Kinetic Monte Carlo

28
Kinetic Monte Carlo Triangular lattice

description

Kinetic Monte Carlo. Triangular lattice. Diffusion. Thermodynamic factor. Self Diffusion Coefficient. Diffusion. Standard Monte Carlo to study diffusion. Pick an atom at random. Standard Monte Carlo to study diffusion. Pick an atom at random Pick a hop direction. - PowerPoint PPT Presentation

Transcript of Kinetic Monte Carlo

Page 1: Kinetic Monte Carlo

Kinetic Monte Carlo

Triangular lattice

Page 2: Kinetic Monte Carlo

Diffusion

D = Θ ⋅DJ

DJ =1

2d( )t1N

Δr R i t( )

i=1

N

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2

Θ=∂

μkBT

⎝ ⎜

⎠ ⎟

∂ ln x=

N

N 2 − N 2Thermodynamic

factor

Self DiffusionCoefficient

Page 3: Kinetic Monte Carlo

Δr R i t( )

Δr R j t( )

DJ =1

2d( )t1N

Δr R i t( )

i=1

N

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2

Diffusion

D* =1

2d( )t1N

Δr R i t( )2

i=1

N

Page 4: Kinetic Monte Carlo

Standard Monte Carlo to study diffusion

• Pick an atom at random

Page 5: Kinetic Monte Carlo

Standard Monte Carlo to study diffusion

• Pick an atom at random• Pick a hop direction

Page 6: Kinetic Monte Carlo

Standard Monte Carlo to study diffusion

• Pick an atom at random• Pick a hop direction• Calculate

exp −ΔEb kBT( )

Page 7: Kinetic Monte Carlo

Standard Monte Carlo to study diffusion

• Pick an atom at random• Pick a hop direction• Calculate • If ( >

random number) do the hop€

exp −ΔEb kBT( )

exp −ΔEb kBT( )

Page 8: Kinetic Monte Carlo

Kinetic Monte Carlo

Consider all hops simultaneously

A. B. Bortz, M. H. Kalos, J. L. Lebowitz, J. Comput Phys, 17, 10 (1975).F. M. Bulnes, V. D. Pereyra, J. L. Riccardo, Phys. Rev. E, 58, 86 (1998).

Page 9: Kinetic Monte Carlo
Page 10: Kinetic Monte Carlo
Page 11: Kinetic Monte Carlo
Page 12: Kinetic Monte Carlo
Page 13: Kinetic Monte Carlo
Page 14: Kinetic Monte Carlo
Page 15: Kinetic Monte Carlo
Page 16: Kinetic Monte Carlo
Page 17: Kinetic Monte Carlo

Wi = ν * exp−ΔEikBT

⎝ ⎜

⎠ ⎟

For each potential hop i, calculate the hop rate

Page 18: Kinetic Monte Carlo

Wi = ν * exp−ΔEikBT

⎝ ⎜

⎠ ⎟

For each potential hop i, calculate the hop rate

Then randomly choose a hop k, with probability

Wk

Page 19: Kinetic Monte Carlo

Wi = ν * exp−ΔEikBT

⎝ ⎜

⎠ ⎟

For each potential hop i, calculate the hop rate

Then randomly choose a hop k, with probability

Wk= random number

ξ1

Page 20: Kinetic Monte Carlo

Wi = ν * exp−ΔEikBT

⎝ ⎜

⎠ ⎟

For each potential hop i, calculate the hop rate

Then randomly choose a hop k, with probability

Wk= random number

ξ1

Wii=1

k−1

∑ <ξ1 ⋅W ≤ Wii= 0

k

W = Wii= 0

Nhops

Page 21: Kinetic Monte Carlo

Then randomly choose a hop k, with probability

Wk= random number

ξ1

Wii=1

k−1

∑ <ξ1 ⋅W ≤ Wii= 0

k

W = Wii= 0

Nhops

Page 22: Kinetic Monte Carlo

Time

After hop k we need to update the time

= random number

ξ 2

Δt = −1W

logξ 2

Page 23: Kinetic Monte Carlo

Two independent stochastic variables:

the hop k and the waiting time

Wii=1

k−1

∑ <ξ1 ⋅W ≤ Wii= 0

k

Δt = −1W

logξ 2 €

W = Wii= 0

Nhops

∑€

Wi = ν * exp−ΔEikBT

⎝ ⎜

⎠ ⎟

Δt

Page 24: Kinetic Monte Carlo

Kinetic Monte Carlo• Hop every time• Consider all possible hops simultaneously• Pick hop according its relative probability• Update the time such that on average

equals the time that we would have waited in standard Monte Carlo

Δt

A. B. Bortz, M. H. Kalos, J. L. Lebowitz, J. Comput Phys, 17, 10 (1975).F. M. Bulnes, V. D. Pereyra, J. L. Riccardo, Phys. Rev. E, 58, 86 (1998).

Page 25: Kinetic Monte Carlo

Triangular 2-d lattice, 2NN pair interactions

Er

σ ( ) = Vo +Vpo intσ l +12

VNNpairσ l σ ii= NNpairs∑ +

12

VNNNpairσ l σ jj= NNNpairs

∑ ⎛

⎜ ⎜ ⎜

⎟ ⎟ ⎟

l=1

N lattice−sites

Page 26: Kinetic Monte Carlo

Activation barrier

ΔEkra = Eactivated −state −12

E1 + E2( )

ΔEbarrier = ΔEkra +12

E final − Einitial( )

Page 27: Kinetic Monte Carlo

Thermodynamics

Θ=∂

μkBT

⎝ ⎜

⎠ ⎟

∂ ln x=

N

N 2 − N 2

D = Θ ⋅DJ

Page 28: Kinetic Monte Carlo

Kinetics

D = Θ ⋅DJ

DJ =1

2d( )t1N

Δr R i t( )

i=1

N

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2