kernel module programming

61
kernel module programming Nezer J. Zaidenberg

description

kernel module programming. Nezer J. Zaidenberg. reference. This guide is built on top of The Linux Kernel Module Programming Guide The guide is available from http://tldp.org/LDP/lkmpg/2.6/html/index.html I have also put references to other sources. First class in kernel. - PowerPoint PPT Presentation

Transcript of kernel module programming

Page 1: kernel module programming

kernel module programmingkernel module programming

Nezer J. ZaidenbergNezer J. Zaidenberg

Page 2: kernel module programming

reference

• This guide is built on top of The Linux Kernel Module Programming Guide

• The guide is available from http://tldp.org/LDP/lkmpg/2.6/html/index.html

• I have also put references to other sources

Page 3: kernel module programming

First class in kernel

• We will cover kernel programming

• I assume you now master the user space portion of this course.

Page 4: kernel module programming

Agenda

• What is kernel module

• How to code simple kernel modules

• char devices

• adding system calls

• ioctls

• netlink sockets

Page 5: kernel module programming

Next week

• Using procfs and sysfs

• Blocking

• Using timers to implement periodical tasks

• Interrupt handling

Page 6: kernel module programming

Kernel module

• Pluggable module to the operating system that adds functionality

• Device driver

• New features

• Since we don’t have hardware we focus on features

Page 7: kernel module programming

Kernel modules

• Can be added on the fly

• Allow us to change functionality on the fly

• Allow us to read and write

Page 8: kernel module programming

SIMPLEST MODULE

• #include <linux/module.h> /* Needed by all modules */

• #include <linux/kernel.h> /* Needed for KERN_INFO */

• int init_module(void)

• {

• printk(KERN_INFO "Hello world 1.\n");

• return 0;

• }

• void cleanup_module(void)

• {

• printk(KERN_INFO "Goodbye world 1.\n");

• }

Page 9: kernel module programming

EXPLAINING

• module init is called when module is loaded

• module cleanup is called when module is unloaded

Page 10: kernel module programming

printk

• The server can’t use stdlib due to userspace/kernel space issues

• Most of C library is implemented in the kernel

• printk is printf for kernel programs.

Page 11: kernel module programming

Makefile• obj-m += hello-1.o

• all:

• make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

• clean:

• make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Page 12: kernel module programming

Inserting and removing module

• To insert

• insmod <modname>

• modprobe <modname> <args>

• To remove

• rmmod <modname>

• modprobe -r <modname>

Page 13: kernel module programming

hello-2.c•static int __init hello_2_init(void)

•{

• printk(KERN_INFO "Hello, world 2\n");

• return 0;

•}

•static void __exit hello_2_exit(void)

•{

• printk(KERN_INFO "Goodbye, world 2\n");

•}

•module_init(hello_2_init);

•module_exit(hello_2_exit);

Page 14: kernel module programming

What does it do

• __init macro and __exit macro tells the kernel when we use this function

• This allows to free kernel memory that is used only at init

Page 15: kernel module programming

hello-3.c•static int hello3_data __initdata = 3;

•static int __init hello_3_init(void)

•{

• printk(KERN_INFO "Hello, world %d\n", hello3_data);

• return 0;

•}

•static void __exit hello_3_exit(void)

•{

• printk(KERN_INFO "Goodbye, world 3\n");

•}

•//init … exit…

Page 16: kernel module programming

Hello-4.c• #define DRIVER_AUTHOR "Peter Jay Salzman <[email protected]>"

• #define DRIVER_DESC "A sample driver"

• static int __init init_hello_4(void)

• {

• printk(KERN_INFO "Hello, world 4\n");

• return 0;

• }

• static void __exit cleanup_hello_4(void)

• {

• printk(KERN_INFO "Goodbye, world 4\n");

• }

Page 17: kernel module programming

Hello-4.c (cont)

• module_init(init_hello_4);

• module_exit(cleanup_hello_4);

• MODULE_LICENSE("GPL");

• MODULE_SUPPORTED_DEVICE("testdevice");

• MODULE_AUTHOR(DRIVER_AUTHOR); /* Who wrote this module? */

• MODULE_DESCRIPTION(DRIVER_DESC); /* What does this module do */

Page 18: kernel module programming

Additions in hello-4.c

• We added licensing and information that removes the “kernel is tainted message”

• We also added some more info

Page 19: kernel module programming

Hello-5.c (simplified)• static int myint = 420;

• module_param(myint, int, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);

• MODULE_PARM_DESC(myint, "An integer");

• static int __init hello_5_init(void)

• {

• int i;

• printk(KERN_INFO "Hello, world 5\n=============\n");

• printk(KERN_INFO "myint is an integer: %d\n", myint);

• return 0;

• }

Page 20: kernel module programming

passing args

• We demonstrate the effect of passing args

• The tutorial demonstrate how more args (from different types can be given)

Page 21: kernel module programming

Getting info

• modinfo <modname>

• gives info on running modules we will get info for our modules 4 and 5.

Page 22: kernel module programming

Multiple files

• We build a module using two files

• start.c

• stop.c

Page 23: kernel module programming

start.c

• #include <linux/kernel.h>/* We're doing kernel work */

• #include <linux/module.h>/* Specifically, a module */

• int init_module(void)

• {

• printk(KERN_INFO "Hello, world - this is the kernel speaking\n");

• return 0;

• }

Page 24: kernel module programming

stop.c

• #include <linux/kernel.h>/* We're doing kernel work */

• #include <linux/module.h>/* Specifically, a module */

• void cleanup_module()

• {

• printk(KERN_INFO "Short is the life of a kernel module\n");

• }

Page 25: kernel module programming

Makefile for multiple files

• obj-m += startstop.o

• startstop-objs := start.o stop.o

• all:

• make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

• clean:

• make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Page 26: kernel module programming

What do we do with KM

• Everything the OS can do

• Create drivers

• Virtual devices

• New system calls

• New OS abilities (support new file systems? implement something differently/more efficiently? etc)

Page 27: kernel module programming

Devices

• All devices happen to exist under the /dev file system and represented as a file that we can work with.

• This include I/O devices, virtual devices etc.

Page 28: kernel module programming

I/O Devices

• I/O devices in Linux are specified as block and char device

• Block devices support lseek(2) : Example - disk

• Char devices don’t support lseek(2) : Example - keyboard.

Page 29: kernel module programming

Struct file operations

• Char device/Block device is an ABC

• We inherit and implement the functions we need using struct file operations.

Page 30: kernel module programming

Example

• struct file_operations fops = {

• .read = device_read,

• .write = device_write,

• .open = device_open,

• .release = device_release

• };

Page 31: kernel module programming

Registering

• int register_chrdev(unsigned int major, const char *name, struct file_operations *fops);

• regiser = puts the driver handler in the factory (same as ffmpeg codecs)

• Major = which driver handles this device.

• Minor = if we have several devices of the same type this distinguish them (like two HD on a box)

Page 32: kernel module programming

Unregistering

• Is done using unregister_chardev function

• If we try to rmmod and somebody is using the module - it will fail.

• Otherwise it will be successful.

• Usage count for our module is managed by the kernel.

• To help the kernel we have try_module_get and module_put functions.

Page 33: kernel module programming

Examples - blank char device

#include <linux/kernel.h>#include <linux/module.h>#include <linux/fs.h>#include <asm/uaccess.h> /* for put_user */

int init_module(void);void cleanup_module(void);static int device_open(struct inode *, struct file *);static int device_release(struct inode *, struct file *);static ssize_t device_read(struct file *, char *, size_t, loff_t *);static ssize_t device_write(struct file *, const char *, size_t, loff_t *);

Page 34: kernel module programming

Example 2#define SUCCESS 0#define DEVICE_NAME "chardev" /* Dev name as it appears in /proc/devices */#define BUF_LEN 80 /* Max length of the message from the device */static int Major; /* Major number assigned to our device driver */

static int Device_Open = 0;static char msg[BUF_LEN]; /* The msg the device will give when asked */static char *msg_Ptr;

static struct file_operations fops = {.read = device_read,.write = device_write,.open = device_open,.release = device_release

};

Page 35: kernel module programming

Example 3int init_module(void){ Major = register_chrdev(0, DEVICE_NAME, &fops);

if (Major < 0) { printk(KERN_ALERT "Registering char device failed

with %d\n", Major); return Major;}

printk(KERN_INFO "the driver, create a dev file with\n");printk(KERN_INFO "'mknod /dev/%s c %d 0'.\n", DEVICE_NAME, Major);printk(KERN_INFO "Remove the device file and module when done.\n");

return SUCCESS;}

Page 36: kernel module programming

Example 4

void cleanup_module(void){

/* * Unregister the device */int ret = unregister_chrdev(Major, DEVICE_NAME);if (ret < 0)

printk(KERN_ALERT "Error in unregister_chrdev: %d\n", ret);}

Page 37: kernel module programming

Example 5static int device_open(struct inode *inode, struct file *file){

static int counter = 0;

if (Device_Open)return -EBUSY;

Device_Open++;sprintf(msg, "I already told you %d times Hello

world!\n", counter++);msg_Ptr = msg;try_module_get(THIS_MODULE);

return SUCCESS;}

Page 38: kernel module programming

Example 6static int device_release(struct inode *inode, struct file *file){

Device_Open--; /* We're now ready for our next caller */

/* * Decrement the usage count, or else once you

opened the file, you'll * never get get rid of the module. */module_put(THIS_MODULE);

return 0;}

Page 39: kernel module programming

Example 7static ssize_t device_read(struct file *filp, /* see include/linux/fs.h */

char *buffer, /* buffer to fill with data */ size_t length, /* length of the buffer */ loff_t * offset)

{int bytes_read = 0;if (*msg_Ptr == 0)

return 0;

while (length && *msg_Ptr) {

put_user(*(msg_Ptr++), buffer++);

length--;bytes_read++;

}

return bytes_read;}

Page 40: kernel module programming

Explaining

• Normally kernel memory is kept after the MMU

• When we go through the MMU to put stuff in a user data we use put_user

Page 41: kernel module programming

Example 8static ssize_tdevice_write(struct file *filp, const char *buff, size_t len, loff_t * off){

printk(KERN_ALERT "Sorry, this operation isn't supported.\n");

return -EINVAL;}

Page 42: kernel module programming

Communicating with user space

• Kernel modules communicate with user space programs in several methods

• new system calls

• dev file interface and functions (and ioctls)

• kernel netlink socket

• /proc fs

Page 43: kernel module programming

New system calls

• we can add new system calls to the linux kernel

• system calls have their os function table and we can register new ones

• we must supply header files off course (and man page if we are nice)

Page 44: kernel module programming

Chapter 8Replacing

System calls

Chapter 8Replacing

System callsThis chapter is very

dangerous!This chapter is very

dangerous!

Page 45: kernel module programming

switching open - chapter 8

• This is an example to replacing open(2) in the system call table.

• It’s dangerous(!)

• We can add new system calls if we want in similar way

• We don’t do it in our homework

Page 46: kernel module programming

taken from chapter 8

int init_module(){

original_call = sys_call_table[__NR_open];

sys_call_table[__NR_open] = our_sys_open;

return 0;}

Page 47: kernel module programming

Explaining

• We save original open function pointer from the system call table (NR_Open = open index)

• We put our own function

• We can do similar ways to add function (just find unused number)

Page 48: kernel module programming

Again taken from chapter 8

void cleanup_module(){

if (sys_call_table[__NR_open] != our_sys_open) {printk(KERN_ALERT "Somebody else also played with the ");printk(KERN_ALERT "open system call\n");printk(KERN_ALERT "The system may be left in ");printk(KERN_ALERT "an unstable state.\n");

}

sys_call_table[__NR_open] = original_call;}

Page 49: kernel module programming

Completely new system calls

• Tutorials

• http://www.linuxjournal.com/article/3326

• http://tldp.org/HOWTO/html_single/Implement-Sys-Call-Linux-2.6-i386/

• IMHO - Linux journal tutorial is better written but its old. the 2nd tutorial is more accurate...

• Read BOTH

Page 50: kernel module programming

I will not cover new system calls but..

• Take note - that you register the system call in the table and add name

• You register the name and handler

• You must recompile the entire kernel

• Using ioctl(2) is usually better if you can

Page 51: kernel module programming

Using IOCTL(2)Using IOCTL(2)

Page 52: kernel module programming

ioctl(2)

• IOCTL is like “a joker” system call.

• it gets two or more parameters.

• The file descriptor to work on (like device file)

• The operation number (like function number)

• Argument lists for the operation

Page 53: kernel module programming

IOCTL(2) - usages

• Add kernel operations - without adding system calls

• Add kernel operations - without recompiling

• Add kernel operations - that can be removed with the module - on the fly.

Page 54: kernel module programming

Parital example from chapter 7

struct file_operations Fops = {.read = device_read,.write = device_write,.ioctl = device_ioctl,.open = device_open,.release = device_release, /* a.k.a. close */

};

Page 55: kernel module programming

ioctl(2) implementation

int device_ioctl(struct inode *inode, /* see include/linux/fs.h */

struct file *file, /* ditto */ unsigned int ioctl_num, /* number and param for

ioctl */ unsigned long ioctl_param)

{int i;char *temp;char ch;

switch (ioctl_num) {case IOCTL_SET_MSG:

temp = (char *)ioctl_param;

get_user(ch, temp);for (i = 0; ch && i < BUF_LEN; i++, temp++)

get_user(ch, temp);

device_write(file, (char *)ioctl_param, i, 0);break;

case IOCTL_GET_MSG:// ...}

Page 56: kernel module programming

CalLing IOCTL from userspace

#include "chardev.h"

#include <stdio.h>#include <stdlib.h>#include <fcntl.h> /* open */#include <unistd.h> /* exit */#include <sys/ioctl.h> /* ioctl */

ioctl_set_msg(int file_desc, char *message){

int ret_val;

ret_val = ioctl(file_desc, IOCTL_SET_MSG, message);

if (ret_val < 0) {printf("ioctl_set_msg failed:%d\n",

ret_val);exit(-1);

}}

Page 57: kernel module programming
Page 58: kernel module programming

Camera driverCamera driverFor ex. 3!For ex. 3!

Page 59: kernel module programming

What is camera driver

• Camera driver is just another block device or char device that produces frames.

• Linux has a spec that all camera drivers must follow called V4L2 (Video 4(for) Linux 2)

• This spec is nothing but how to use read(2),write(2), ioctl(2), mmap.

Page 60: kernel module programming

About V4L spec

• Not very interesting.

• Available from bytesex and thedirks

• Just API documentation

Page 61: kernel module programming

About EX3

• You have to code frame grabber, a kernel quasi-webcam driver(getting the frames from flv file) and a user process that communicates with the kernel driver.

• We will discuss next class how to communicate between user and kernel