Ken Black QA ch17

download Ken Black QA  ch17

of 58

Transcript of Ken Black QA ch17

  • 8/3/2019 Ken Black QA ch17

    1/58

    Business Statistics, 5th ed.

    by Ken Black

    Chapter 17

    Time SeriesForecasting &Index Numbers

    Discrete Distributions

    PowerPoint presentations prepared by Lloyd Jaisingh,Morehead State University

  • 8/3/2019 Ken Black QA ch17

    2/58

    Learning Objectives

    Gain a general understanding of time series forecastingtechniques.

    Understand the four possible components of time-series data.

    Understand stationary forecasting techniques. Understand how to use regression models for trend analysis.

    Learn how to decompose time-series data into their variouselements and to forecast by using decomposition techniques..

    Understand the nature of autocorrelation and how to test for it.

    Understand autoregression in forecasting.

  • 8/3/2019 Ken Black QA ch17

    3/58

    Time-Series Forecasting

    Time-series data: data gathered on a givencharacteristic over a period of time at regularintervals

    Time-series techniquesAttempt to account for changes over time by

    examining patterns, cycles, trends, or usinginformation about previous time periodsNaive MethodsAveragingSmoothing

    Decomposition Forecast error: Error = Xactual - Xforecast

  • 8/3/2019 Ken Black QA ch17

    4/58

    Time Series Components

    Trendlong term general direction Cycles (Cyclical effects)patterns ofhighs and lows through which data moveover time periods usually of more than ayear.

    Seasonal effectsshorter cycles, whichusually occur in time periods of less thanone year.

    Irregular fluctuationsrapid changes orbleeps in the data, which occur in evenshorter time frames than seasonal effects.

  • 8/3/2019 Ken Black QA ch17

    5/58

    Components of Time Series Data

    1 2 3 4 5 6 7 8 9 10 11 12 13

    Year

    Seasonal

    Cyclical

    Trend

    Irregularfluctuations

  • 8/3/2019 Ken Black QA ch17

    6/58

    Time Series Components

    Stationary time-series - data that containno trend, cyclical, or seasonal effects.

    Error of individual forecast etthe

    difference between the actual value xt andthe forecast of that value Ft.

  • 8/3/2019 Ken Black QA ch17

    7/58

    Measurement of Forecasting Error

    et = Xt - FtMean Absolute Deviation (MAD)

    Mean Square Error (MSE)

    Mean Percentage Error (MPE)

    Mean Absolute Percentage Error (MAPE)

    Mean Error (ME)

  • 8/3/2019 Ken Black QA ch17

    8/58

    Nonfarm

    PartnershipTax

    Returns:

    Actual andForecast

    with = .7

    Year Actual Forecast Error

    1 14022 1458 1402.0 56.0

    3 1553 1441.2 111.8

    4 1613 1519.5 93.5

    5 1676 1584.9 91.1

    6 1755 1648.7 106.3

    7 1807 1723.1 83.9

    8 1824 1781.8 42.2

    9 1826 1811.3 14.7

    10 1780 1821.6 -41.611 1759 1792.5 -33.5

  • 8/3/2019 Ken Black QA ch17

    9/58

    Mean Absolute Deviation: Nonfarm

    Partnership Forecasted Data

    MADie

    number of forecasts

    674 5

    10

    67 45

    .

    .

    Year Actual Forecast Error |Error|

    1 1402.0

    2 1458.0 1402.0 56.0 56.0

    3 1553.0 1441.2 111.8 111.8

    4 1613.0 1519.5 93.5 93.55 1676.0 1584.9 91.1 91.1

    6 1755.0 1648.7 106.3 106.3

    7 1807.0 1723.1 83.9 83.9

    8 1824.0 1781.8 42.2 42.2

    9 1826.0 1811.3 14.7 14.7

    10 1780.0 1821.6 -41.6 41.6

    11 1759.0 1792.5 -33.5 33.5

    674.5

  • 8/3/2019 Ken Black QA ch17

    10/58

    Mean Square Error: Nonfarm

    Partnership Forecasted Data

    MSEi

    e

    2

    55864 2

    10

    5586 42

    number of forecasts

    .

    .

    Year Actual Forecast Error Error2

    1 1402

    2 1458 1402.0 56.0 3136.0

    3 1553 1441.2 111.8 12499.2

    4 1613 1519.5 93.5 8749.75 1676 1584.9 91.1 8292.3

    6 1755 1648.7 106.3 11303.6

    7 1807 1723.1 83.9 7038.5

    8 1824 1781.8 42.2 1778.2

    9 1826 1811.3 14.7 214.610 1780 1821.6 -41.6 1731.0

    11 1759 1792.5 -33.5 1121.0

    55864.2

  • 8/3/2019 Ken Black QA ch17

    11/58

    Mean Percentage Error: Nonfarm

    Partnership Forecasted Data

    MPE

    i

    i

    e

    X

    100

    318

    10

    318%

    number of forecasts

    .

    .

    Year Actual Forecast Error Error %

    1 1402

    2 1458 1402.0 56.0 3.8%

    3 1553 1441.2 111.8 7.2%

    4 1613 1519.5 93.5 5.8%5 1676 1584.9 91.1 5.4%

    6 1755 1648.7 106.3 6.1%

    7 1807 1723.1 83.9 4.6%

    8 1824 1781.8 42.2 2.3%

    9 1826 1811.3 14.7 0.8%10 1780 1821.6 -41.6 -2.3%

    11 1759 1792.5 -33.5 -1.9%

    31.8%

  • 8/3/2019 Ken Black QA ch17

    12/58

    Mean Absolute Percentage Error:

    Nonfarm Partnership Forecasted Data

    MAPE

    i

    i

    e

    X

    100

    40 3

    10

    4 03%

    number of forecasts

    .

    .

    Year Actual Forecast Error |Error %|

    1 1402

    2 1458 1402.0 56.0 3.8%

    3 1553 1441.2 111.8 7.2%

    4 1613 1519.5 93.5 5.8%5 1676 1584.9 91.1 5.4%

    6 1755 1648.7 106.3 6.1%

    7 1807 1723.1 83.9 4.6%

    8 1824 1781.8 42.2 2.3%

    9 1826 1811.3 14.7 0.8%10 1780 1821.6 -41.6 2.3%

    11 1759 1792.5 -33.5 1.9%

    40.3%

  • 8/3/2019 Ken Black QA ch17

    13/58

    Mean Error for the Nonfarm

    Partnership Forecasted Data

    MEie

    number of forecasts

    524 3

    10

    52 43

    .

    .

    Year Actual Forecast Error

    1 1402.0

    2 1458.0 1402.0 56.0

    3 1553.0 1441.2 111.8

    4 1613.0 1519.5 93.55 1676.0 1584.9 91.1

    6 1755.0 1648.7 106.3

    7 1807.0 1723.1 83.9

    8 1824.0 1781.8 42.2

    9 1826.0 1811.3 14.7

    10 1780.0 1821.6 -41.6

    11 1759.0 1792.5 -33.5

    524.3

  • 8/3/2019 Ken Black QA ch17

    14/58

    Smoothing Techniques

    Naive Forecasting Models

    Averaging ModelsSimple Averages

    Moving AveragesWeighted Moving Averages

    Exponential Smoothing

  • 8/3/2019 Ken Black QA ch17

    15/58

    Naive Forecasting

    Simplest of the

    naive forecasting

    models

    t t

    t

    t

    F X

    F

    X

    where t

    t

    1

    11

    : the forecast for time period

    the value for time period -

    We sold 532 pairs of shoes last

    week, I predict well

    sell 532 pairs this week.

    It assumes that the more recent time periods

    of data represent the best forecasts.

  • 8/3/2019 Ken Black QA ch17

    16/58

    Simple Average Model

    t

    t t t t n

    FX X X X

    n

    1 2 3

    The monthly average last

    12 months was 56.45, so I predict

    56.45 for September.

    Month Year

    Cents

    per

    Gallon Month Year

    Cents

    per

    GallonJanuary 2 61.3 January 3 58.2

    February 63.3 February 58.3

    March 62.1 March 57.7

    April 59.8 April 56.7

    May 58.4 May 56.8

    June 57.6 June 55.5

    July 55.7 July 53.8

    August 55.1 August 52.8

    September 55.7 September

    October 56.7 October

    November 57.2 November

    December 58.0 December

    The forecast for time

    period t is the average of

    the values for a given

    number of previous time

    periods.

  • 8/3/2019 Ken Black QA ch17

    17/58

    Moving Average

    Updated (recomputed) for every new time period May be difficult to choose optimal number of

    periods

    May not adjust for trend, cyclical, or seasonaleffects

    t

    t t t t n

    FX X X X

    n

    1 2 3

    Update me each period.

  • 8/3/2019 Ken Black QA ch17

    18/58

    Demonstration Problem 17.1:

    Four-Month Moving Average

    May

    May

    June

    June

    F

    Error

    F

    Error

    1056 1345 1381 1191

    4124325

    1259 124325

    1575

    1345 1381 1191 1259

    4

    1294 00

    1361 1294 00

    67 00

    .

    .

    .

    .

    .

    .

    Months Shipments

    4-Mo

    Moving

    Average

    Forecast

    Error

    January 1056

    February 1345

    March 1381

    April 1191

    May 1259 1243.25 15.75

    June 1361 1294.00 67.00

    July 1110 1298.00 -188.00

    August 1334 1230.25 103.75September 1416 1266.00 150.00

    October 1282 1305.25 -23.25

    November 1341 1285.50 55.50

    December 1382 1343.25 38.75

  • 8/3/2019 Ken Black QA ch17

    19/58

    Demonstration Problem 17.1:

    Four-Month Moving Average

    1000

    1100

    1200

    1300

    1400

    1500

    0 2 4 6 8 10 12

    Time

    Shipment

    s

    Shipments 4-Mo Moving Average

  • 8/3/2019 Ken Black QA ch17

    20/58

    Weighted Moving Average

    Forecasting Model

    t

    t t t t t t t n t n

    i

    i t

    t nFW X W X W X W X

    W

    1 1 2 2 3 3

    1

    A moving average in which some time periods are

    weighted differently than others.

  • 8/3/2019 Ken Black QA ch17

    21/58

    Demonstration Problem 17.2: Four-

    Month Weighted Moving Average

    May

    May

    June

    June

    F

    Error

    F

    Error

    4 1191 2 1381 1 1345 1 1056

    8

    1240881259 124088

    1813

    4 1259 2 1191 1 1381 1 1345

    8

    126800

    1361 1268009300

    ..

    .

    .

    ..

    Months Shipments

    4-Mo

    Weighted

    Moving

    Average

    Forecast

    Error

    January 1056

    February 1345

    March 1381

    April 1191

    May 1259 1240.88 18.13

    June 1361 1268.00 93.00

    July 1110 1316.75 -206.75

    August 1334 1201.50 132.50

    September 1416 1272.00 144.00

    October 1282 1350.38 -68.38

    November 1341 1300.50 40.50

    December 1382 1334.75 47.25

  • 8/3/2019 Ken Black QA ch17

    22/58

    Exponential Smoothing

    t t t

    t

    t

    t

    F X F

    F

    F

    X

    where

    1

    1

    1

    : the forecast for the next time period (t+1)

    the forecast for the present time period (t)

    the actual value for the present time period

    = a value between 0 and 1

    is the exponentialsmoothing constant

    Used to weight data from previous time periods withexponentially decreasing importance in the forecast

  • 8/3/2019 Ken Black QA ch17

    23/58

    Demonstration Problem 17.3: = 0.2

    = 0.2

    Year

    Housing Units

    (1,000) F e |e| e2

    1990 1193 -- -- -- --

    1991 1014 1193.0 -179 179 32041

    1992 1200 1157.2 42.8 42.8 1832

    1993 1288 1165.8 122.2 122.2 14933

    1994 1457 1190.2 266.8 266.8 71182

    1995 1354 1243.6 110.4 110.4 12188

    1996 1477 1265.7 211.3 211.3 44648

    1997 1474 1307.9 166.1 166.1 27589

    1998 1617 1341.1 275.9 275.9 76121

    1999 1641 1396.3 244.7 244.7 59878

    2000 1569 1445.2 123.8 123.8 15326

    2001 1603 1470.0 133.0 133.0 17689

    2002 1705 1496.6 208.4 208.4 43431

    2003 1848 1538.3 309.7 309.7 95914

    2004 1956 1600.2 355.8 355.8 126594

    2005 2068 1671.4 396.6 396.6 157292

    3146.5 796657

    MAD 209.8

    MSE 53110

  • 8/3/2019 Ken Black QA ch17

    24/58

    Demonstration Problem 17.3: = 0.8

    = 0.8

    Year

    Housing Units

    (1,000) F e |e| e2

    1990 1193 -- -- -- --1991 1014 1193.0 -179 179 64.01992 1200 1049.8 150.2 150.2 3770.01993 1288 1170.0 118.0 118.0 29832.2

    1994 1457 1264.4 192.6 192.6 27736.91995 1354 1418.5 -64.5 64.5 21114.61996 1477 1366.9 110.1 110.1 44970.21997 1474 1455.0 19.0 19.0 49023.4

    1998 1617 1470.2 146.8 146.8 20083.91999 1641 1587.6 53.4 53.4 13535.82000 1569 1630.3 -61.3 61.3 36967.32001 1603 1581.3 21.7 21.7 4166.22002 1705 1598.7 106.3 106.3 12120.0

    2003 1848 1683.7 164.3 164.3 361.72004 1956 1815.1 140.9 140.9 21551.32005 2068 1927.8 140.2 140.2 6140.4

    1668.3 228896

    MAD 111.2

    MSE 15245.9

  • 8/3/2019 Ken Black QA ch17

    25/58

    Trend Analysis

    Linear Trend

    Quadratic Trend

    Holts Two Parameter Exponential

    Smoothing

  • 8/3/2019 Ken Black QA ch17

    26/58

    Average Hours Worked per Week by

    Canadian Manufacturing Workers

    Period Hours Period Hours Period Hours Period Hours1 37.2 11 36.9 21 35.6 31 35.72 37.0 12 36.7 22 35.2 32 35.53 37.4 13 36.7 23 34.8 33 35.64 37.5 14 36.5 24 35.3 34 36.35 37.7 15 36.3 25 35.6 35 36.56 37.7 16 35.9 26 35.67 37.4 17 35.8 27 35.68 37.2 18 35.9 28 35.9

    9 37.3 19 36.0 29 36.010 37.2 20 35.7 30 35.7

  • 8/3/2019 Ken Black QA ch17

    27/58

    Excel Regression Output

    using Linear Trend

    Regression StatisticsMultiple R 0.782

    R Square 0.611

    Adjusted R Square 0.5600

    Standard Error 0.509

    Observations 35

    ANOVA

    df SS MS F Significance F

    Regression 1 13.4467 13.4467 51.91 .00000003

    Residual 33 8.5487 0.2591

    Total 34 21.9954

    Coefficients Standard Error t Stat P-value

    Intercept 37.4161 0.17582 212.81 .0000000

    Period -0.0614 0.00852 -7.20 .00000003

    i ti i

    t

    Y X

    X

    where

    Y

    0 1

    37 416 00614

    :

    . .

    data value for period i

    time period

    i

    i

    Y

    X

  • 8/3/2019 Ken Black QA ch17

    28/58

    Excel Graph of Hours Worked Data

    with a Trend Line

    34.5

    35.0

    35.5

    36.0

    36.537.0

    37.5

    38.0

    0 5 10 15 20 25 30 35

    Time Period

    WorkWeek

  • 8/3/2019 Ken Black QA ch17

    29/58

    Excel Regression Output

    using Quadratic Trend

    Regression Statistics

    Multiple R 0.8723

    R Square 0.761

    Adjusted R Square 0.747

    Standard Error 0.405

    Observations 35

    ANOVA

    df SS MS F Significance F

    Regression 2 16.7483 8.3741 51.07 1.10021E-10

    Residual 32 5.2472 0.1640

    Total 34 21.9954

    Coefficients Standard Error t Stat P-value

    Intercept 38.16442 0.21766 175.34 2.61E-49

    Period -0.18272 0.02788 -6.55 2.21E-07

    Period2 0.00337 0.00075 4.49 8.76E-05

    i ti ti i

    ti

    t t

    Y X X

    X X X

    where

    Y

    0 1 2

    2

    2

    238164 0183 0 003

    :

    . . .

    data value for period i

    time period

    the square of the i period

    i

    i

    th

    Y

    X

  • 8/3/2019 Ken Black QA ch17

    30/58

    Excel Graph of Hourly Data with

    Quadratic Trend Line

    34.5

    35.0

    35.5

    36.0

    36.5

    37.0

    37.5

    38.0

    0 5 10 15 20 25 30 35

    Period

    WorkWee

    k

  • 8/3/2019 Ken Black QA ch17

    31/58

    MINITAB Regression Output

    using Linear Trend

  • 8/3/2019 Ken Black QA ch17

    32/58

    MINITAB Regression Output

    using Quadratic Trend

  • 8/3/2019 Ken Black QA ch17

    33/58

    Time Series: Decomposition

    Basis for analysis is the Multiplicative Model

    Y = T C S I

    where:T= trend componentC= cyclical componentS = seasonal component

    I= irregular component

  • 8/3/2019 Ken Black QA ch17

    34/58

    Household Appliance Shipment Data

    Year Quarter Shipments Year Quarter Shipments

    1 1 4009 4 1 4595

    2 4321 2 4799

    3 4224 3 4417

    4 3944 4 4258

    2 1 4123 5 1 4245

    2 4522 2 4900

    3 4657 3 4585

    4 4030 4 4533

    3 1 4493

    2 48063 4551

    4 4485

    Shipments in $1,000,000.

  • 8/3/2019 Ken Black QA ch17

    35/58

    Graph of Household Appliance Shipment

    Data

    3900

    4050

    4200

    4350

    4500

    4650

    4800

    4950

    0 4 8 12 16 20Quarter

    Shipments

  • 8/3/2019 Ken Black QA ch17

    36/58

    Development

    of Four-

    Quarter

    MovingAverages

    Quarter Shipments

    4 Qtr

    M.T. 2 Yr M.T.

    4 Qtr

    Centered

    M.A.

    Ratios of

    Actual

    Values to

    M.A.

    1 1 4009

    2 4321 16,498

    3 4224 16,612 33,110 4139 102.06%

    4 3944 16,813 33,425 4178 94.40%

    2 1 4123 17,246 34,059 4257 96.84%

    2 4522 17,332 34,578 4322 104.62%

    3 4657 17,702 35,034 4379 106.34%4 4030 17,986 35,688 4461 90.34%

    3 1 4493 17,880 35,866 4483 100.22%

    2 4806 18,335 36,215 4527 106.17%

    3 4551 18,437 36,772 4597 99.01%

    4 4485 18,430 36,867 4608 97.32%

    4 1 4595 18,296 36,726 4591 100.09%

    2 4799 18,069 36,365 4546 105.57%

    3 4417 17,719 35,788 4474 98.74%4 4258 17,820 35,539 4442 95.85%

    5 1 4245 17,988 35,808 4476 94.84%

    2 4900 18,263 36,251 4531 108.13%

    3 4585

    4 4533

    SI(100)

    TC

  • 8/3/2019 Ken Black QA ch17

    37/58

    Ratios of Actuals to Moving Averages

    1 2 3 4 5

    Q1 96.84% 100.22% 100.09% 94.84%

    Q2 104.62% 106.17% 105.57% 108.13%

    Q3 102.06% 106.34% 99.01% 98.74%

    Q4 94.40% 90.34% 97.32% 95.85%

  • 8/3/2019 Ken Black QA ch17

    38/58

    Eliminate the Max and Min for each Qtr

    Eliminate the maximum and the minimum for each quarter.

    Average the remaining ratios for each quarter.

    1 2 3 4 5

    Q1 96.84% 100.22% 100.09% 94.84%

    Q2 104.62% 106.17% 105.57% 108.13%

    Q3 102.06% 106.34% 99.01% 98.74%Q4 94.40% 90.34% 97.32% 95.85%

    S I

  • 8/3/2019 Ken Black QA ch17

    39/58

    Computation of Average

    of Seasonal Indexes

    1 2 3 4 5 AverageQ1 96.84% 100.09% 98.47%

    Q2 106.17% 105.57% 105.87%

    Q3 102.06% 99.01% 100.53%

    Q4 94.40% 95.85% 95.13%

  • 8/3/2019 Ken Black QA ch17

    40/58

    Final Adjustments of Seasonal Indexes

    Average

    Final Adjusted

    Seasonal

    IndexesQ1 98.47% 98.47%

    Q2 105.87% 105.87%

    Q3 100.53% 100.54%

    Q4 95.13% 95.13%

    Total 400.00% 400.00%

    Adjustments

    are unnecessarysince the fouraverages sum to400.

  • 8/3/2019 Ken Black QA ch17

    41/58

    Deseasonalized House Appliance Date

    Year QuarterShipments(T*C*S*I)

    Seasonal

    Indexes(S)

    Deseasonalized

    Data(T*C*I)

    1 1 4009 98.47% 4,071

    2 4321 105.87% 4,081

    3 4224 100.53% 4,202

    4 3944 95.12% 4,146

    2 1 4123 98.47% 4,187

    2 4522 105.87% 4,271

    3 4657 100.53% 4,6324 4030 95.12% 4,237

    3 1 4493 98.47% 4,563

    2 4806 105.87% 4,540

    3 4551 100.53% 4,527

    4 4485 95.12% 4,715

    4 1 4595 98.47% 4,666

    2 4799 105.87% 4,533

    3 4417 100.53% 4,393

    4 4258 95.12% 4,476

    5 1 4245 98.47% 4,311

    2 4900 105.87% 4,628

    3 4585 100.53% 4,561

    4 4533 95.12% 4,765

  • 8/3/2019 Ken Black QA ch17

    42/58

    Autocorrelation (Serial Correlation)

    Autocorrelation occurs in data when the error terms of aregression forecasting model are correlated.

    Potential Problems

    Estimates of the regression coefficients no longer have the minimumvariance property and may be inefficient.

    The variance of the error terms may be greatly underestimated by themean square error value.

    The true standard deviation of the estimated regression coefficientmay be seriously underestimated.

    The confidence intervals and tests using the t and F distributions are

    no longer strictly applicable.

    First-order autocorrelation occurs when there is correlationbetween the error terms of adjacent time periods.

  • 8/3/2019 Ken Black QA ch17

    43/58

    Durbin-Watson Test

    H

    Ha

    0 0

    0

    :

    :

    D

    t t

    where

    e e

    e

    t

    n

    tt

    n

    2

    2

    2

    1

    1

    : n = the number of observations

    If D > do not reject H (there is no significant autocorrelation).

    If D < , reject H (there is significant autocorrelation).

    If , the test is inconclusive.

    U0

    L0

    L U

    d

    d

    d d

    ,

    D

  • 8/3/2019 Ken Black QA ch17

    44/58

    Durbin-Watson Test for the Oil and

    Gas Well Drilling Example

    H

    Ha

    0 0

    0

    :

    :

    6897.

    4394.14

    9590.9

    1

    1

    2

    2

    2

    n

    t t

    n

    t

    e

    ee ttD

    .

    ation).autocorreltsignificanis(thereHreject,

  • 8/3/2019 Ken Black QA ch17

    45/58

    Overcoming the

    Autocorrelation Problem

    Addition of Independent Variables

    Transforming VariablesFirst-differences approach

    Percentage change from period to period

    Use autoregression

  • 8/3/2019 Ken Black QA ch17

    46/58

    Autoregression Model

    Y b b Y b Y t t 0 1 1 2 2

    Y b b Y b Y b Y t t t 0 1 1 2 2 3 3

    Autoregression Model with two lagged variables

    Autoregression Model with three lagged variables

  • 8/3/2019 Ken Black QA ch17

    47/58

    Index Numbers

    A ratio of a measure taken during one timeframe to that same measure taken duringanother time frame, usually denoted as thebase period

    Simple Index Numbers

    Unweighted Aggregate Price Indexes

    Weighted Aggregate Price Index Numbers

    Laspeyres Price IndexPaasche Price Index

  • 8/3/2019 Ken Black QA ch17

    48/58

    Simple Index Numbers

    i

    i

    IX

    Xwhere

    0

    100

    : the quantity, price, or cost in the base year

    the quantity, price, or cost in the year of interest

    the index number of the year of interest

    0

    i

    i

    X

    X

    I

    The motivation for using an index

    number is to reduce data to an easier-to-use, more convenient form.

  • 8/3/2019 Ken Black QA ch17

    49/58

    Index Numbers for Business Starts in the U. S.

    Year Starts Index

    1987 81463 100.0

    1988 62845 77.1

    1989 62449 76.7

    1990 63912 78.5

    1991 70605 86.7

    1992

    69848 85.7

    1993 62399 76.6

    1994 50845 62.4

    1995 50516 62.0

    1996 53200 65.3

    1997 53819 66.1

    1998 44197 54.31999 376390 46.2

    2000 35219 43.2

    2001 39719 48.8

    2002 38155 46.8

    i A

  • 8/3/2019 Ken Black QA ch17

    50/58

    Unweighted Aggregate

    Price Index Numbers

    i

    i

    i

    i

    IPP

    P

    P

    I

    where i

    i

    0

    0

    100

    0

    : the price of an item in the year of interest ( )

    the price of an item in the base year ( )

    the index number for the year of interest ( )

  • 8/3/2019 Ken Black QA ch17

    51/58

    Unweighted Aggregate Price Index for

    Basket of Food Items

    Year

    1995 2000 2005

    Eggs (dozen) 0.78 0.86 1.06

    Milk (1/2 gallon) 1.14 1.39 1.59

    Bananas (per lb) 0.36 0.46 0.49

    Potatoes (per lb) 0.28 0.31 0.36

    Sugar (per lb) 0.35 0.42 0.43

    Total 2.91 3.44 3.93

    Base1995 100.00 118.21 135.05

    2000 84.59 100.00 114.24

    2005 74.05 87.53 100.00

    W i h d A

  • 8/3/2019 Ken Black QA ch17

    52/58

    Weighted Aggregate

    Price Index Numbers

    Computed by multiplying quantity weightsand item prices in determining the market

    basket worth for a given year Also called value indexes

    Laspeyres - uses base period weights

    Paasche - use current period weights

  • 8/3/2019 Ken Black QA ch17

    53/58

    Laspeyres Price Index

    Li

    I PQ

    P Q

    0

    0 0

    100

    LaspeyresPrice Index

    uses baseperiodweights

  • 8/3/2019 Ken Black QA ch17

    54/58

    Laspeyres Price Index: 1995 Base Year

    1995

    Quantity

    Price

    1995 2005

    Eggs (dozen) 45 0.78 1.06

    Milk (1/2 gallon) 60 1.14 1.59

    Bananas (per lb) 12 0.36 0.49

    Potatoes (per lb) 55 0.28 0.36

    Sugar (per lb) 36 0.35 0.43

    Sum of Products 135.82 184.26

    Index Values 100.00 135.66

  • 8/3/2019 Ken Black QA ch17

    55/58

    Paasche Price Index

    pi i

    i

    I P QP Q

    0100

    PaaschePrice Index

    usescurrentperiodweights

  • 8/3/2019 Ken Black QA ch17

    56/58

    Paasche Price Index: 2005 Base Year

    2005 2006

    Price Quantity Price Quantity

    Syringes (dozen) 6.70 150 6.95 135

    Cotton swabs (box) 1.35 60 1.45 65

    Patient record forms (pad) 5.10 8 6.25 12

    Children's Tylenol (bottle) 4.50 25 4.95 30

    Computer paper (box) 11.95 6 13.20 8

    Thermometers 7.90 4 9.00 2

    Numerator 1342.60 1379.60

    Denominator 1342.60 1299.85

    Index 100.00 106.14

  • 8/3/2019 Ken Black QA ch17

    57/58

    Important Indexes

    Consumer Price Index (CPI)

    Producer Price Index (PPI)

    Dow Jones Industrial Average (DJIA)

  • 8/3/2019 Ken Black QA ch17

    58/58

    Copyright 2008 John Wiley & Sons, Inc.All rights reserved. Reproduction or translation

    of this work beyond that permitted in section 117of the 1976 United States Copyright Act withoutexpress permission of the copyright owner isunlawful. Request for further information shouldbe addressed to the Permissions Department, JohnWiley & Sons, Inc. The purchaser may makeback-up copies for his/her own use only and notfor distribution or resale. The Publisher assumes

    no responsibility for errors, omissions, or damagescaused by the use of these programs or from theuse of the information herein.