,−10)

OO

xx(3,−10)

�� ��(1,−11)

&&(2,−12)

&&(4,−12)

xx(3,−14)

xx(2,−16)

xx(1,−17)

Page 118: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Type F4

K (4)1,−16 : (4,−2)

ss(2,−4)

uu

((

(3,−4)

β ′||(1,−5)

α ′

))(2,−6)

ι ′

OO

κ ′

""ε ′uu

(3,−6)

vv ��(1,−7)

OO

))(2,−8)

γ ′OO

))(3,−8)

uu ++(4,−8)

ss(2,−10)

uu

((

(3,−10)

β||

(4,−10)

��(1,−11)

α))(2,−12)

ι

OO

κ

""

εuu(3,−12)

vv(1,−13)

OO

))(2,−14)

γ

OO

(3,−14)

++(4,−16)

Page 119: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Relation with Nakajima theory

If zi Mi then ∏i zi ⊕iMi

geometric q-character formulas for tensor products offundamental Uq(g)-modules, that is, for standard modules.

In type A,D,E, the varieties of submodules involved in theseformulas are isomorphic to Nakajima graded quiver varietiesL •(V ,W ) (Lusztig, Savage-Tingley).

In type B,C,F,G, these varieties of submodules might beinteresting replacements for the missing Nakajima varieties.

A simple Uq(g)-module S is called real if S⊗S is simple.

ConjectureReal simple modules correspond to cluster monomials.

Would give geometric q-character formulas for all real simples.

Page 120: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Relation with Nakajima theory

If zi Mi then ∏i zi ⊕iMi

geometric q-character formulas for tensor products offundamental Uq(g)-modules, that is, for standard modules.

In type A,D,E, the varieties of submodules involved in theseformulas are isomorphic to Nakajima graded quiver varietiesL •(V ,W ) (Lusztig, Savage-Tingley).

In type B,C,F,G, these varieties of submodules might beinteresting replacements for the missing Nakajima varieties.

A simple Uq(g)-module S is called real if S⊗S is simple.

ConjectureReal simple modules correspond to cluster monomials.

Would give geometric q-character formulas for all real simples.

Page 121: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Relation with Nakajima theory

If zi Mi then ∏i zi ⊕iMi

geometric q-character formulas for tensor products offundamental Uq(g)-modules, that is, for standard modules.

In type A,D,E, the varieties of submodules involved in theseformulas are isomorphic to Nakajima graded quiver varietiesL •(V ,W ) (Lusztig, Savage-Tingley).

In type B,C,F,G, these varieties of submodules might beinteresting replacements for the missing Nakajima varieties.

A simple Uq(g)-module S is called real if S⊗S is simple.

ConjectureReal simple modules correspond to cluster monomials.

Would give geometric q-character formulas for all real simples.

Page 122: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Relation with Nakajima theory

If zi Mi then ∏i zi ⊕iMi

geometric q-character formulas for tensor products offundamental Uq(g)-modules, that is, for standard modules.

In type A,D,E, the varieties of submodules involved in theseformulas are isomorphic to Nakajima graded quiver varietiesL •(V ,W ) (Lusztig, Savage-Tingley).

In type B,C,F,G, these varieties of submodules might beinteresting replacements for the missing Nakajima varieties.

A simple Uq(g)-module S is called real if S⊗S is simple.

ConjectureReal simple modules correspond to cluster monomials.

Would give geometric q-character formulas for all real simples.

Page 123: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Relation with Nakajima theory

If zi Mi then ∏i zi ⊕iMi

geometric q-character formulas for tensor products offundamental Uq(g)-modules, that is, for standard modules.

In type A,D,E, the varieties of submodules involved in theseformulas are isomorphic to Nakajima graded quiver varietiesL •(V ,W ) (Lusztig, Savage-Tingley).

In type B,C,F,G, these varieties of submodules might beinteresting replacements for the missing Nakajima varieties.

A simple Uq(g)-module S is called real if S⊗S is simple.

ConjectureReal simple modules correspond to cluster monomials.

Would give geometric q-character formulas for all real simples.

Page 124: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Relation with Nakajima theory

If zi Mi then ∏i zi ⊕iMi

geometric q-character formulas for tensor products offundamental Uq(g)-modules, that is, for standard modules.

In type A,D,E, the varieties of submodules involved in theseformulas are isomorphic to Nakajima graded quiver varietiesL •(V ,W ) (Lusztig, Savage-Tingley).

In type B,C,F,G, these varieties of submodules might beinteresting replacements for the missing Nakajima varieties.

A simple Uq(g)-module S is called real if S⊗S is simple.

ConjectureReal simple modules correspond to cluster monomials.

Would give geometric q-character formulas for all real simples.

Page 125: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Relation with Nakajima theory

If zi Mi then ∏i zi ⊕iMi

geometric q-character formulas for tensor products offundamental Uq(g)-modules, that is, for standard modules.

In type A,D,E, the varieties of submodules involved in theseformulas are isomorphic to Nakajima graded quiver varietiesL •(V ,W ) (Lusztig, Savage-Tingley).

In type B,C,F,G, these varieties of submodules might beinteresting replacements for the missing Nakajima varieties.

A simple Uq(g)-module S is called real if S⊗S is simple.

ConjectureReal simple modules correspond to cluster monomials.

Would give geometric q-character formulas for all real simples.

Page 126: Kirillov-Reshetikhin modules and quantum affine algebrasslc/wpapers/s78vortrag/Leclerc.pdf · Finite-dimensional representations of g g simple complex Lie algebra, with Cartan matrix

Relation with Nakajima theory

If zi Mi then ∏i zi ⊕iMi

geometric q-character formulas for tensor products offundamental Uq(g)-modules, that is, for standard modules.

In type A,D,E, the varieties of submodules involved in theseformulas are isomorphic to Nakajima graded quiver varietiesL •(V ,W ) (Lusztig, Savage-Tingley).

In type B,C,F,G, these varieties of submodules might beinteresting replacements for the missing Nakajima varieties.

A simple Uq(g)-module S is called real if S⊗S is simple.

ConjectureReal simple modules correspond to cluster monomials.

Would give geometric q-character formulas for all real simples.