Kinematics Forward Kinematic - pku.edu.cn

62
Kinematics – Forward Kinematic Centre for Robotics Research – School of Natural and Mathematical Sciences – King’s College London

Transcript of Kinematics Forward Kinematic - pku.edu.cn

Page 1: Kinematics Forward Kinematic - pku.edu.cn

Kinematics – Forward Kinematic

Centre for Robotics Research – School of Natural and Mathematical Sciences – King’s College London

Page 2: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 20182

Introduction – Forward and Inverse Kinematics

Inverse

Forward

Page 3: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 20183

Linear Algebra –Dot Product

The dot product of two vectors A = [A1, A2, ..., An] and B = [B1, B2, ..., Bn]

Page 4: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 20184

Linear Algebra –Dot Product

[1, 0]

[1, 1]

[2, 0]

[0, 2]

[0, 1] [0, 2]

if A and B are orthogonal

if they are codirectional

Page 5: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 20185

Linear Algebra –Matrix Multiplication

=Ai βˆ™ Bj

n x m

m x p

n x p

Page 6: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 20186

β€’ Example

Linear Algebra –Matrix Multiplication

π‘Ž 𝑏𝑐 𝑑

𝑒 𝑓𝑔 β„Ž

= ?

π‘Ž 𝑏𝑐 𝑑

=𝑒 𝑓𝑔 β„Ž

?

Page 7: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 20187

Linear Algebra –Matrix Multiplication

Square matrices

AB β‰  BA

Page 8: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 20188

Linear Algebra –Matrix Multiplication

Row vector and column vector- Dimensionality

3 βœ•11βœ• 3

Page 9: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 20189

Linear Algebra –Matrix Multiplication

Square matrix and column vector

Page 10: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201810

Linear Algebra –Matrix Multiplication

If AT = C = x

Then: ABC = xTAx

Quadratic scaler function using matrix representation

Page 11: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201811

Linear Algebra –Matrix Multiplication

Rectangular matrices

Page 12: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201812

Linear Algebra

Page 13: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201813

Rigid body motion

Translation + Rotation

Page 14: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201814

Rotation Matrix in 2D

x’

y

x

y’

ΞΈ

Page 15: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201815

Rotation Matrix in 2D

x’

y

x

y’

ΞΈ(cosΞΈ, sinΞΈ)

(-sinΞΈ, cosΞΈ)

A

B

Rab=[xa

b yab]

pa= Rab pb

Page 16: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201816

Rotation Matrix in 2D

x’

y

x

y’

ΞΈ

(cosΞΈ, -sinΞΈ)

(sinΞΈ, cosΞΈ)pb= Rab-1 pa

RabT = Ra

b-1

RabT Ra

b = I

Page 17: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201817

Rotation Matrix in 3D

Rotation of a rigid object about a point. A be the inertial

frame, B the body frame, and xab, yab, zab ∈ R3 the

coordinates of the axes of B relative to A

A

B

Page 18: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201818

Rotation Matrix in 3D

Consider the point q,

qb = (xb, yb, zb) be coordinates of q relative to frame B.

qa = (xa, ya, za) be coordinates of q relative to frame A.

coordinate axes of B, which, in turn, have coordinates xab, yab, zab ∈ R3 with

respect to A

Coordinates of q relative to frame A are given by

Page 19: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201819

Rotation matrix – Vector representation

Representation of a Vector𝑃 =

𝑝π‘₯𝑝𝑦𝑝𝑧

Respect to 𝑂 βˆ’ π‘₯𝑦𝑧

𝑃′ =

𝑝′π‘₯

𝑝′𝑦

𝑝′𝑧

Respect to 𝑂–π‘₯′𝑦′𝑧′

β€’ Since 𝑃 and 𝑃′ are representations of the same point P

𝑃 = 𝑝′π‘₯π‘₯β€² + 𝑝′𝑦𝑦

β€² + 𝑝′𝑧𝑧′ = π‘₯β€² 𝑦′ 𝑧′ 𝑝′

𝑃 = π‘₯β€² 𝑦′ 𝑧′ 𝑝′ = 𝑅𝑃′

𝑃′ = 𝑅𝑇𝑃

β€’ R represents the transformation matrix of vector

coordinates in frame 𝑂–π‘₯′𝑦′𝑧′

β€’ Inverse transformation is

Page 20: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201820

Rotation matrix

𝑅𝑇𝑅 = 𝐼3 =1 0 00 1 00 0 1

𝑅𝑇 = π‘…βˆ’1

det(𝑅) = 1

Page 21: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201821

Rotation matrix – Elementary rotation

The rotation matrix of frame 𝑂–π‘₯′𝑦′𝑧′

with respect to frame 𝑂– π‘₯𝑦𝑧

𝑅𝑧 𝛼 =cos 𝛼 βˆ’sin𝛼 0sin 𝛼 cos 𝛼 00 0 1

𝑅𝑦 𝛽 =cos 𝛽 0 sin 𝛽0 1 0

βˆ’sin 𝛽 0 cos 𝛽

𝑅π‘₯ 𝛾 =1 0 00 cos 𝛾 βˆ’π‘ π‘–π‘› 𝛾0 𝑠𝑖𝑛 𝛾 cos 𝛾

Page 22: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201822

Rotation matrix – Example of a 3D vector rotation

𝑝 =001

𝑝1 = 𝑅π‘₯ πœƒπ‘₯ 𝑝

𝑅π‘₯ πœƒπ‘₯ 𝑝2 = 𝑅𝑦 πœƒπ‘¦ 𝑝1

𝑅𝑦 πœƒπ‘¦

𝑅𝑧 πœƒπ‘§

𝑝3 = 𝑅𝑧 πœƒπ‘§ 𝑝2

𝑝 = 𝑅π‘₯𝑇 πœƒπ‘₯ 𝑅𝑦

𝑇 πœƒπ‘¦ 𝑅𝑧𝑇 πœƒπ‘§ 𝑝3

𝑝3 = 𝑅𝑧 πœƒπ‘§ 𝑅𝑦 πœƒπ‘¦ 𝑅π‘₯ πœƒπ‘₯ 𝑝

Page 23: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201823

Euler Angle

A representation of orientation in terms of three independent parameters constitutes

a minimal representation.

πœƒ = πœƒπ‘₯ πœƒπ‘¦ πœƒπ‘§ T

𝑝1 = 𝑅π‘₯ πœƒπ‘₯ 𝑅𝑦 πœƒπ‘¦ 𝑅𝑧 πœƒπ‘§ 𝑝

𝑝 =001

, πœƒπ‘₯ = πœƒπ‘¦ = πœƒπ‘§ = 45π‘œ

𝑝2 = 𝑅𝑧 πœƒπ‘§ 𝑅𝑦 πœƒπ‘¦ 𝑅π‘₯ πœƒπ‘₯ 𝑝?

Page 24: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201824

Euler Angle

A representation of orientation in terms of three independent parameters

constitutes a minimal representation.

πœƒ = πœƒπ‘₯ πœƒπ‘¦ πœƒπ‘§ T

𝑝1 = 𝑅π‘₯ πœƒπ‘₯ 𝑅𝑦 πœƒπ‘¦ 𝑅𝑧 πœƒπ‘§ 𝑝

𝑝 =001

, πœƒπ‘₯ = πœƒπ‘¦ = πœƒπ‘§ = 45π‘œ

𝑝2 = 𝑅𝑧 πœƒπ‘§ 𝑅𝑦 πœƒπ‘¦ 𝑅π‘₯ πœƒπ‘₯ 𝑝≠

𝑝1𝑝2

𝑝

Page 25: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201828

Homogeneous Transformation

β€’ Pose of a rigid body is completely described using position and orientation.𝑅𝑃

β€’ It can be compactly rewritten as below.

β€’ Let’s A is the homogeneous transformation matrix(4 Γ— 4)

𝐴 =𝑅 𝑃0 1

𝐴10 = 𝑅1

0 π‘œ10

0 1

π‘ƒπ‘œ

1= 𝐴1

0 𝑃1

1

Page 26: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201829

Homogeneous Transformation

β€’ Pose of a rigid body is completely described using position and orientation.𝑅𝑃

β€’ It can be compactly rewritten as below.

β€’ Let’s A is the homogeneous transformation matrix(4 Γ— 4)

𝐴 =𝑅 𝑃0 1

π‘π‘œπ‘‘π‘’ ∢ π΄βˆ’1 β‰  𝐴𝑇

A-1

Proof execise: A A-1

Page 27: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201830

Homogeneous Transformation

β€’ Pose of a rigid body is completely described using position and orientation.𝑅𝑃

β€’ It can be compactly rewritten as below.

β€’ Let’s A is the homogeneous transformation matrix(4 Γ— 4)

𝑃1

1= 𝐴0

1 𝑃0

1

𝑃1

1= 𝑅0

1 βˆ’π‘…01π‘œ1

0

0 1𝑃0

1

𝐴10 = 𝑅1

0 π‘œ10

0 1

π‘ƒπ‘œ

1= 𝐴1

0 𝑃1

1

Page 28: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201831

Homogeneous Transformation

Aac= Aab Abc =

Proof exercise

pbc

C

Page 29: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201832

Homogeneous Transformation

Translation without rotation

P

𝑧

𝑦

π‘₯

𝑧′

𝑦′

π‘₯β€²

=

1000

P100

P010

P001

z

y

x

A

𝑧

𝑦

π‘₯

𝑧′

π‘₯β€²Rotation without translation

=

1000

0

0

0

zzz

yyy

xxx

'''

'''

'''

zyx

zyx

zyx

A

Page 30: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201833

Homogeneous Transformation

β€’ Finding the Homogeneous Matrix (an open kinematic chain)

π‘‡π‘›π‘œ π‘ž = 𝐴1

π‘œ π‘ž1 𝐴21 π‘ž2 …𝐴𝑛

π‘›βˆ’1 π‘žπ‘›

The coordinate transformation describing the position and orientation of Frame n with respect to Frame 0

Page 31: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201834

Programming exercise in class

open exercise1

homogeneousmatrix.mrotationchain_q.m

Homogeneous Transformation

Page 32: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201835

Kinematics for manipulators

A manipulator can be schematically represented from a mechanical viewpoint as akinematic chain of rigid bodies (links) connected by means of revolute or prismatic joints.

Page 33: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201836

Typical Manipulator Structures

Depends on combination of revolute joint and prismatic joint

Three link planar arm,Parallelogram Arm,

Spherical arm,Spherical Wrist,

Stanford Manipulator,DLR Manipulator,

…

Page 34: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201837

Typical Manipulator Structures

Spherical wrist

Example of combination of revolute joints

Page 35: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201838

Denavit-Hartenberg Convention(D-H matrix)

β€’ The D–H convention allows the construction of the forward kinematics

function by composition of the individual coordinate transformations as

π‘‡π‘›π‘œ π‘ž = 𝐴1

π‘œ π‘ž1 𝐴21 π‘ž2 …𝐴𝑛

π‘›βˆ’1 π‘žπ‘›

β€’ It can be applied to any open kinematic chain

D-H convention homogeneous transformation matrix and parameters

ri

ri

Page 36: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201839

Denavit-Hartenberg Convention(D-H matrix)

π‘Ÿπ‘– ∢ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 𝑂𝑖 π‘Žπ‘›π‘‘π‘‚π‘–β€²

𝑑𝑖: π‘‘π‘’π‘π‘‘β„Ž π‘“π‘Ÿπ‘œπ‘š π‘‚π‘–βˆ’1 π‘‘π‘œ 𝑂𝑖′ π‘Žπ‘™π‘œπ‘›π‘” π‘§π‘–βˆ’1

(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘‚π‘–βˆ’1 π‘Žπ‘›π‘‘ π‘€β„Žπ‘’π‘Ÿπ‘’ π‘π‘œπ‘šπ‘šπ‘œπ‘› π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ π‘Ÿπ‘– 𝑖𝑛𝑑𝑒𝑠𝑒𝑐𝑑 π‘€π‘–π‘‘β„Ž π‘§π‘–βˆ’1)𝛼𝑖: π‘Žπ‘›π‘”π‘™π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘Žπ‘₯𝑒𝑠 π‘§π‘–βˆ’1 π‘Žπ‘›π‘‘ π‘§π‘–π‘Žπ‘π‘œπ‘’π‘‘ π‘Žπ‘₯𝑖𝑠 π‘₯π‘–πœ—π‘–: π‘Žπ‘›π‘”π‘™π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘Žπ‘₯𝑒𝑠 π‘₯π‘–βˆ’1 π‘Žπ‘›π‘‘ π‘₯𝑖 π‘Žπ‘π‘œπ‘’π‘‘ π‘Žπ‘₯𝑖𝑠 π‘§π‘–βˆ’1

β€’ π‘Ÿ and 𝛼𝑖 are always constant by geometry connection

ri-1

ri

Important: Locate the origin 𝑂𝑖 at

the intersection of 𝑧𝑖 with the

common normal to axes π‘§π‘–βˆ’1 and 𝑧𝑖

Page 37: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201840

DH Homogeneous transformation

Frame i-1 translate by

di along zi-1 and rotate

by ΞΈi about zi-1

Translate by ri along xi’

and rotate by Ξ±i about xi’

ri

riri

Page 38: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201841

Page 39: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201842

Denavit-Hartenberg Convention(D-H matrix)

Page 40: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201843

Denavit-Hartenberg Convention

1. Choose base frame by locating the origin on axis 𝑧0 , and obtain a right-handed frame

2. Locate the origin 𝑂𝑖 at the intersection of 𝑧𝑖 with the common normal to axes π‘§π‘–βˆ’1 and𝑧𝑖

3. Establish π‘₯𝑖 axis. Establish or along the common normal between the 𝑧𝑖 and π‘§π‘–βˆ’1 axeswhen they are parallel.

4. Establish 𝑦𝑖 axis. Assign to complete the right-handed coordinate system.

5. Find the link and joint parameters

6. Using the defined parameters, compute the homogeneous transformation matrices.

π΄π‘–π‘–βˆ’1 π‘žπ‘– π‘“π‘œπ‘Ÿ 𝑖 = 1,… , 𝑛.

7. Compute homogeneous transformation. π‘‡π‘›π‘œ π‘ž = 𝐴1

π‘œ π‘ž1 𝐴21 π‘ž2 …𝐴𝑛

π‘›βˆ’1 π‘žπ‘›

8. π‘‡π‘›π‘œ π‘ž is the position and orientation of the end-effector frame with respect to the

base frame

Page 41: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201844

Denavit-Hartenberg Convention

If joint 𝑖 is revolute, πœƒπ‘– are variablesIf joint 𝑖 is prismatic, 𝑑𝑖 are variables

ri and 𝛼𝑖 are always constant by geometry connection

Remark

Page 42: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201845

Three-linked arm example

Link 𝒓𝑖 𝛼𝑖 𝑑𝑖 πœ—π‘–

1 ?

2 ?

3

Page 43: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201846

Three-linked arm example

Link 𝐫𝑖 𝛼𝑖 𝑑𝑖 πœ—π‘–

1 π‘Ž1 0 0 πœ—1

2 π‘Ž2 0 0 πœ—2

3 π‘Ž3 0 0 πœ—3

Page 44: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201847

Three-linked arm example

Link 𝐫𝑖 𝛼𝑖 𝑑𝑖 πœ—π‘–

1 π‘Ž1 0 0 πœ—1

2 π‘Ž2 0 0 πœ—2

3 π‘Ž3 0 0 πœ—3

riri

Compare to elementary rotation

matrix:

R: rotation matrix of z axis

P: translation vector

DH arrives the same matrix!

Page 45: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201848

Three-linked arm example

Link 𝐫𝑖 𝛼𝑖 𝑑𝑖 πœ—π‘–

1 π‘Ž1 0 0 πœ—1

2 π‘Ž2 0 0 πœ—2

3 π‘Ž3 0 0 πœ—3

Page 46: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201849

Example – Anthropomorphic Arm

1. Choose base frame by locating the originon axis 𝑧0 , and obtain a right-handedframe

2. Locate the origin of frame 𝑂𝑖 at the

intersection of 𝑧𝑖 with the common

normal to axes π‘§π‘–βˆ’1 and 𝑧𝑖

Base frame If joint 𝑖 is revolute, axes π‘§π‘–βˆ’1 and 𝑧𝑖 areparallel

parallel

Page 47: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201850

Example – Anthropomorphic Arm

3. Establish π‘₯𝑖 axis. Establish or along the

common normal between the 𝑧𝑖 and π‘§π‘–βˆ’1axes when they are parallel.

4. Establish 𝑦𝑖 axis. Assign to complete the

right-handed coordinate system.

Page 48: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201851

Example – Anthropomorphic Arm

5. Find the link and joint parameter, and

form the table of parameters

Link 𝒓𝑖 𝛼𝑖 𝑑𝑖 πœ—π‘–

0-1 0 πœ‹/2 0 πœ—1

1-2 π‘Ž2 0 0 πœ—2

2-3 π‘Ž3 0 0 πœ—3

revolution joint with height =0

so: d =0

Page 49: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201852

Example – Anthropomorphic Arm

6. Using the defined parameters, compute

the homogeneous transformation matrices.

π΄π‘–π‘–βˆ’1 π‘žπ‘– π‘“π‘œπ‘Ÿ 𝑖 = 1,2,3.

Page 50: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201853

Example – Anthropomorphic Arm

7. Compute π‘‡π‘›π‘œ π‘ž . It represents the

position and orientation of the end-effector

frame with respect to the base frame

𝑇30 π‘ž = 𝐴1

0𝐴21𝐴3

2

=

𝑐1𝑐23𝑠1𝑐23𝑠230

βˆ’π‘1𝑠23βˆ’π‘ 1𝑠23𝑐230

𝑠1βˆ’π‘100

𝑐1(π‘Ž2𝑐2 + π‘Ž3𝑐23)𝑠1(π‘Ž2𝑐2 + π‘Ž3𝑐23)π‘Ž2𝑠2 + π‘Ž3𝑠23

1

Orientation Position

Page 51: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201854

Example – Anthropomorphic Arm

π‘Ž2

π‘Ž3

πœ—1

πœ—2

πœ—3

Given : πœ—1 0 to 45π‘œ β†’ πœ—2 0 to 90π‘œ

β†’ πœ—3(0 to 90π‘œ) β†’ πœ—1 (45 to βˆ’45

π‘œ)

Page 52: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201855

Example – Anthropomorphic Arm

Given : πœ—1 0 to 45π‘œ β†’ πœ—2 0 to 90π‘œ

β†’ πœ—3(0 to 90π‘œ) β†’ πœ—1 (45 to βˆ’45

π‘œ)

Page 53: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201856

Example –Spherical Arm

1. Choose base frame by locating the

origin on axis 𝑧0 , and obtain a right-

handed frame

2. Locate the origin of frame 𝑂𝑖 at the

intersection of 𝑧𝑖 with the common

normal to axes π‘§π‘–βˆ’1 and 𝑧𝑖

prismatic

Page 54: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201857

Example –Spherical Arm

prismatic

5. Find the link and joint parameter, and

form the table of parameters

Link 𝒓𝑖 𝛼𝑖 𝑑𝑖 πœ—π‘–

1 0 -πœ‹/2 0 πœ—1

2 0 πœ‹/2 𝑑2 πœ—2

3 0 0 𝑑3 0

Page 55: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201858

Example – Spherical Arm

prismatic

Translation only

6. Using the defined parameters, compute

the homogeneous transformation matrices.

π΄π‘–π‘–βˆ’1 π‘žπ‘– π‘“π‘œπ‘Ÿ 𝑖 = 1,… , 𝑛.

𝐴10 πœ—1 =

𝑐1𝑠100

00βˆ’10

βˆ’π‘ 1𝑐100

0001

𝐴21 πœ—2 =

𝑐2𝑠200

0010

𝑠2βˆ’π‘200

00𝑑21

𝐴32 𝑑3 =

1000

0100

0010

00𝑑31

Page 56: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201859

Example – Spherical Arm

prismatic

𝑇30 π‘ž = 𝐴1

0𝐴21𝐴3

2

=

𝑐1𝑐2𝑠1𝑐2βˆ’π‘ 20

βˆ’π‘ 1𝑐100

𝑐1𝑠2𝑠1𝑠2𝑐20

𝑐1𝑠2𝑑3 βˆ’ 𝑠1𝑑2𝑠1𝑠2𝑑3 + 𝑐1𝑑2

𝑐2𝑑31

Orientation Position

Page 57: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201860

Example – Spherical Arm

prismatic

Given :

πœ—1 βˆ’90 to βˆ’ 45π‘œ β†’ 𝑑2 1 to 3β†’ 𝑑3(1 to 3) β†’ πœ—2 (0 to 45

π‘œ) β†’ πœ—1 (βˆ’45 to 0π‘œ)

𝑑2

𝑑3

πœ—1

πœ—2

Page 58: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201861

Example – Spherical Arm

prismatic

Given :

πœ—1 βˆ’90 to βˆ’ 45π‘œ β†’ 𝑑2 1 to 3β†’ 𝑑3(1 to 3) β†’ πœ—2 (0 to 45

π‘œ) β†’ πœ—1 (βˆ’45 to 0π‘œ)

Page 59: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201862

Programming exercise

DHexecise

complete the spherical arm matlab simulation

Page 60: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201863

DH Transformation for continuum mechanism

Continuum mechanism

β€’ Flexible body

β€’ No physical joints

β€’ No direct DH Transformation

Flexible catheter

Page 61: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201864

Continuum Robot Arm

Catheter Kinematics for Intracardiac Navigation, TBME 09

The curvature constancy and the

coupling between parameters yield:

ΞΈ5 = Ο€ / 2 βˆ’ ΞΈ3

ΞΈ6 = Ο€ βˆ’ ΞΈ2

The constant length of the distal end

(O4O6 ) is denoted by d7

Page 62: Kinematics Forward Kinematic - pku.edu.cn

Compliant Robotics Peking University, Globex, July 201865

Summary

β€’ Type of manipulators are defined depending on different combination of revolute

and prismatic joints.

β€’ Poses of a robot end-effector and joints are completely described in space by

its position and orientation

β€’ Forward kinematic describe pose of a robot by joint and link variables

β€’ D-H convention to derive forward kinematic using the homogeneous

transformation for manipulators

β€’ Poses of a robot end-effector and each joint are compactly rewritten using the

homogeneous transformation matrix