Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak...

42
Podle´ s spheres, quantum groupoids and special functions Kenny De Commer Universit´ e de Cergy-Pontoise March 13 2012 (Joint project with E. Koelink) Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podle´ s spheres March 13 2012 1 / 19

Transcript of Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak...

Page 1: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Podles spheres, quantum groupoids and special functions

Kenny De Commer

Universite de Cergy-Pontoise

March 13 2012

(Joint project with E. Koelink)

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 1 / 19

Page 2: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Table of contents

1 Classical groupoid constructions

2 Weak Hopf C∗-algebras and construction methods

3 Quantum groupoids from Podles spheres

4 Infinitesimal picture

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 2 / 19

Page 3: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Classical groupoid constructions

Transformation groupoids

• Action X x G ⇒ groupoid X o G .

• Objects: x ∈ X .

• Morphisms: xg((y if y = xg .

• Composition: xg((

gh

88yh((z .

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 3 / 19

Page 4: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Classical groupoid constructions

Transformation groupoids

• Action X x G ⇒ groupoid X o G .

• Objects: x ∈ X .

• Morphisms: xg((y if y = xg .

• Composition: xg((

gh

88yh((z .

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 3 / 19

Page 5: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Classical groupoid constructions

Ehresmann groupoid

• Free action X x G ⇒ groupoid XX−1.

• Objects: [x ] ∈ X/G .

• Morphisms: [x ][(x ,y)]

**[y ] where [(x , y)] ∈ X × X/G .

• Composition: [x ][(x ,y)]

**

[(x ,z)]

66[y ][(y ,z)]

**[z ] .

Enveloping groupoid:

XX−1 <<X−1

%%◦X

ee G||• .

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 4 / 19

Page 6: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Classical groupoid constructions

Ehresmann groupoid

• Free action X x G ⇒ groupoid XX−1.

• Objects: [x ] ∈ X/G .

• Morphisms: [x ][(x ,y)]

**[y ] where [(x , y)] ∈ X × X/G .

• Composition: [x ][(x ,y)]

**

[(x ,z)]

66[y ][(y ,z)]

**[z ] .

Enveloping groupoid:

XX−1 <<X−1

%%◦X

ee G||• .

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 4 / 19

Page 7: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Classical groupoid constructions

Ehresmann groupoid

• Free action X x G ⇒ groupoid XX−1.

• Objects: [x ] ∈ X/G .

• Morphisms: [x ][(x ,y)]

**[y ] where [(x , y)] ∈ X × X/G .

• Composition: [x ][(x ,y)]

**

[(x ,z)]

66[y ][(y ,z)]

**[z ] .

Enveloping groupoid:

XX−1 <<X−1

%%◦X

ee G||• .

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 4 / 19

Page 8: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Finite-dimensional weak Hopf C∗-algebras

Definition (Bohm-Nill-Szlachanyi)

Finite-dimensional weak Hopf C∗-algebra:

• Finite-dimensional C∗-algebra H,

• Coalgebra structure (H,∆, ε),

• ∆ is coassociative ∗-homomorphism but not necessarily unital.

and...

Existence of source and target algebras:

• Unital sub-C∗-algebras Hs and Ht of H.

• Hs∼= Hop

t .

• Hs and Ht commute.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 5 / 19

Page 9: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Finite-dimensional weak Hopf C∗-algebras

Definition (Bohm-Nill-Szlachanyi)

Finite-dimensional weak Hopf C∗-algebra:

• Finite-dimensional C∗-algebra H,

• Coalgebra structure (H,∆, ε),

• ∆ is coassociative ∗-homomorphism but not necessarily unital.

and...

Existence of source and target algebras:

• Unital sub-C∗-algebras Hs and Ht of H.

• Hs∼= Hop

t .

• Hs and Ht commute.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 5 / 19

Page 10: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Duality and representations

(H,∆) is C∗-WHA ⇒ (H, ∆) is C∗-WHA.

Unital ∗-representation π : H → B(H )

lPartial isometry corepresentation Gπ ∈ H ⊗ B(H ).

Hs∼= Ht , Ht

∼= Hs ⇒ H is Ht-bimodule.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 6 / 19

Page 11: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Duality and representations

(H,∆) is C∗-WHA ⇒ (H, ∆) is C∗-WHA.

Unital ∗-representation π : H → B(H )

lPartial isometry corepresentation Gπ ∈ H ⊗ B(H ).

Hs∼= Ht , Ht

∼= Hs ⇒ H is Ht-bimodule.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 6 / 19

Page 12: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Duality and representations

(H,∆) is C∗-WHA ⇒ (H, ∆) is C∗-WHA.

Unital ∗-representation π : H → B(H )

lPartial isometry corepresentation Gπ ∈ H ⊗ B(H ).

Hs∼= Ht , Ht

∼= Hs ⇒ H is Ht-bimodule.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 6 / 19

Page 13: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Ehresmann-Schauenburg construction

Finite-dimensional C∗-algebra A, finite-dimensional Hopf C∗-algebra H.

Coaction α : A→ A⊗ H ⇒C∗-algebra L ⊆ A⊗ Aop:

L = {∑i

ai ⊗ boi |∑i

ai(0) ⊗ ai(1) ⊗ boi =∑i

ai ⊗ S−1(bi(1))⊗ boi(0).}

Coaction is free (Galois condition): C∗-WHA structure on L.

• Source/target algebras: Ls = Z and Lt = Z op where Z = AH .

• Enveloping weak Hopf C∗-algebra: E = L ⊕ Aop ⊕ A⊕ H.

• Dual: E =

(L A

(A)∗ H

), with all entries coalgebras.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 7 / 19

Page 14: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Ehresmann-Schauenburg construction

Finite-dimensional C∗-algebra A, finite-dimensional Hopf C∗-algebra H.

Coaction α : A→ A⊗ H ⇒C∗-algebra L ⊆ A⊗ Aop:

L = {∑i

ai ⊗ boi |∑i

ai(0) ⊗ ai(1) ⊗ boi =∑i

ai ⊗ S−1(bi(1))⊗ boi(0).}

Coaction is free (Galois condition): C∗-WHA structure on L.

• Source/target algebras: Ls = Z and Lt = Z op where Z = AH .

• Enveloping weak Hopf C∗-algebra: E = L ⊕ Aop ⊕ A⊕ H.

• Dual: E =

(L A

(A)∗ H

), with all entries coalgebras.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 7 / 19

Page 15: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Quantization transformation groupoid

Finite-dimensional C∗-algebra P, finite-dimensional Hopf C∗-algebra K .

Coaction γ : P → P ⊗ K ⇒ C∗-algebra P o K .

But: no C∗-WHA structure in general (unless coaction more structure)...

However: with A = P o K dual right coaction A→ A⊗ H is free.

⇒ C∗-WHA structure on L ∼= Pop o K n P (Nikshych-Vainerman).

Source/target algebra: Ls ∼= P, Lr ∼= Pop.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 8 / 19

Page 16: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Quantization transformation groupoid

Finite-dimensional C∗-algebra P, finite-dimensional Hopf C∗-algebra K .

Coaction γ : P → P ⊗ K ⇒ C∗-algebra P o K .

But: no C∗-WHA structure in general (unless coaction more structure)...

However: with A = P o K dual right coaction A→ A⊗ H is free.

⇒ C∗-WHA structure on L ∼= Pop o K n P (Nikshych-Vainerman).

Source/target algebra: Ls ∼= P, Lr ∼= Pop.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 8 / 19

Page 17: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Quantization transformation groupoid

Finite-dimensional C∗-algebra P, finite-dimensional Hopf C∗-algebra K .

Coaction γ : P → P ⊗ K ⇒ C∗-algebra P o K .

But: no C∗-WHA structure in general (unless coaction more structure)...

However: with A = P o K dual right coaction A→ A⊗ H is free.

⇒ C∗-WHA structure on L ∼= Pop o K n P (Nikshych-Vainerman).

Source/target algebra: Ls ∼= P, Lr ∼= Pop.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 8 / 19

Page 18: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Quantization transformation groupoid

Finite-dimensional C∗-algebra P, finite-dimensional Hopf C∗-algebra K .

Coaction γ : P → P ⊗ K ⇒ C∗-algebra P o K .

But: no C∗-WHA structure in general (unless coaction more structure)...

However: with A = P o K dual right coaction A→ A⊗ H is free.

⇒ C∗-WHA structure on L ∼= Pop o K n P (Nikshych-Vainerman).

Source/target algebra: Ls ∼= P, Lr ∼= Pop.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 8 / 19

Page 19: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Morita base change

If H is C∗-WHA with Hs ∼Mor

B

⇒ New C∗-WHA H with Hs∼= B.

In particular, we can take B commutative (Hayashi).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 9 / 19

Page 20: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Morita base change

If H is C∗-WHA with Hs ∼Mor

B

⇒ New C∗-WHA H with Hs∼= B.

In particular, we can take B commutative (Hayashi).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 9 / 19

Page 21: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Construction scheme

Coaction γ of K on P ∼= ⊕pi=1B(Hi ).

⇒ Ehresmann-Schauenburg/Nikshych-Vainerman construction

L = Pop o K n P.

⇒ Morita base change: Lγ with Lγ,s ∼= Cp.Remarks:

• Both constructions special case of Ehresmann construction for freeC∗-WHA actions.

• P. Schauenburg: setting of Hopf algebras/Hopf algebroids.

• J. Bichon, K. De Commer, M. Enock: setting of (locally) compactquantum groups/measured quantum groupoids.

• In particular, construction works for K = L∞(G) and Hi

infinite-dimensional.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 10 / 19

Page 22: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Construction scheme

Coaction γ of K on P ∼= ⊕pi=1B(Hi ).

⇒ Ehresmann-Schauenburg/Nikshych-Vainerman construction

L = Pop o K n P.

⇒ Morita base change: Lγ with Lγ,s ∼= Cp.Remarks:

• Both constructions special case of Ehresmann construction for freeC∗-WHA actions.

• P. Schauenburg: setting of Hopf algebras/Hopf algebroids.

• J. Bichon, K. De Commer, M. Enock: setting of (locally) compactquantum groups/measured quantum groupoids.

• In particular, construction works for K = L∞(G) and Hi

infinite-dimensional.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 10 / 19

Page 23: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Construction scheme

Coaction γ of K on P ∼= ⊕pi=1B(Hi ).

⇒ Ehresmann-Schauenburg/Nikshych-Vainerman construction

L = Pop o K n P.

⇒ Morita base change: Lγ with Lγ,s ∼= Cp.

Remarks:

• Both constructions special case of Ehresmann construction for freeC∗-WHA actions.

• P. Schauenburg: setting of Hopf algebras/Hopf algebroids.

• J. Bichon, K. De Commer, M. Enock: setting of (locally) compactquantum groups/measured quantum groupoids.

• In particular, construction works for K = L∞(G) and Hi

infinite-dimensional.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 10 / 19

Page 24: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Weak Hopf C∗-algebras and construction methods

Construction scheme

Coaction γ of K on P ∼= ⊕pi=1B(Hi ).

⇒ Ehresmann-Schauenburg/Nikshych-Vainerman construction

L = Pop o K n P.

⇒ Morita base change: Lγ with Lγ,s ∼= Cp.Remarks:

• Both constructions special case of Ehresmann construction for freeC∗-WHA actions.

• P. Schauenburg: setting of Hopf algebras/Hopf algebroids.

• J. Bichon, K. De Commer, M. Enock: setting of (locally) compactquantum groups/measured quantum groupoids.

• In particular, construction works for K = L∞(G) and Hi

infinite-dimensional.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 10 / 19

Page 25: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Actions of compact quantum groups on von Neumannalgebras

Given G compact quantum group.Goal: find actions of G on direct sums of type I -factors.Then: we can construct (non-compact) quantum groupoids with classical,finite base space.

Such coactions are quite common! homogeneous spaces for quantized semi-simple compact Lie groups.

Example: for each 0 < q < 1 and x ∈ R:

CPnq,x x SUn+1

q , L∞(CPnq,x) ∼= ⊕n+1

i=1 B(l2(N)).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 11 / 19

Page 26: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Actions of compact quantum groups on von Neumannalgebras

Given G compact quantum group.Goal: find actions of G on direct sums of type I -factors.Then: we can construct (non-compact) quantum groupoids with classical,finite base space.

Such coactions are quite common! homogeneous spaces for quantized semi-simple compact Lie groups.

Example: for each 0 < q < 1 and x ∈ R:

CPnq,x x SUn+1

q , L∞(CPnq,x) ∼= ⊕n+1

i=1 B(l2(N)).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 11 / 19

Page 27: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Actions of compact quantum groups on von Neumannalgebras

Given G compact quantum group.Goal: find actions of G on direct sums of type I -factors.Then: we can construct (non-compact) quantum groupoids with classical,finite base space.

Such coactions are quite common! homogeneous spaces for quantized semi-simple compact Lie groups.

Example: for each 0 < q < 1 and x ∈ R:

CPnq,x x SUn+1

q , L∞(CPnq,x) ∼= ⊕n+1

i=1 B(l2(N)).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 11 / 19

Page 28: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Podles spheres

Generators X , Y and Z , with X ∗ = Y and Z ∗ = Z , and e.g.

XY = (1 + q−x+1Z )(1− qx+1Z )

YX = (1 + q−x−1Z )(1− qx−1Z ).

Coaction γx by Pol(SUq(2)): (X , q−1Z − q−x−qx1+q2 ,Y ) as spin 1.

One has L∞(CP1q,x) ∼= B(l2(N))⊕ B(l2(N)) by π− ⊕ π+ where

π±(Z )ek = ±q2k∓x+1ek

π±(X )ek = ±(1− q2k)1/2(1 + q2k∓2x)1/2ek−1.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 12 / 19

Page 29: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Podles spheres

Generators X , Y and Z , with X ∗ = Y and Z ∗ = Z , and e.g.

XY = (1 + q−x+1Z )(1− qx+1Z )

YX = (1 + q−x−1Z )(1− qx−1Z ).

Coaction γx by Pol(SUq(2)): (X , q−1Z − q−x−qx1+q2 ,Y ) as spin 1.

One has L∞(CP1q,x) ∼= B(l2(N))⊕ B(l2(N)) by π− ⊕ π+ where

π±(Z )ek = ±q2k∓x+1ek

π±(X )ek = ±(1− q2k)1/2(1 + q2k∓2x)1/2ek−1.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 12 / 19

Page 30: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Podles spheres

Generators X , Y and Z , with X ∗ = Y and Z ∗ = Z , and e.g.

XY = (1 + q−x+1Z )(1− qx+1Z )

YX = (1 + q−x−1Z )(1− qx−1Z ).

Coaction γx by Pol(SUq(2)): (X , q−1Z − q−x−qx1+q2 ,Y ) as spin 1.

One has L∞(CP1q,x) ∼= B(l2(N))⊕ B(l2(N)) by π− ⊕ π+ where

π±(Z )ek = ±q2k∓x+1ek

π±(X )ek = ±(1− q2k)1/2(1 + q2k∓2x)1/2ek−1.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 12 / 19

Page 31: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Structure of enveloping algebra

We have L∞(CP1q,x o SUq(2)) ∼= ⊕j∈ZB(H ) with

H ∼= l2(N)⊗ (l2(N)⊕ l2(N)).

ThenEx = Eγx = E11 ⊕ E21 ⊕ E12 ⊕ E22

with

E22∼= L∞(SUq(2))∼= ⊕n∈N0B(Cn),

E12∼= ⊕j∈ZB(l2(N)⊕ l2(N)).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 13 / 19

Page 32: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Structure of dual of enveloping algebra

Dual of enveloping quantum groupoid: Fx = Ex :(F11 F12

F21 F22

)⊇(C2 ⊗ C2 0

0 C.

),

where

F22∼= L∞(SUq(2))∼= B(l2(N))⊗L (Z),

F12∼= ⊕

µ,ν∈{−,+}B(l2(N),K (µν))⊗L (Z).

whereK + = l2(Z), K − = l2(N).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 14 / 19

Page 33: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Corepresentations

Under this correspondence:

The ∗-representation π(j) : E12 → B(l2(N)(j)+ ⊕ l2(N)

(j)− ), j ∈ Z

lThe coisometries

G(j ;µ,ν) ∈ (B(l2(N),K (µν))⊗L (Z))⊗ B(l2(N)ν , l2(N)µ).

matrix coefficients

〈G(j ;µ,ν)r ,s (em ⊗ el), ep ⊗ ek〉,

determined in terms of big q-Laguerre polynomials of degree m.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 15 / 19

Page 34: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Corepresentations

Under this correspondence:

The ∗-representation π(j) : E12 → B(l2(N)(j)+ ⊕ l2(N)

(j)− ), j ∈ Z

lThe coisometries

G(j ;µ,ν) ∈ (B(l2(N),K (µν))⊗L (Z))⊗ B(l2(N)ν , l2(N)µ).

matrix coefficients

〈G(j ;µ,ν)r ,s (em ⊗ el), ep ⊗ ek〉,

determined in terms of big q-Laguerre polynomials of degree m.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 15 / 19

Page 35: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Associated quantum groupoid

We have (Fx ,11,∆) ∼= (Fx+k,11,∆) ⇔ k ∈ Z.

⇒ circle-valued family of quantum groupoids with base of two points.

Further: (F0,11/Z2,∆) ∼= (L∞(SUq(1, 1)),∆) (Koelink-Kustermans).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 16 / 19

Page 36: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Quantum groupoids from Podles spheres

Associated quantum groupoid

We have (Fx ,11,∆) ∼= (Fx+k,11,∆) ⇔ k ∈ Z.

⇒ circle-valued family of quantum groupoids with base of two points.

Further: (F0,11/Z2,∆) ∼= (L∞(SUq(1, 1)),∆) (Koelink-Kustermans).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 16 / 19

Page 37: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Infinitesimal picture

The infinitesimal picture

Infinitesimal ∗-algebras (no x-dependence!):

E22 ! Uq(+,+) = Uq(su(2)),

E12 ! Uq(−,+),

E21 ! Uq(+,−),

E11 ! Uq(−,−) = Uq(su(1, 1)),

where in Uq(µ, ν),

[E ,F ] =µK 2 − νK−2

q − q−1.

Associated partial coproducts:

∆ki ,j : Eij → Eik ⊗ Ekj ! ∆κ

µ,ν : Uq(µ, ν)→ Uq(µ, κ)⊗ Uq(κ, ν).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 17 / 19

Page 38: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Infinitesimal picture

The infinitesimal picture

Infinitesimal ∗-algebras (no x-dependence!):

E22 ! Uq(+,+) = Uq(su(2)),

E12 ! Uq(−,+),

E21 ! Uq(+,−),

E11 ! Uq(−,−) = Uq(su(1, 1)),

where in Uq(µ, ν),

[E ,F ] =µK 2 − νK−2

q − q−1.

Associated partial coproducts:

∆ki ,j : Eij → Eik ⊗ Ekj ! ∆κ

µ,ν : Uq(µ, ν)→ Uq(µ, κ)⊗ Uq(κ, ν).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 17 / 19

Page 39: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Infinitesimal picture

Fusion rules

Irreducible (unbounded) representations πµs of Uq(−,+) for s ∈ R,µ ∈ {−,+}.

Partial coproduct:

∆−+,+ : Uq(su(2))→ Uq(+,−)⊗ Uq(−,+).

⇒ For irreducible ∗-representations πµs and πνt of Uq(−,+): fusion

πµ,νs,t : Uq(su(2))→ B(H µs ⊗H ν

t ) : x → ((πµs )c ⊗ πνt )∆211(x).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 18 / 19

Page 40: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Infinitesimal picture

Fusion rules

Irreducible (unbounded) representations πµs of Uq(−,+) for s ∈ R,µ ∈ {−,+}.

Partial coproduct:

∆−+,+ : Uq(su(2))→ Uq(+,−)⊗ Uq(−,+).

⇒ For irreducible ∗-representations πµs and πνt of Uq(−,+): fusion

πµ,νs,t : Uq(su(2))→ B(H µs ⊗H ν

t ) : x → ((πµs )c ⊗ πνt )∆211(x).

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 18 / 19

Page 41: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Infinitesimal picture

Indeterminate moment problems

For Casimir C ∈ Uq(su(2)): πµ,νs,t (C ) not essentially self-adjoint:eigenvectors in terms of q-inverse dual Hahn polynomials whose momentproblem is indeterminate.

⇒ Decomposition of πµ,νs,t into irreducibles is not well-defined!

However, on operator-algebraic level: we can paste certain representationstogether to get a good self-adjoint extension of certain direct sums ofπµ,νs,t (C ):

C ηL∞(SUq(2))

and∆2

11 : E22 → E21 ⊗ E12.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 19 / 19

Page 42: Kenny De Commer - conf.lmno.cnrs.fr · Table of contents 1 Classical groupoid constructions 2 Weak Hopf C-algebras and construction methods 3 Quantum groupoids from Podle s spheres

Infinitesimal picture

Indeterminate moment problems

For Casimir C ∈ Uq(su(2)): πµ,νs,t (C ) not essentially self-adjoint:eigenvectors in terms of q-inverse dual Hahn polynomials whose momentproblem is indeterminate.

⇒ Decomposition of πµ,νs,t into irreducibles is not well-defined!

However, on operator-algebraic level: we can paste certain representationstogether to get a good self-adjoint extension of certain direct sums ofπµ,νs,t (C ):

C ηL∞(SUq(2))

and∆2

11 : E22 → E21 ⊗ E12.

Kenny De Commer (Un. de Cergy-Pontoise) Quantum groupoids and Podles spheres March 13 2012 19 / 19