Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1,...

21
ULK1 inhibitor 1 Pharmacological inhibition of ULK1 blocks mTOR-dependent autophagy Katy J. Petherick 1 , Owen J. L. Conway 1 , Chido Mpamhanga 2 , Simon A. Osborne 2 , Ahmad Kamal 2 , Barbara Saxty 2 and Ian G. Ganley 1 1 From the MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK 2 From MRC Technology, Centre for Therapeutics Discovery, 1-3 Burtonhole Lane, Mill Hill, London, NW7 1AD, UK Running title: ULK1 inhibitor To whom correspondence should be addressed: Ian G. Ganley, MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK. Tel.: +44(0)1382-388905; E-mail: [email protected] Keywords: Autophagy, ULK1, Protein kinase, inhibitor, cancer Background: Autophagy is an intracellular lysosomal degradation pathway implicated in many diseases, but there are currently no specific autophagy inhibitors. Results: Small molecule inhibition of ULK1, the upstream autophagy initiating kinase, blocks autophagosome initiation and maturation. Conclusion: ULK1 plays a role in autophagosome maturation as well as initiation. Significance: ULK1 can be targeted to block autophagy for disease therapy. ABSTRACT Autophagy is a cell protective and degradative process that recycles damaged and long-lived cellular components. Cancer cells are thought to take advantage of autophagy to help them to cope with the stress of tumorigenesis; thus targeting autophagy is an attractive therapeutic approach. However, there are currently no specific inhibitors of autophagy. ULK1, a serine/threonine protein kinase, is essential for the initial stages of autophagy and here we report that two compounds, MRT67307 and MRT68921, potently inhibit ULK1 and 2 in vitro and block autophagy in cells. Using a drug-resistant ULK1 mutant, we show that the autophagy inhibiting capacity of the compounds is specifically through ULK1. ULK1 inhibition results in accumulation of stalled early autophagosomal structures, indicating a role for ULK1 in the maturation of autophagosomes as well as initiation. INTRODUCTION Macroautophagy, called autophagy in this instance, is a membrane-driven process that traffics intracellular components to the lysosome for recycling (1). It is essentially a cell survival mechanism and is upregulated under conditions of stress, allowing cells to supply building blocks and energy to maintain function during periods of starvation. Autophagy also eliminates impaired or foreign components that if left to persist could cause damage. Due to these functions, autophagy has been linked to many diseases from neurodegeneration to cancer (2). It is therefore an attractive therapeutic target, especially in cancer where it acts as a survival mechanism allowing the tumor to cope with an increased metabolic demand and damage caused by chemotherapeutics (3,4). Hence, autophagy inhibition is thought to be a viable treatment approach. However, to date there are no specific small molecule autophagy inhibitors and this has hampered validation of autophagy as a potential target in cancer. Hydroxychloroquine has entered clinical trials as an autophagy inhibitor (5-11), but it is far from specific given that it disrupts lysosomal function. The lysosome is the end point of http://www.jbc.org/cgi/doi/10.1074/jbc.C114.627778 The latest version is at JBC Papers in Press. Published on April 1, 2015 as Manuscript C114.627778 Copyright 2015 by The American Society for Biochemistry and Molecular Biology, Inc. by guest on October 21, 2020 http://www.jbc.org/ Downloaded from by guest on October 21, 2020 http://www.jbc.org/ Downloaded from by guest on October 21, 2020 http://www.jbc.org/ Downloaded from

Transcript of Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1,...

Page 1: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  1

Pharmacological inhibition of ULK1 blocks mTOR-dependent autophagy

Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad

Kamal2, Barbara Saxty2 and Ian G. Ganley1 1From the MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences,

University of Dundee, Dundee, DD1 5EH, UK 2From MRC Technology, Centre for Therapeutics Discovery, 1-3 Burtonhole Lane, Mill Hill,

London, NW7 1AD, UK

Running title: ULK1 inhibitor

To whom correspondence should be addressed: Ian G. Ganley, MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK. Tel.: +44(0)1382-388905; E-mail: [email protected] Keywords: Autophagy, ULK1, Protein kinase, inhibitor, cancer

Background: Autophagy is an intracellular lysosomal degradation pathway implicated in many diseases, but there are currently no specific autophagy inhibitors. Results: Small molecule inhibition of ULK1, the upstream autophagy initiating kinase, blocks autophagosome initiation and maturation. Conclusion: ULK1 plays a role in autophagosome maturation as well as initiation. Significance: ULK1 can be targeted to block autophagy for disease therapy. ABSTRACT Autophagy is a cell protective and degradative process that recycles damaged and long-lived cellular components. Cancer cells are thought to take advantage of autophagy to help them to cope with the stress of tumorigenesis; thus targeting autophagy is an attractive therapeutic approach. However, there are currently no specific inhibitors of autophagy. ULK1, a serine/threonine protein kinase, is essential for the initial stages of autophagy and here we report that two compounds, MRT67307 and MRT68921, potently inhibit ULK1 and 2 in vitro and block autophagy in cells. Using a drug-resistant ULK1 mutant, we show that the autophagy inhibiting capacity of the compounds is specifically through ULK1. ULK1 inhibition results in

accumulation of stalled early autophagosomal structures, indicating a role for ULK1 in the maturation of autophagosomes as well as initiation. INTRODUCTION

Macroautophagy, called autophagy in this instance, is a membrane-driven process that traffics intracellular components to the lysosome for recycling (1). It is essentially a cell survival mechanism and is upregulated under conditions of stress, allowing cells to supply building blocks and energy to maintain function during periods of starvation. Autophagy also eliminates impaired or foreign components that if left to persist could cause damage. Due to these functions, autophagy has been linked to many diseases from neurodegeneration to cancer (2). It is therefore an attractive therapeutic target, especially in cancer where it acts as a survival mechanism allowing the tumor to cope with an increased metabolic demand and damage caused by chemotherapeutics (3,4). Hence, autophagy inhibition is thought to be a viable treatment approach. However, to date there are no specific small molecule autophagy inhibitors and this has hampered validation of autophagy as a potential target in cancer. Hydroxychloroquine has entered clinical trials as an autophagy inhibitor (5-11), but it is far from specific given that it disrupts lysosomal function. The lysosome is the end point of

http://www.jbc.org/cgi/doi/10.1074/jbc.C114.627778The latest version is at JBC Papers in Press. Published on April 1, 2015 as Manuscript C114.627778

Copyright 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 2: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  2

autophagy as well as most other intracellular transport pathways including endocytosis.

The most understood pathway of autophagy activation occurs upon inhibition of mTOR, either by amino acid withdrawal or a direct pharmacological block. This leads to activation of the ULK1 protein kinase complex followed by the VPS34 lipid kinase complex (12-15). This in turn leads to the recruitment of a unique ubiquitin-like conjugation system resulting in the conjugation of LC3, and its family members, to the lipid phosphatidylethanolamine in the forming autophagosome, or phagophore. This lipidated form of LC3, termed LC3-II, is thought to drive elongation and cargo incorporation into the autophagosome (16). Thus there are many potential targets to inhibit autophagy. Kinase inhibitors have proved successful in the clinic, making ULK1 and VPS34 attractive candidates for inhibition. Specific VPS34 inhibitors have recently been published and these do indeed inhibit autophagy (17-19). However, VPS34 is also essential for sorting in the endocytic pathway, meaning that like hydroxychloroquine, VPS34 inhibition also affects endocytosis and lysosomal turnover in general. ULK1 on the other hand, is believed to be specific for autophagy, although other roles cannot be ruled out at this stage (20). We therefore set out to identify compounds that could inhibit ULK1 activity, not only to act as tool reagents to aid research but importantly to provide a proof-of-principle that targeting ULK1 could block autophagy.

EXPERIMENTAL PROCEDURES Reagents and antibodies-MRT compounds were synthesized as described (21). AZD8055 was from Selleck Chemicals, Bafilomycin A1 from Enzo Life Sciences. Rabbit anti-ULK1, ATG5 and ATG13 were from Sigma. Rabbit anti-phospho S757 ULK was from Cell Signalling Technology, rabbit anti-phospho S318 ATG13 was from Abnova. Mouse anti α-tubulin was from Merck-Millipore. Mouse anti-LC3 for immunofluoresence was from MBL and sheep anti-LC3, used for immunoblotting, was generated by the Division of Signal Transduction Therapy,

University of Dundee, from recombinant full length human GST-LC3b and affinity purified. Recombinant DNA-Procedures were performed using standard protocols and mutagenesis was performed using QuikChange site-directed mutagenesis (Stratagene). Constructs are described and available on the reagents website (https://mrcppureagents.dundee.ac.uk/). Cell culture-Immortalized wild-type MEFs have been described previously (22). LKB1 MEFs were a kind gift from Tomi Mäkelä (University of Helsinki, Finland) and previously described (23). ULK1/2 double knockout MEFs were a kind gift from Craig Thompson (Memorial Sloan-Kettering Cancer Center, NY) and previously described (24). TBK1/IKKε knockout and matched MEFs were a kind gift from Shizuo Akira (Osaka University, Japan) and previously described (25). MEFs and 293T cells were grown in Dulbecco's modified Eagle's medium (DMEM), supplemented with 10% fetal bovine serum and penicillin/streptomycin and cultured at 37 °C, 5% CO2. For induction of autophagy, cells were typically grown to 75% confluency and washed twice and incubated in Earle’s balanced salt solution (EBSS) for 1h (or complete medium as a control) unless indicated. MRT67307 (10µM), MRT68921 (1µM), AZD8055 (1µM) or bafilomycin A1 (50nM) was included where indicated. Transfection and transduction was as described (15). Cell lysis, immunoprecipitation-Carried out as described (15). Immunoblots were quantified by densitometry, using ImageJ. Immunofluorescence-Carried out as described (26). Slides were visualized on a Nikon TiS inverted microscope and images processed using NIS Elements (Nikon) and Adobe Photoshop. Live cell microscopy-Cells were washed and incubated in phenol red-free media and imaged on a Nikon TiE inverted microscope with an Okolab environmental chamber at

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 3: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  3

37°C, 5% CO2. Images were obtained and processed using NIS Elements (Nikon). Kinase assays-Initial ULK1 kinase assays were performed with GST-ULK1, produced in Sf9 cells, which is described on the reagents website (https://mrcppureagents.dundee.ac.uk/). For other experiments, recombinant GST-ULK1 (wild-type, kinase dead (K46I) and M92T and M92Q) was expressed in 293T cells, purified and eluted from a glutathione-sepharose column. Kinase assays were carried out in 50mM Tris-HCl, pH 7.4, 10mM Mg acetate, 0.1mM EGTA, and 0.1% β-mercaptoethanol, containing 30µM cold ATP, and 0.5µCi of [γ32-P]ATP for 5min at 25°C. Prior to ATP addition, reaction mixes were prewarmed to 25°C for 5min. Reactions were stopped by the addition of sample buffer, followed by SDS-PAGE, transfer to nitrocellulose, and analysis by autoradiography and immunoblot. For IC50 curve measurements, kinase assays were performed as described (27), using myelin basic protein (Sigma) as a substrate. Kinase profiling was as described (28), performed by the International Centre for Kinase Profiling (http://www.kinase-screen.mrc.ac.uk). Statistical analysis-Experiments were carried out a minimum of three times and error bars represent standard error of the mean (SEM). Significance in related samples was determined by paired student’s T-test. A p-value of 0.05 or less was deemed significant. RESULTS AND DISCUSSION

In vitro screening of known kinase inhibitors led to the discovery that the TBK1 inhibitor, MRT67307 (29) also targeted ULK1 and ULK2 with high potency (IC50 45 and 38nM respectively, Fig. 1A). It is of no surprise that a compound would target both ULK1 and 2, given the high degree of similarity between the kinase domains; it is also desirable given the degree of redundancy observed in knockout mouse models (20). In order to find more potent inhibitors, we re-analysed a closely related series of analogues generated during the original TBK1 screen. This led to the discovery of MRT68921 as the

most potent inhibitor of both ULK1 and 2, with over a 15-fold reduction in the IC50 for ULK1 (2.9nM) and 30-fold for ULK2 (1.1nM), see Fig. 1A. To see if in vitro activity of the compounds could translate to inhibition in cells, we treated mouse embryonic fibroblasts (MEFs) with either MRT67307 or MRT68921 in combination with amino acid withdrawal, to inhibit mTOR and activate ULK1. Bafilomycin A1 was also included to inhibit lysosomal turnover and enable autophagic flux measurement (30) (Fig. 1B). Loss of mTOR-mediated ULK1 phosphorylation occurred upon incubation of cells in Earle’s balanced salt solution (EBSS) and this was not prevented by treatment with either of the MRT compounds. ATG13 phosphorylation at serine 318 was used as a measure of ULK1 activity (31), and this correlated well with EBSS treatment and loss of the ULK1 mTOR phosphorylation, showing greater than a 5-fold increase over basal levels (Fig. 1B). 10µM MRT67307 was sufficient to reduce phospho-ATG13 to control levels and in-line with the in vitro IC50s, 10-fold less MRT68921 (1µM) resulted in a similar reduction. Therefore these compounds can reduce ULK1 activity in cells. Importantly, these compounds also block autophagy as indicated by LC3-II levels. Basal autophagy was low under the experimental conditions used, however EBSS treatment resulted in a 5-fold increase in bafilomycin-sensitive LC3-II levels, indicating strong mTOR-dependent autophagy induction. Both compounds blocked any bafilomycin-induced increase, demonstrating inhibition of autophagic flux. Both compounds behaved similarly and though there was no LC3-II flux, a small 2-fold increase in LC3-II levels was observed.

ULK1 is part of a multi-protein complex and at least two of these proteins, ATG13 and FIP200, are required for maximal ULK activity (14,15,32); it is possible that the MRT compounds inhibit ULK by disrupting these interactions. To look at this we stably expressed FLAG-tagged ULK1 in ULK1 and ULK2 double-knockout cells (dKO) and immunoprecipitated ULK in the presence or absence of autophagy inducing conditions. As can be seen in Figure 1C, the presence of

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 4: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  4

inhibitor did not reduce the amounts of ATG13 and FIP200 co-precipitating with ULK1, but did reduce the level of phosphorylated ATG13 in this complex. To further assess autophagy, we looked at endogenous LC3 by immunofluorescence (Fig. 1D). Under control conditions, MRT68921 caused a slight reduction in basal LC3 puncta, indicating the compound can block basal autophagy. However, the changes were not statistically significant, which could be due to low basal level of autophagy during the treatment. In contrast and as with the western blot data, EBSS caused a large increase in bafilomycin-sensitive LC3 puncta accumulation. Likewise, this was blocked by both MRT compounds (though only MRT68921 is shown in Fig. 1D), confirming that these compounds do indeed block autophagy in cells. Also, like the western blot data (Fig. 1B), a small two-fold increase in distinct LC3 puncta was observed with the inhibitors, which may represent stalled phagophores (see below).

Both MRT compounds inhibit ULK1 in vitro and in cells, and also block autophagy. However, they could be targeting autophagy through another kinase. The in vitro kinase profiling of MRT67307 revealed that it is a relatively specific kinase inhibitor, targeting TBK1/IKKε but also hitting the AMPK-related kinases (33). To assess the specificity of MRT68921, we profiled the inhibitor at 1µM against a broad panel of 80 protein kinases representing all areas of the human kinome (Fig. 2A). As with MRT67307, MRT68921 was relatively specific, but still inhibited a number of kinases by over 80% (see dark shaded bars on Fig. 2A). Most notably, TBK1/IKKε and the AMPK-related kinases were still targeted. TBK1 and AMPK have been implicated in autophagy (34-40), so it was important to rule these out as autophagy-inhibiting targets of MRT68921. To analyse the role of TBK1, we took knockout MEFs and asked if autophagy could still be induced and inhibited by MRT68921 (Fig. 2B). To induce autophagy we utilized the mTOR inhibitor AZD8055 (41) and found in TBK1-containing cells, a large increase in LC3-II flux, which was inhibited by

MRT68921. In TBK1 knockout cells, the pattern of LC3-II accumulation was almost identical, indicating that TBK1 is not essential for mTOR-mediated autophagic flux and is not the autophagy-inhibiting target of MRT68921. Of course we do not rule out TBK1’s involvement in more specific forms of autophagy such as basal autophagy or xenophagy. However, this result highlights the caution that is needed when using TBK1 inhibitors to validate a role for TBK1 in autophagy.

To analyse AMPK-related kinase involvement we took advantage of the fact that these kinases, with the exception of AMPK (which can also be activated by CaMKK2), require LKB1-mediated phosphorylation for activation (42). Using LKB1 knockout MEFs, we found that LC3 flux was comparable to matched, wild-type MEFs and was inhibited to the same extent with MRT68921 (Fig. 2C). Therefore, these kinases are not the target of MRT68921 in blocking autophagy. Interestingly, LC3 flux was slightly higher under basal and autophagy-inducing conditions in the LKB1 knockout MEFs, which is similar to that seen in AMPK knockout cells (36). This supports the idea that AMPK, or one of the related kinases, though not essential for autophagy does play a regulatory role.

Both the MRT compounds are competitive ATP-binding site inhibitors and may inhibit autophagy through other kinases, or even non-kinase ATP-binding proteins. To rule this out and confirm ULK1 as the target, we generated a drug-resistant ULK1 mutant. The gatekeeper residue is a bulky hydrophobic amino acid present at the base of the ATP-binding pocket in all typical protein kinases. When this residue is mutated it can change the ATP-binding properties of the kinase. In order to identify residues that might result in loss of inhibitor binding, but retain ATP binding, we mutated the gatekeeper residue of ULK1 (methionine 92) to various amino acids. Mutation to alanine or glycine resulted in loss of kinase activity, but a change to threonine or glutamine resulted in an ULK1 construct that retained in vitro activity in a simple auto-phosphorylation kinase assay (Fig. 3A).

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 5: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  5

Satisfyingly, mutation of methionine 92 to threonine (M92T) allowed ULK1 to retain kinase activity in the presence of MRT67307, at a concentration that inhibited wild-type (WT) and the glutamine mutant. To analyse the resistance of ULK1 M92T to the MRT compounds in greater detail, we characterised the IC50 for this mutant and found over a 70-fold decrease in sensitivity, confirming the drug-resistance (Fig. 3B).

We next confirmed the M92T mutant could rescue the MRT68921-mediated autophagy inhibition. For this, either WT or M92T FLAG-ULK1 was stably expressed in ULK1/2 dKO MEFs (Fig. 3C). Re-expression of WT or M92T ULK1 restored ATG13 phosphorylation and autophagy (as observed by LC3-II flux), caused by the loss of endogenous ULK1 and 2. In these cells it appears that ULK1 is sufficient to rescue autophagy, highlighting the redundancy of ULK2. Importantly, MRT68921 was able to inhibit the WT-restored ATG13 phosphorylation and autophagy similarly to cells expressing endogenous ULK1 (compare Fig. 1B with 3C). However, in cells expressing a similar level of M92T ULK1, MRT68921 failed to reduce neither ATG13 phosphorylation nor LC3 flux (Fig. 3C). This indicates that MRT68921 is indeed blocking autophagy through ULK1 kinase inhibition. To our knowledge, this is the first example of specifically inhibiting ULK1 with a small molecule to disrupt autophagy.

To confirm inhibition is through ULK1, we used the ULK1 rescue MEFs to analyse LC3 immunofluorescence (Fig. 3D). Cells expressing both WT and M92T ULK1 displayed a comparable increase in the number of bafilomycin-sensitive LC3 puncta in response to EBSS treatment. Similarly, the LC3 puncta flux was blocked by MRT68921 treatment only in the WT ULK1 expressing cells, not the M92T ULK1 cells, confirming the MRT compound blocks autophagy through ULK1 inhibition. As with the immunofluorescence analysis in cells endogenously expressing ULK (see Fig. 1D), we did see a small increase in the formation of distinct and bright LC3 puncta upon MRT68921 treatment in the WT-expressing

cells and given that no LC3 flux was observed, these structures could possibly represent stalled phagophores or immature autophagosomes. These bright puncta were not readily observed under control conditions with inhibitor indicating that stimulated autophagy differs somewhat from basal autophagy, or that the equivalent puncta that accumulate are smaller and harder to distinguish from the background staining. To gain further insight into these aberrant structures we carried out live-cell microscopy in GFP-LC3 expressing ULK1-rescue cells (see Movie1 and 2). Incubation of both WT- and M92T-ULK1 expressing cells in EBSS resulted in rapid formation of GFP-LC3 autophagosomes after as little as 15 minutes. In contrast, in WT but not M92T cells, MRT68921 treatment delayed the formation of GFP-LC3 structures, which only started to accumulate following 30 minutes of treatment. Additionally, these structures appeared brighter and morphologically distinct to those formed in the untreated WT cells (or treated/untreated M92T ULK1 cells). The reader is encouraged to watch the movies, but representative images are shown in Fig. 4A. The distinct appearance, timing and lack of flux of the inhibitor-induced LC3 structures suggested that they are not regular autophagosomes. We hypothesized that ULK1 inhibition primarily blocks autophagy induction, however some residual ULK activity remains to allow autophagosome initiation but not maturation. To analyse this further, we co-stained cells for LC3 and the phagophore markers ULK1 and ATG5 (Fig. 4B and C). We found that the majority of the inhibitor-induced LC3 structures, over 70%, contained ULK1 and ATG5, which is in contrast to structures found in the absence of inhibitor that showed less than a third co-localising with ULK1 or ATG5. Additionally, inhibitor treatment did not appear to reduce the number of ULK1 or ATG5 puncta forming upon autophagy stimulation. Firstly, this suggests that ULK activity is not essential for its recruitment to autophagosomal structures (a similar observation has been made with kinase-dead ULK1 constructs (43)). Secondly, given that the LC3 structures contain ULK1

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 6: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  6

and ATG5, both phagophore markers (44,45), this suggests ULK1 plays a role in phagophore maturation into complete autophagosomes. This is not an unreasonable proposal as a similar phenomenon has been observed in yeast, whereby expression of a kinase dead form of Atg1 (yeast ULK) did indeed block autophagy, but also resulted in increased recruitment of Atg8 (yeast LC3 homolog) and Atg17 to the pre-autophagosomal structure (PAS) (46). Additionally, in mammalian cells, dissociation of ULK1 from the omegasome precedes autophagosome maturation (47). Our data fits well with these observations suggesting a function for Atg1/ULK1 activity in disassembly of the PAS/phagophore to allow autophagosome maturation. However, further work in characterising these structures is needed to clarify this. We therefore suggest that ULK regulates autophagy through at least two mechanisms: i) Regulation of the VPS34 complex, by AMBRA1/Beclin1 phosphorylation, upstream of LC3 conjugation (12,48); and ii) controlling maturation of the phagophore and transition to the mature

autophagosome, downstream of LC3 conjugation.

In summary, we have shown that MRT67307, and especially MRT68921, potently inhibit ULK1 and 2 in vitro and ULK1 in cells. Importantly, this was sufficient to block autophagic flux. We demonstrated specificity in the autophagy block through the generation of the drug-resistant M92T ULK1 mutant. Although it might be expected that pharmacologically inhibiting ULK1 would block autophagy, this has not been previously shown and highlights the importance of ULK kinase activity in autophagy induction. It also acts as a proof-of-principle in developing small molecule inhibitors to block autophagy for therapy in diseases such as cancer. Finally, we have developed a system to enable molecular analysis of ULK1 function in autophagy and revealed a role for ULK1 in the maturation of autophagosomes. Future work will hopefully identify the targets of ULK1 that enable the phagophore to autophagosome switch.

REFERENCES 1. Boya, P., Reggiori, F., and Codogno, P. (2013) Emerging regulation and functions of

autophagy. Nat Cell Biol 15, 713-720 2. Rubinsztein, D. C., Codogno, P., and Levine, B. (2012) Autophagy modulation as a

potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11, 709-730 3. White, E. (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat

Rev Cancer 12, 401-410 4. Thorburn, A., Thamm, D. H., and Gustafson, D. L. (2014) Autophagy and cancer

therapy. Molecular pharmacology 85, 830-838 5. Vogl, D. T., Stadtmauer, E. A., Tan, K. S., Heitjan, D. F., Davis, L. E., Pontiggia, L.,

Rangwala, R., Piao, S., Chang, Y. C., Scott, E. C., Paul, T. M., Nichols, C. W., Porter, D. L., Kaplan, J., Mallon, G., Bradner, J. E., and Amaravadi, R. K. (2014) Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10, 1380-1390

6. Rosenfeld, M. R., Ye, X., Supko, J. G., Desideri, S., Grossman, S. A., Brem, S., Mikkelson, T., Wang, D., Chang, Y. C., Hu, J., McAfee, Q., Fisher, J., Troxel, A. B., Piao, S., Heitjan, D. F., Tan, K. S., Pontiggia, L., O'Dwyer, P. J., Davis, L. E., and Amaravadi, R. K. (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10, 1359-1368

7. Rangwala, R., Leone, R., Chang, Y. C., Fecher, L. A., Schuchter, L. M., Kramer, A., Tan, K. S., Heitjan, D. F., Rodgers, G., Gallagher, M., Piao, S., Troxel, A. B., Evans, T. L., DeMichele, A. M., Nathanson, K. L., O'Dwyer, P. J., Kaiser, J., Pontiggia, L., Davis, L. E., and Amaravadi, R. K. (2014) Phase I trial of hydroxychloroquine with dose-intense

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 7: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  7

temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10, 1369-1379

8. Rangwala, R., Chang, Y. C., Hu, J., Algazy, K. M., Evans, T. L., Fecher, L. A., Schuchter, L. M., Torigian, D. A., Panosian, J. T., Troxel, A. B., Tan, K. S., Heitjan, D. F., DeMichele, A. M., Vaughn, D. J., Redlinger, M., Alavi, A., Kaiser, J., Pontiggia, L., Davis, L. E., O'Dwyer, P. J., and Amaravadi, R. K. (2014) Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10, 1391-1402

9. Poklepovic, A., and Gewirtz, D. A. (2014) Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer. Autophagy 10, 1478-1480

10. Mahalingam, D., Mita, M., Sarantopoulos, J., Wood, L., Amaravadi, R. K., Davis, L. E., Mita, A. C., Curiel, T. J., Espitia, C. M., Nawrocki, S. T., Giles, F. J., and Carew, J. S. (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10, 1403-1414

11. Barnard, R. A., Wittenburg, L. A., Amaravadi, R. K., Gustafson, D. L., Thorburn, A., and Thamm, D. H. (2014) Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy 10, 1415-1425

12. Russell, R. C., Tian, Y., Yuan, H., Park, H. W., Chang, Y. Y., Kim, J., Kim, H., Neufeld, T. P., Dillin, A., and Guan, K. L. (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15, 741-750

13. Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., Kundu, M., and Kim, D. H. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular biology of the cell 20, 1992-2003

14. Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N., Guan, J. L., Oshiro, N., and Mizushima, N. (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Molecular biology of the cell 20, 1981-1991

15. Ganley, I. G., Lam du, H., Wang, J., Ding, X., Chen, S., and Jiang, X. (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284, 12297-12305

16. Slobodkin, M. R., and Elazar, Z. (2013) The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays in biochemistry 55, 51-64

17. Ronan, B., Flamand, O., Vescovi, L., Dureuil, C., Durand, L., Fassy, F., Bachelot, M. F., Lamberton, A., Mathieu, M., Bertrand, T., Marquette, J. P., El-Ahmad, Y., Filoche-Romme, B., Schio, L., Garcia-Echeverria, C., Goulaouic, H., and Pasquier, B. (2014) A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nature chemical biology 10, 1013-1019

18. Dowdle, W. E., Nyfeler, B., Nagel, J., Elling, R. A., Liu, S., Triantafellow, E., Menon, S., Wang, Z., Honda, A., Pardee, G., Cantwell, J., Luu, C., Cornella-Taracido, I., Harrington, E., Fekkes, P., Lei, H., Fang, Q., Digan, M. E., Burdick, D., Powers, A. F., Helliwell, S. B., D'Aquin, S., Bastien, J., Wang, H., Wiederschain, D., Kuerth, J., Bergman, P., Schwalb, D., Thomas, J., Ugwonali, S., Harbinski, F., Tallarico, J., Wilson, C. J., Myer, V. E., Porter, J. A., Bussiere, D. E., Finan, P. M., Labow, M. A., Mao, X., Hamann, L. G., Manning, B. D., Valdez, R. A., Nicholson, T., Schirle, M., Knapp, M. S., Keaney, E. P., and Murphy, L. O. (2014) Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 16, 1069-1079

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 8: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  8

19. Bago, R., Malik, N., Munson, M. J., Prescott, A. R., Davies, P., Sommer, E., Shpiro, N., Ward, R., Cross, D., Ganley, I. G., and Alessi, D. R. (2014) Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. The Biochemical journal 463, 413-427

20. Wong, P. M., Puente, C., Ganley, I. G., and Jiang, X. (2013) The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 9, 124-137

21. McIver, E. G., Bryans, J., Birchall, K., Chugh, J., Drake, T., Lewis, S. J., Osborne, J., Smiljanic-Hurley, E., Tsang, W., Kamal, A., Levy, A., Newman, M., Taylor, D., Arthur, J. S., Clark, K., and Cohen, P. (2012) Synthesis and structure-activity relationships of a novel series of pyrimidines as potent inhibitors of TBK1/IKKepsilon kinases. Bioorganic & medicinal chemistry letters 22, 7169-7173

22. Ganley, I. G., Wong, P. M., Gammoh, N., and Jiang, X. (2011) Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Molecular cell 42, 731-743

23. Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Makela, T. P., Alessi, D. R., and Hardie, D. G. (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Journal of biology 2, 28

24. Cheong, H., Lindsten, T., Wu, J., Lu, C., and Thompson, C. B. (2011) Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proceedings of the National Academy of Sciences of the United States of America 108, 11121-11126

25. Clark, K., Takeuchi, O., Akira, S., and Cohen, P. (2011) The TRAF-associated protein TANK facilitates cross-talk within the IkappaB kinase family during Toll-like receptor signaling. Proceedings of the National Academy of Sciences of the United States of America 108, 17093-17098

26. Ganley, I. G., Carroll, K., Bittova, L., and Pfeffer, S. (2004) Rab9 GTPase regulates late endosome size and requires effector interaction for its stability. Molecular biology of the cell 15, 5420-5430

27. Hastie, C. J., McLauchlan, H. J., and Cohen, P. (2006) Assay of protein kinases using radiolabeled ATP: a protocol. Nature protocols 1, 968-971

28. Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C. J., McLauchlan, H., Klevernic, I., Arthur, J. S., Alessi, D. R., and Cohen, P. (2007) The selectivity of protein kinase inhibitors: a further update. The Biochemical journal 408, 297-315

29. Clark, K., Peggie, M., Plater, L., Sorcek, R. J., Young, E. R., Madwed, J. B., Hough, J., McIver, E. G., and Cohen, P. (2011) Novel cross-talk within the IKK family controls innate immunity. The Biochemical journal 434, 93-104

30. Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., Aguirre-Ghiso, J. A., Ahn, H. J., Ait-Mohamed, O., Ait-Si-Ali, S., Akematsu, T., Akira, S., Al-Younes, H. M., Al-Zeer, M. A., Albert, M. L., Albin, R. L., Alegre-Abarrategui, J., Aleo, M. F., Alirezaei, M., Almasan, A., Almonte-Becerril, M., Amano, A., Amaravadi, R., Amarnath, S., Amer, A. O., Andrieu-Abadie, N., Anantharam, V., Ann, D. K., Anoopkumar-Dukie, S., Aoki, H., Apostolova, N., Arancia, G., Aris, J. P., Asanuma, K., Asare, N. Y., Ashida, H., Askanas, V., Askew, D. S., Auberger, P., Baba, M., Backues, S. K., Baehrecke, E. H., Bahr, B. A., Bai, X. Y., Bailly, Y., Baiocchi, R., Baldini, G., Balduini, W., Ballabio, A., Bamber, B. A., Bampton, E. T., Banhegyi, G., Bartholomew, C. R., Bassham, D. C., Bast, R. C., Jr., Batoko, H., Bay, B. H., Beau, I., Bechet, D. M., Begley, T. J., Behl, C., Behrends, C., Bekri, S., Bellaire, B., Bendall, L. J., Benetti, L., Berliocchi, L., Bernardi, H., Bernassola, F., Besteiro, S., Bhatia-Kissova, I., Bi, X., Biard-Piechaczyk, M., Blum, J. S., Boise, L. H., Bonaldo, P., Boone, D. L., Bornhauser, B. C., Bortoluci, K. R., Bossis, I., Bost, F.,

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 9: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  9

Bourquin, J. P., Boya, P., Boyer-Guittaut, M., Bozhkov, P. V., Brady, N. R., Brancolini, C., Brech, A., Brenman, J. E., Brennand, A., Bresnick, E. H., Brest, P., Bridges, D., Bristol, M. L., Brookes, P. S., Brown, E. J., Brumell, J. H., Brunetti-Pierri, N., Brunk, U. T., Bulman, D. E., Bultman, S. J., Bultynck, G., Burbulla, L. F., Bursch, W., Butchar, J. P., Buzgariu, W., Bydlowski, S. P., Cadwell, K., Cahova, M., Cai, D., Cai, J., Cai, Q., Calabretta, B., Calvo-Garrido, J., Camougrand, N., Campanella, M., Campos-Salinas, J., Candi, E., Cao, L., Caplan, A. B., Carding, S. R., Cardoso, S. M., Carew, J. S., Carlin, C. R., Carmignac, V., Carneiro, L. A., Carra, S., Caruso, R. A., Casari, G., Casas, C., Castino, R., Cebollero, E., Cecconi, F., Celli, J., Chaachouay, H., Chae, H. J., Chai, C. Y., Chan, D. C., Chan, E. Y., Chang, R. C., Che, C. M., Chen, C. C., Chen, G. C., Chen, G. Q., Chen, M., Chen, Q., Chen, S. S., Chen, W., Chen, X., Chen, X., Chen, X., Chen, Y. G., Chen, Y., Chen, Y., Chen, Y. J., Chen, Z., Cheng, A., Cheng, C. H., Cheng, Y., Cheong, H., Cheong, J. H., Cherry, S., Chess-Williams, R., Cheung, Z. H., Chevet, E., Chiang, H. L., Chiarelli, R., Chiba, T., Chin, L. S., Chiou, S. H., Chisari, F. V., Cho, C. H., Cho, D. H., Choi, A. M., Choi, D., Choi, K. S., Choi, M. E., Chouaib, S., Choubey, D., Choubey, V., Chu, C. T., Chuang, T. H., Chueh, S. H., Chun, T., Chwae, Y. J., Chye, M. L., Ciarcia, R., Ciriolo, M. R., Clague, M. J., Clark, R. S., Clarke, P. G., Clarke, R., Codogno, P., Coller, H. A., Colombo, M. I., Comincini, S., Condello, M., Condorelli, F., Cookson, M. R., Coombs, G. H., Coppens, I., Corbalan, R., Cossart, P., Costelli, P., Costes, S., Coto-Montes, A., Couve, E., Coxon, F. P., Cregg, J. M., Crespo, J. L., Cronje, M. J., Cuervo, A. M., Cullen, J. J., Czaja, M. J., D'Amelio, M., Darfeuille-Michaud, A., Davids, L. M., Davies, F. E., De Felici, M., de Groot, J. F., de Haan, C. A., De Martino, L., De Milito, A., De Tata, V., Debnath, J., Degterev, A., Dehay, B., Delbridge, L. M., Demarchi, F., Deng, Y. Z., Dengjel, J., Dent, P., Denton, D., Deretic, V., Desai, S. D., Devenish, R. J., Di Gioacchino, M., Di Paolo, G., Di Pietro, C., Diaz-Araya, G., Diaz-Laviada, I., Diaz-Meco, M. T., Diaz-Nido, J., Dikic, I., Dinesh-Kumar, S. P., Ding, W. X., Distelhorst, C. W., Diwan, A., Djavaheri-Mergny, M., Dokudovskaya, S., Dong, Z., Dorsey, F. C., Dosenko, V., Dowling, J. J., Doxsey, S., Dreux, M., Drew, M. E., Duan, Q., Duchosal, M. A., Duff, K., Dugail, I., Durbeej, M., Duszenko, M., Edelstein, C. L., Edinger, A. L., Egea, G., Eichinger, L., Eissa, N. T., Ekmekcioglu, S., El-Deiry, W. S., Elazar, Z., Elgendy, M., Ellerby, L. M., Eng, K. E., Engelbrecht, A. M., Engelender, S., Erenpreisa, J., Escalante, R., Esclatine, A., Eskelinen, E. L., Espert, L., Espina, V., Fan, H., Fan, J., Fan, Q. W., Fan, Z., Fang, S., Fang, Y., Fanto, M., Fanzani, A., Farkas, T., Farre, J. C., Faure, M., Fechheimer, M., Feng, C. G., Feng, J., Feng, Q., Feng, Y., Fesus, L., Feuer, R., Figueiredo-Pereira, M. E., Fimia, G. M., Fingar, D. C., Finkbeiner, S., Finkel, T., Finley, K. D., Fiorito, F., Fisher, E. A., Fisher, P. B., Flajolet, M., Florez-McClure, M. L., Florio, S., Fon, E. A., Fornai, F., Fortunato, F., Fotedar, R., Fowler, D. H., Fox, H. S., Franco, R., Frankel, L. B., Fransen, M., Fuentes, J. M., Fueyo, J., Fujii, J., Fujisaki, K., Fujita, E., Fukuda, M., Furukawa, R. H., Gaestel, M., Gailly, P., Gajewska, M., Galliot, B., Galy, V., Ganesh, S., Ganetzky, B., Ganley, I. G., Gao, F. B., Gao, G. F., Gao, J., Garcia, L., Garcia-Manero, G., Garcia-Marcos, M., Garmyn, M., Gartel, A. L., Gatti, E., Gautel, M., Gawriluk, T. R., Gegg, M. E., Geng, J., Germain, M., Gestwicki, J. E., Gewirtz, D. A., Ghavami, S., Ghosh, P., Giammarioli, A. M., Giatromanolaki, A. N., Gibson, S. B., Gilkerson, R. W., Ginger, M. L., Ginsberg, H. N., Golab, J., Goligorsky, M. S., Golstein, P., Gomez-Manzano, C., Goncu, E., Gongora, C., Gonzalez, C. D., Gonzalez, R., Gonzalez-Estevez, C., Gonzalez-Polo, R. A., Gonzalez-Rey, E., Gorbunov, N. V., Gorski, S., Goruppi, S., Gottlieb, R. A., Gozuacik, D., Granato, G. E., Grant, G. D., Green, K. N., Gregorc, A., Gros, F., Grose, C., Grunt, T. W., Gual, P., Guan, J. L., Guan, K. L., Guichard, S. M., Gukovskaya, A. S., Gukovsky, I., Gunst, J., Gustafsson, A. B., Halayko, A. J., Hale, A. N., Halonen, S. K., Hamasaki, M., Han, F., Han, T., Hancock, M. K., Hansen, M., Harada, H., Harada, M., Hardt, S. E., Harper, J. W., Harris,

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 10: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  10

A. L., Harris, J., Harris, S. D., Hashimoto, M., Haspel, J. A., Hayashi, S., Hazelhurst, L. A., He, C., He, Y. W., Hebert, M. J., Heidenreich, K. A., Helfrich, M. H., Helgason, G. V., Henske, E. P., Herman, B., Herman, P. K., Hetz, C., Hilfiker, S., Hill, J. A., Hocking, L. J., Hofman, P., Hofmann, T. G., Hohfeld, J., Holyoake, T. L., Hong, M. H., Hood, D. A., Hotamisligil, G. S., Houwerzijl, E. J., Hoyer-Hansen, M., Hu, B., Hu, C. A., Hu, H. M., Hua, Y., Huang, C., Huang, J., Huang, S., Huang, W. P., Huber, T. B., Huh, W. K., Hung, T. H., Hupp, T. R., Hur, G. M., Hurley, J. B., Hussain, S. N., Hussey, P. J., Hwang, J. J., Hwang, S., Ichihara, A., Ilkhanizadeh, S., Inoki, K., Into, T., Iovane, V., Iovanna, J. L., Ip, N. Y., Isaka, Y., Ishida, H., Isidoro, C., Isobe, K., Iwasaki, A., Izquierdo, M., Izumi, Y., Jaakkola, P. M., Jaattela, M., Jackson, G. R., Jackson, W. T., Janji, B., Jendrach, M., Jeon, J. H., Jeung, E. B., Jiang, H., Jiang, H., Jiang, J. X., Jiang, M., Jiang, Q., Jiang, X., Jiang, X., Jimenez, A., Jin, M., Jin, S., Joe, C. O., Johansen, T., Johnson, D. E., Johnson, G. V., Jones, N. L., Joseph, B., Joseph, S. K., Joubert, A. M., Juhasz, G., Juillerat-Jeanneret, L., Jung, C. H., Jung, Y. K., Kaarniranta, K., Kaasik, A., Kabuta, T., Kadowaki, M., Kagedal, K., Kamada, Y., Kaminskyy, V. O., Kampinga, H. H., Kanamori, H., Kang, C., Kang, K. B., Kang, K. I., Kang, R., Kang, Y. A., Kanki, T., Kanneganti, T. D., Kanno, H., Kanthasamy, A. G., Kanthasamy, A., Karantza, V., Kaushal, G. P., Kaushik, S., Kawazoe, Y., Ke, P. Y., Kehrl, J. H., Kelekar, A., Kerkhoff, C., Kessel, D. H., Khalil, H., Kiel, J. A., Kiger, A. A., Kihara, A., Kim, D. R., Kim, D. H., Kim, D. H., Kim, E. K., Kim, H. R., Kim, J. S., Kim, J. H., Kim, J. C., Kim, J. K., Kim, P. K., Kim, S. W., Kim, Y. S., Kim, Y., Kimchi, A., Kimmelman, A. C., King, J. S., Kinsella, T. J., Kirkin, V., Kirshenbaum, L. A., Kitamoto, K., Kitazato, K., Klein, L., Klimecki, W. T., Klucken, J., Knecht, E., Ko, B. C., Koch, J. C., Koga, H., Koh, J. Y., Koh, Y. H., Koike, M., Komatsu, M., Kominami, E., Kong, H. J., Kong, W. J., Korolchuk, V. I., Kotake, Y., Koukourakis, M. I., Kouri Flores, J. B., Kovacs, A. L., Kraft, C., Krainc, D., Kramer, H., Kretz-Remy, C., Krichevsky, A. M., Kroemer, G., Kruger, R., Krut, O., Ktistakis, N. T., Kuan, C. Y., Kucharczyk, R., Kumar, A., Kumar, R., Kumar, S., Kundu, M., Kung, H. J., Kurz, T., Kwon, H. J., La Spada, A. R., Lafont, F., Lamark, T., Landry, J., Lane, J. D., Lapaquette, P., Laporte, J. F., Laszlo, L., Lavandero, S., Lavoie, J. N., Layfield, R., Lazo, P. A., Le, W., Le Cam, L., Ledbetter, D. J., Lee, A. J., Lee, B. W., Lee, G. M., Lee, J., Lee, J. H., Lee, M., Lee, M. S., Lee, S. H., Leeuwenburgh, C., Legembre, P., Legouis, R., Lehmann, M., Lei, H. Y., Lei, Q. Y., Leib, D. A., Leiro, J., Lemasters, J. J., Lemoine, A., Lesniak, M. S., Lev, D., Levenson, V. V., Levine, B., Levy, E., Li, F., Li, J. L., Li, L., Li, S., Li, W., Li, X. J., Li, Y. B., Li, Y. P., Liang, C., Liang, Q., Liao, Y. F., Liberski, P. P., Lieberman, A., Lim, H. J., Lim, K. L., Lim, K., Lin, C. F., Lin, F. C., Lin, J., Lin, J. D., Lin, K., Lin, W. W., Lin, W. C., Lin, Y. L., Linden, R., Lingor, P., Lippincott-Schwartz, J., Lisanti, M. P., Liton, P. B., Liu, B., Liu, C. F., Liu, K., Liu, L., Liu, Q. A., Liu, W., Liu, Y. C., Liu, Y., Lockshin, R. A., Lok, C. N., Lonial, S., Loos, B., Lopez-Berestein, G., Lopez-Otin, C., Lossi, L., Lotze, M. T., Low, P., Lu, B., Lu, B., Lu, B., Lu, Z., Luciano, F., Lukacs, N. W., Lund, A. H., Lynch-Day, M. A., Ma, Y., Macian, F., MacKeigan, J. P., Macleod, K. F., Madeo, F., Maiuri, L., Maiuri, M. C., Malagoli, D., Malicdan, M. C., Malorni, W., Man, N., Mandelkow, E. M., Manon, S., Manov, I., Mao, K., Mao, X., Mao, Z., Marambaud, P., Marazziti, D., Marcel, Y. L., Marchbank, K., Marchetti, P., Marciniak, S. J., Marcondes, M., Mardi, M., Marfe, G., Marino, G., Markaki, M., Marten, M. R., Martin, S. J., Martinand-Mari, C., Martinet, W., Martinez-Vicente, M., Masini, M., Matarrese, P., Matsuo, S., Matteoni, R., Mayer, A., Mazure, N. M., McConkey, D. J., McConnell, M. J., McDermott, C., McDonald, C., McInerney, G. M., McKenna, S. L., McLaughlin, B., McLean, P. J., McMaster, C. R., McQuibban, G. A., Meijer, A. J., Meisler, M. H., Melendez, A., Melia, T. J., Melino, G., Mena, M. A., Menendez, J. A., Menna-Barreto, R. F., Menon, M. B., Menzies, F. M., Mercer, C. A., Merighi, A., Merry, D. E., Meschini, S., Meyer, C. G., Meyer, T. F., Miao,

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 11: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  11

C. Y., Miao, J. Y., Michels, P. A., Michiels, C., Mijaljica, D., Milojkovic, A., Minucci, S., Miracco, C., Miranti, C. K., Mitroulis, I., Miyazawa, K., Mizushima, N., Mograbi, B., Mohseni, S., Molero, X., Mollereau, B., Mollinedo, F., Momoi, T., Monastyrska, I., Monick, M. M., Monteiro, M. J., Moore, M. N., Mora, R., Moreau, K., Moreira, P. I., Moriyasu, Y., Moscat, J., Mostowy, S., Mottram, J. C., Motyl, T., Moussa, C. E., Muller, S., Muller, S., Munger, K., Munz, C., Murphy, L. O., Murphy, M. E., Musaro, A., Mysorekar, I., Nagata, E., Nagata, K., Nahimana, A., Nair, U., Nakagawa, T., Nakahira, K., Nakano, H., Nakatogawa, H., Nanjundan, M., Naqvi, N. I., Narendra, D. P., Narita, M., Navarro, M., Nawrocki, S. T., Nazarko, T. Y., Nemchenko, A., Netea, M. G., Neufeld, T. P., Ney, P. A., Nezis, I. P., Nguyen, H. P., Nie, D., Nishino, I., Nislow, C., Nixon, R. A., Noda, T., Noegel, A. A., Nogalska, A., Noguchi, S., Notterpek, L., Novak, I., Nozaki, T., Nukina, N., Nurnberger, T., Nyfeler, B., Obara, K., Oberley, T. D., Oddo, S., Ogawa, M., Ohashi, T., Okamoto, K., Oleinick, N. L., Oliver, F. J., Olsen, L. J., Olsson, S., Opota, O., Osborne, T. F., Ostrander, G. K., Otsu, K., Ou, J. H., Ouimet, M., Overholtzer, M., Ozpolat, B., Paganetti, P., Pagnini, U., Pallet, N., Palmer, G. E., Palumbo, C., Pan, T., Panaretakis, T., Pandey, U. B., Papackova, Z., Papassideri, I., Paris, I., Park, J., Park, O. K., Parys, J. B., Parzych, K. R., Patschan, S., Patterson, C., Pattingre, S., Pawelek, J. M., Peng, J., Perlmutter, D. H., Perrotta, I., Perry, G., Pervaiz, S., Peter, M., Peters, G. J., Petersen, M., Petrovski, G., Phang, J. M., Piacentini, M., Pierre, P., Pierrefite-Carle, V., Pierron, G., Pinkas-Kramarski, R., Piras, A., Piri, N., Platanias, L. C., Poggeler, S., Poirot, M., Poletti, A., Pous, C., Pozuelo-Rubio, M., Praetorius-Ibba, M., Prasad, A., Prescott, M., Priault, M., Produit-Zengaffinen, N., Progulske-Fox, A., Proikas-Cezanne, T., Przedborski, S., Przyklenk, K., Puertollano, R., Puyal, J., Qian, S. B., Qin, L., Qin, Z. H., Quaggin, S. E., Raben, N., Rabinowich, H., Rabkin, S. W., Rahman, I., Rami, A., Ramm, G., Randall, G., Randow, F., Rao, V. A., Rathmell, J. C., Ravikumar, B., Ray, S. K., Reed, B. H., Reed, J. C., Reggiori, F., Regnier-Vigouroux, A., Reichert, A. S., Reiners, J. J., Jr., Reiter, R. J., Ren, J., Revuelta, J. L., Rhodes, C. J., Ritis, K., Rizzo, E., Robbins, J., Roberge, M., Roca, H., Roccheri, M. C., Rocchi, S., Rodemann, H. P., Rodriguez de Cordoba, S., Rohrer, B., Roninson, I. B., Rosen, K., Rost-Roszkowska, M. M., Rouis, M., Rouschop, K. M., Rovetta, F., Rubin, B. P., Rubinsztein, D. C., Ruckdeschel, K., Rucker, E. B., 3rd, Rudich, A., Rudolf, E., Ruiz-Opazo, N., Russo, R., Rusten, T. E., Ryan, K. M., Ryter, S. W., Sabatini, D. M., Sadoshima, J., Saha, T., Saitoh, T., Sakagami, H., Sakai, Y., Salekdeh, G. H., Salomoni, P., Salvaterra, P. M., Salvesen, G., Salvioli, R., Sanchez, A. M., Sanchez-Alcazar, J. A., Sanchez-Prieto, R., Sandri, M., Sankar, U., Sansanwal, P., Santambrogio, L., Saran, S., Sarkar, S., Sarwal, M., Sasakawa, C., Sasnauskiene, A., Sass, M., Sato, K., Sato, M., Schapira, A. H., Scharl, M., Schatzl, H. M., Scheper, W., Schiaffino, S., Schneider, C., Schneider, M. E., Schneider-Stock, R., Schoenlein, P. V., Schorderet, D. F., Schuller, C., Schwartz, G. K., Scorrano, L., Sealy, L., Seglen, P. O., Segura-Aguilar, J., Seiliez, I., Seleverstov, O., Sell, C., Seo, J. B., Separovic, D., Setaluri, V., Setoguchi, T., Settembre, C., Shacka, J. J., Shanmugam, M., Shapiro, I. M., Shaulian, E., Shaw, R. J., Shelhamer, J. H., Shen, H. M., Shen, W. C., Sheng, Z. H., Shi, Y., Shibuya, K., Shidoji, Y., Shieh, J. J., Shih, C. M., Shimada, Y., Shimizu, S., Shintani, T., Shirihai, O. S., Shore, G. C., Sibirny, A. A., Sidhu, S. B., Sikorska, B., Silva-Zacarin, E. C., Simmons, A., Simon, A. K., Simon, H. U., Simone, C., Simonsen, A., Sinclair, D. A., Singh, R., Sinha, D., Sinicrope, F. A., Sirko, A., Siu, P. M., Sivridis, E., Skop, V., Skulachev, V. P., Slack, R. S., Smaili, S. S., Smith, D. R., Soengas, M. S., Soldati, T., Song, X., Sood, A. K., Soong, T. W., Sotgia, F., Spector, S. A., Spies, C. D., Springer, W., Srinivasula, S. M., Stefanis, L., Steffan, J. S., Stendel, R., Stenmark, H., Stephanou, A., Stern, S. T., Sternberg, C., Stork, B., Stralfors, P., Subauste, C. S., Sui, X., Sulzer, D., Sun, J., Sun, S. Y., Sun, Z. J., Sung, J. J., Suzuki, K., Suzuki, T., Swanson, M. S., Swanton, C., Sweeney, S. T., Sy, L. K.,

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 12: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  12

Szabadkai, G., Tabas, I., Taegtmeyer, H., Tafani, M., Takacs-Vellai, K., Takano, Y., Takegawa, K., Takemura, G., Takeshita, F., Talbot, N. J., Tan, K. S., Tanaka, K., Tanaka, K., Tang, D., Tang, D., Tanida, I., Tannous, B. A., Tavernarakis, N., Taylor, G. S., Taylor, G. A., Taylor, J. P., Terada, L. S., Terman, A., Tettamanti, G., Thevissen, K., Thompson, C. B., Thorburn, A., Thumm, M., Tian, F., Tian, Y., Tocchini-Valentini, G., Tolkovsky, A. M., Tomino, Y., Tonges, L., Tooze, S. A., Tournier, C., Tower, J., Towns, R., Trajkovic, V., Travassos, L. H., Tsai, T. F., Tschan, M. P., Tsubata, T., Tsung, A., Turk, B., Turner, L. S., Tyagi, S. C., Uchiyama, Y., Ueno, T., Umekawa, M., Umemiya-Shirafuji, R., Unni, V. K., Vaccaro, M. I., Valente, E. M., Van den Berghe, G., van der Klei, I. J., van Doorn, W., van Dyk, L. F., van Egmond, M., van Grunsven, L. A., Vandenabeele, P., Vandenberghe, W. P., Vanhorebeek, I., Vaquero, E. C., Velasco, G., Vellai, T., Vicencio, J. M., Vierstra, R. D., Vila, M., Vindis, C., Viola, G., Viscomi, M. T., Voitsekhovskaja, O. V., von Haefen, C., Votruba, M., Wada, K., Wade-Martins, R., Walker, C. L., Walsh, C. M., Walter, J., Wan, X. B., Wang, A., Wang, C., Wang, D., Wang, F., Wang, F., Wang, G., Wang, H., Wang, H. G., Wang, H. D., Wang, J., Wang, K., Wang, M., Wang, R. C., Wang, X., Wang, X., Wang, Y. J., Wang, Y., Wang, Z., Wang, Z. C., Wang, Z., Wansink, D. G., Ward, D. M., Watada, H., Waters, S. L., Webster, P., Wei, L., Weihl, C. C., Weiss, W. A., Welford, S. M., Wen, L. P., Whitehouse, C. A., Whitton, J. L., Whitworth, A. J., Wileman, T., Wiley, J. W., Wilkinson, S., Willbold, D., Williams, R. L., Williamson, P. R., Wouters, B. G., Wu, C., Wu, D. C., Wu, W. K., Wyttenbach, A., Xavier, R. J., Xi, Z., Xia, P., Xiao, G., Xie, Z., Xie, Z., Xu, D. Z., Xu, J., Xu, L., Xu, X., Yamamoto, A., Yamamoto, A., Yamashina, S., Yamashita, M., Yan, X., Yanagida, M., Yang, D. S., Yang, E., Yang, J. M., Yang, S. Y., Yang, W., Yang, W. Y., Yang, Z., Yao, M. C., Yao, T. P., Yeganeh, B., Yen, W. L., Yin, J. J., Yin, X. M., Yoo, O. J., Yoon, G., Yoon, S. Y., Yorimitsu, T., Yoshikawa, Y., Yoshimori, T., Yoshimoto, K., You, H. J., Youle, R. J., Younes, A., Yu, L., Yu, L., Yu, S. W., Yu, W. H., Yuan, Z. M., Yue, Z., Yun, C. H., Yuzaki, M., Zabirnyk, O., Silva-Zacarin, E., Zacks, D., Zacksenhaus, E., Zaffaroni, N., Zakeri, Z., Zeh, H. J., 3rd, Zeitlin, S. O., Zhang, H., Zhang, H. L., Zhang, J., Zhang, J. P., Zhang, L., Zhang, L., Zhang, M. Y., Zhang, X. D., Zhao, M., Zhao, Y. F., Zhao, Y., Zhao, Z. J., Zheng, X., Zhivotovsky, B., Zhong, Q., Zhou, C. Z., Zhu, C., Zhu, W. G., Zhu, X. F., Zhu, X., Zhu, Y., Zoladek, T., Zong, W. X., Zorzano, A., Zschocke, J., and Zuckerbraun, B. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544

31. Joo, J. H., Dorsey, F. C., Joshi, A., Hennessy-Walters, K. M., Rose, K. L., McCastlain, K., Zhang, J., Iyengar, R., Jung, C. H., Suen, D. F., Steeves, M. A., Yang, C. Y., Prater, S. M., Kim, D. H., Thompson, C. B., Youle, R. J., Ney, P. A., Cleveland, J. L., and Kundu, M. (2011) Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Molecular cell 43, 572-585

32. Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., Kundu, M., and Kim, D. H. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular biology of the cell 20, 1992-2003

33. Clark, K., MacKenzie, K. F., Petkevicius, K., Kristariyanto, Y., Zhang, J., Choi, H. G., Peggie, M., Plater, L., Pedrioli, P. G., McIver, E., Gray, N. S., Arthur, J. S., and Cohen, P. (2012) Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proceedings of the National Academy of Sciences of the United States of America 109, 16986-16991

34. Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S., Kohnz, R. A., Mair, W., Vasquez, D. S., Joshi, A., Gwinn, D. M., Taylor, R., Asara, J. M., Fitzpatrick, J., Dillin, A., Viollet, B., Kundu, M., Hansen, M., and Shaw, R. J. (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 13: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  13

35. Kim, J., Kundu, M., Viollet, B., and Guan, K. L. (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13, 132-141

36. Mack, H. I., Zheng, B., Asara, J. M., and Thomas, S. M. (2012) AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 8, 1197-1214

37. Newman, A. C., Scholefield, C. L., Kemp, A. J., Newman, M., McIver, E. G., Kamal, A., and Wilkinson, S. (2012) TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-kappaB signalling. PloS one 7, e50672

38. Shang, L., Chen, S., Du, F., Li, S., Zhao, L., and Wang, X. (2011) Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proceedings of the National Academy of Sciences of the United States of America 108, 4788-4793

39. Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N., and Randow, F. (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nature immunology 10, 1215-1221

40. Wild, P., Farhan, H., McEwan, D. G., Wagner, S., Rogov, V. V., Brady, N. R., Richter, B., Korac, J., Waidmann, O., Choudhary, C., Dotsch, V., Bumann, D., and Dikic, I. (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233

41. Chresta, C. M., Davies, B. R., Hickson, I., Harding, T., Cosulich, S., Critchlow, S. E., Vincent, J. P., Ellston, R., Jones, D., Sini, P., James, D., Howard, Z., Dudley, P., Hughes, G., Smith, L., Maguire, S., Hummersone, M., Malagu, K., Menear, K., Jenkins, R., Jacobsen, M., Smith, G. C., Guichard, S., and Pass, M. (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer research 70, 288-298

42. Hardie, D. G., and Alessi, D. R. (2013) LKB1 and AMPK and the cancer-metabolism link - ten years after. BMC biology 11, 36

43. Chan, E. Y., Longatti, A., McKnight, N. C., and Tooze, S. A. (2009) Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol 29, 157-171

44. Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L., and Mizushima, N. (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. The Journal of cell biology 181, 497-510

45. Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki, K., Tokuhisa, T., Ohsumi, Y., and Yoshimori, T. (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. The Journal of cell biology 152, 657-668

46. Cheong, H., Nair, U., Geng, J., and Klionsky, D. J. (2008) The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Molecular biology of the cell 19, 668-681

47. Karanasios, E., Stapleton, E., Manifava, M., Kaizuka, T., Mizushima, N., Walker, S. A., and Ktistakis, N. T. (2013) Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci 126, 5224-5238

48. Di Bartolomeo, S., Corazzari, M., Nazio, F., Oliverio, S., Lisi, G., Antonioli, M., Pagliarini, V., Matteoni, S., Fuoco, C., Giunta, L., D'Amelio, M., Nardacci, R., Romagnoli, A., Piacentini, M., Cecconi, F., and Fimia, G. M. (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. The Journal of cell biology 191, 155-168

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 14: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  14

Acknowledgements-We thank the Ganley lab for discussions and manuscript reading. This work was supported by the Medical Research Council and by the Division of Signal Transduction Therapy Unit (including AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck KGaA, Janssen Pharmaceutica and Pfizer). FOOTNOTES The Abbreviations used are: DMEM, Dulbecco’s modified Eagles medium; EBSS, Earle’s balanced salt solution; MEF, mouse embryonic fibroblast; dKO, double-knockout; ULK, Unc51-like kinase, TBK1, TANK-binding kinase 1, LKB1, Liver kinase B1, mTOR, mammalian target of rapamycin; AMPK, AMP-activated protein kinase. FIGURE LEGENDS FIGURE 1. MRT67307 and MRT68921 inhibit ULK and block autophagy in cells. A. Summary of MRT67307 and 68921 structures and in vitro ULK1 and 2 IC50s. B. MEF cells were incubated in EBSS for 1h in the presence or absence of either 10µM MRT67307, 1µM MRT68921 or 50nM Bafilomycin A1, followed by lysis and immunoblotting with the indicated antibodies (* indicates non-specific staining). Quantitation of phospho-serine 318 of ATG13, normalised to total ATG13, is shown below next to quantitation of LC3-II levels, normalised to tubulin. C. Representative blot of a FLAG immunoprecipitation from ULK1/2 double knockout MEFs (ULK dKO) expressing FLAG-ULK1. D. Representative micrographs of endogenous LC3 immunofluorescence in MEFs incubated in complete media (control) or EBSS for 1h in the presence or absence of 1µM MRT68921 and 50nM Bafilomycin A1. Quantitation of LC3 puncta is shown on the right. All quantitation represent means ±SEM from at least three independent experiments. *P<0.05. Scale bar, 10µm. FIGURE 2. Kinase selectivity of MRT68921. A. Activity of 80 recombinant kinases measured in the presence of 1µM MRT68921. Data represent percent activity remaining relative to activity in the absence of inhibitor. Darker shaded bars to the right indicate kinases that were inhibited by over 80%. B. TBK1 knockout (KO) and matched wild type (WT) MEFs were incubated with/without 1µM AZD8055 in the presence or absence of 50nM bafilomycin (baf) and 1µM MRT68921. Representative immunoblot is shown with quantitation of LC3-II levels normalised to tubulin above. C. Similar to panel B, but LKB1 knockout and matched wild type MEFs were used. All quantitations are from three independent experiments ±SEM. *P<0.05, ***P<0.001. FIGURE 3. MRT68921 specifically blocks autophagic flux through ULK1 inhibition. A. In vitro ULK1 autophosphorylation kinase assay in the presence of 1µM MRT67307 with GST-tagged wild type (WT), kinase-dead (KD (K46I)), M92T and M92Q ULK1. B. In vitro IC50 plot with GST-tagged WT and M92T ULK1 in the presence of MRT68921. C. ULK1/2 double knockout (dKO) MEFs stably expressing FLAG-tagged WT or M92T ULK1, were treated with EBSS for 1h in the presence or absence of 1µM MRT68921 and 50nM bafilomycin. Lysates were subject to immunoblotting with the indicated antibodies. Quantitation of LC3-II levels, normalised to tubulin is shown on the right. D. Endogenous LC3 immunofluorescence in ULK dKO MEFs rescued with the indicated FLAG-tagged ULK1 construct. Cells were incubated in complete media (control) or EBSS for 1h in the presence or absence of 1µM MRT68921 and 50nM bafilomycin (baf). Quantitation of LC3 puncta is shown on the right. All quantitation represent means ±SEM from at least three independent experiments. *P<0.05. Scale bar, 10µm. FIGURE 4. ULK inhibition also disrupts autophagosome maturation. A. ULK1-rescue MEFs stably expressing GFP-LC3 were washed and placed in complete media or EBSS with/without 1µM MRT68921 and images taken every 30 sec for 90 min. Representative images are shown from EBSS-treated samples, derived from Movie1 (WT ULK, top panels) or Movie2 (M92T ULK1, bottom panels). B. MEF cells were incubated in EBSS for 1h with/without 1µM

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 15: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK1 inhibitor

  15

MRT68921 followed by fixing and staining with antibodies to LC3 (red) or ULK1 (green). Quantitation of the degree of co-localisation is shown to the right. C. Cells, treated as in B, stained for LC3 (red) and ATG5 (green). All quantitation represent means ±SEM from at least three independent experiments. *P<0.05, n/s not significant. Scale bars, 10µm. Movie1. GFP-LC3 expressing WT-ULK1 rescue MEFs were incubated in complete media (ctrl) or EBSS with/without 1µM MRT68921 and imaged every 30sec. Scale bar, 10µm. Movie2. GFP-LC3 expressing M92T-ULK1 rescue MEFs were incubated in complete media (ctrl) or EBSS with/without 1µM MRT68921 and imaged every 30sec. Scale bar, 10µm.

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 16: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

totalpS318

ATG

13

FIP200ULK1

FLAG-ULK1:

MRT68921:EBSS: +

- -- - +

+- +

- + ++

- -- - +

+- +

- + +input (7.5%) FLAG IP

ULK dKO MEFs

- 150- 250

- 75- 75

N

NH

N

N NH

NH

O

IC50 (nM)ULK1 ULK2

MRT67307MRT68921

45.0 38.02.9 1.1

NH

N

N NH

NH

O

N

O

A. B.

C.

D.

FIGURE 1.

16

ULK1 inhibitor

pS757

total

pS318total

LC3-II

tubulin

ULK

1AT

G13

MRT67307:MRT68921:bafilomycin:

+ - -- -

--

--

++ +

- + - + - +

control EBSS+ - -

- --

--

-+

+ +- + - + - +

*

- 150

- 50

- 15

- 75

- 150

- 75

control

bafil

omyc

in-

+

MRT68921-EBSS

MRT68921-

0

10

20

30

40

50

60

*

DMSObaf.

mea

n LC

3 pu

ncta

per

cel

l

921-EBSS

921-control

n/s

**

ctrl92

1--

EBSS92

130

730

70

2

4

6

8 re

lativ

e ph

osph

o-AT

G13

*

0

2

4

6

rela

tive

LC3-

II le

vel DMSO

baf.

ctrl92

1--

EBSS92

130

730

7

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 17: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

0

20

40

60

80

100

120

140

IGF-

1R

EP

H-A

2 JN

K1

CK

1bP

KC

a IR

p38a

MA

PK

P

KA

PIM

1 LK

B1

ME

KK

1 E

RK

1 H

ER

4 IR

R

ER

K2

PK

Ba

EF2

K

CS

K

PR

AK

V

EG

-FR

S

mM

LCK

S

GK

1 P

KB

b N

EK

2a

PK

Cz

NE

K6

BTK

IK

Kb

GS

K3b

P

LK1

SR

PK

1 JN

K2

SY

K

EP

H-B

3 M

ST2

R

OC

K 2

M

ELK

C

K2

MK

K1

HIP

K2

MN

K1

Src

PA

K4

CA

MK

1 R

IPK

2 A

uror

a A

MS

K1

DY

RK

1A

FGF-

R1

PR

K2

S6K

1 Lc

k TT

K

MS

T4

CA

MK

Kb

MIN

K1

IRA

K4

BR

SK

2 R

SK

2 P

DK

1 A

uror

a B

C

HK

2 Y

ES

1 TA

K1

TrkA

C

HK

1 G

CK

R

SK

1 M

NK

2 M

LK3

CD

K2-

Cyc

lin A

P

KD

1 JA

K2

AM

PK

M

LK1

TBK

1 M

AR

K3

IKK

e P

HK

N

UA

K1

% k

inas

e ac

tivity

rem

aini

ng

1+M MRT68921

LKB1

tubulin

LC3 III

- 50

- 15

- 50

0

2

4

6

8

10

12 KOWT

rela

tive

LC3-

II le

vel

WT KO

ctrl

AZD8055

AZD8055

+

MRT6892

1 ctrl

AZD8055

AZD8055

+

MRT6892

1

baf.: - + - + - + - + - + - +

****

TBK1

tubulin

LC3 III

- 50

- 15

- 75

0

5

10

15

20

25

WT KO

ctrl

AZD8055

AZD8055

+

MRT6892

1 ctrl

AZD8055

AZD8055

+

MRT6892

1

KOWT

rela

tive

LC3-

II le

vel

baf.: - + - + - + - + - + - +

* *

A.

B. C.TBK1 LKB1

FIGURE 2.

17

ULK1 inhibitor by guest on O

ctober 21, 2020http://w

ww

.jbc.org/D

ownloaded from

Page 18: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ULK

1

MRT67307:

blot

autorad.- + - + - + - +

M92WT KD T Q

total

pS318

LC3III

tubulin

ULK1

ATG

13

MRT68921:bafilomycin:

--

- + - + - ++

- + - + - +

- 50

- 15

- 75

- 150

- 75

- + - +FLAG-ULK1: WT M92T

ULK1/2 dKO + EBSS 0.000

10.0

01 0.01 0.1 1 10 10

00.0

0.5

1.0

MRT68921 (+M)

rela

tive

activ

ity

WT IC50: 3.9nMM92T IC50: 276.6nM

0

2

4

6

8

10

baf: - + - + - + +-MRT68921: - + - +

WTM92T

rela

tive

LC3-

II le

vel

*n/s

**

A. B.

C.

D.

FIGURE 3.

18

ULK1 inhibitor

cont

rol

EB

SS

E

BS

S+

MR

T689

21

baf: - + - +WT M92T

con

trol+

MR

T689

21

baf:

WTM92T

*

- +

control EBSS

mea

n LC

3 pu

ncta

per

cel

l

0

10

20

30

40

50

60

70

80

- +- +- +68921: - + - +

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 19: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

ATG

5LC

3m

erge

ATG

5LC

3m

erge

DMSO MRT68921

10

20

30

40

50

60

70

80

0 ATG

5 co

loca

lizat

ion

with

LC

3 (%

)

DMSO

MRT6892

1

*

10

20

30

40

50

60

70

80

0 LC3

colo

caliz

atio

n w

ith A

TG5

(%)

DMSO

MRT6892

1

A.

B.

C.

FIGURE 4. ULK1 inhibitor

19

0 10 20 30 40 50 60 70 80 90

ULK

col

ocal

izatio

n w

ith L

C3

(%)

DMSO

MRT6892

1

ULK

1LC

3m

erge

ULK

1LC

3m

erge

DMSO MRT68921

70 80 90

*

0 10 20 30 40 50 60

LC3

colo

caliz

atio

n w

ith U

LK (%

)

DMSO

MRT6892

1

WT

ULK

1

0 15 30 60

DM

SO

MR

T689

21M

92T

ULK

1 DM

SO

MR

T689

21

EBSS (min)

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 20: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

Kamal, Barbara Saxty and Ian G. GanleyKaty J. Petherick, Owen J. L. Conway, Chido Mpamhanga, Simon A. Osborne, Ahmad

Pharmacological Inhibition of ULK1 Blocks mTOR-Dependent Autophagy

published online April 1, 2015J. Biol. Chem. 

  10.1074/jbc.C114.627778Access the most updated version of this article at doi:

 Alerts:

  When a correction for this article is posted• 

When this article is cited• 

to choose from all of JBC's e-mail alertsClick here

Supplemental material:

  http://www.jbc.org/content/suppl/2015/04/01/C114.627778.DC1

by guest on October 21, 2020

http://ww

w.jbc.org/

Dow

nloaded from

Page 21: Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2 ... · 4/1/2015  · Katy J. Petherick1, Owen J. L. Conway1, Chido Mpamhanga2, Simon A. Osborne2, Ahmad Kamal2, Barbara Saxty2

VOLUME 290 (2015) PAGES 11376 –11383DOI 10.1074/jbc.A114.627778

Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy.Katy J. Petherick, Owen J. L. Conway, Chido Mpamhanga, Simon A. Osborne, Ahmad Kamal, Barbara Saxty, and Ian G. Ganley

PAGE 11378:

In Fig. 1A, the molecular structures of the compounds for MRT67307 and MRT68921 were mistakenly switched. The corrected figure is shownbelow. This correction does not affect the interpretation of the results or conclusions of this work.

totalpS318

ATG

13

FIP200ULK1

FLAG-ULK1:

MRT68921:EBSS: +

- -- - +

+- +

- + ++

- -- - +

+- +

- + +input (7.5%) FLAG IP

ULK dKO MEFs

- 150- 250

- 75- 75

B.

C.

D.

pS757

total

pS318total

LC3-II

tubulin

ULK

1AT

G13

MRT67307:MRT68921:bafilomycin:

+ - -- -

--

--

++ +

- + - + - +

control EBSS+ - -

- --

--

-+

+ +- + - + - +

*

- 150

- 50

- 15

- 75

- 150

- 75

control

bafil

omyc

in-

+

MRT68921-EBSS

MRT68921-

0

10

20

30

40

50

60

*

DMSObaf.

mea

n LC

3 pu

ncta

per

cel

l

921-EBSS

921-control

n/s

**

ctrl92

1--

EBSS92

130

730

70

2

4

6

8

rela

tive

phos

pho-

ATG

13

*

0

2

4

6

rela

tive

LC3-

II le

vel DMSO

baf.

ctrl92

1--

EBSS92

130

730

7

N

NH

N

N NH

NH

O

IC50 (nM)ULK1 ULK2

MRT67307MRT68921

45.0 38.02.9 1.1

NH

N

N NH

NH

O

N

O

A.

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 290, NO. 48, p. 28726, November 27, 2015© 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

28726 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 290 • NUMBER 48 • NOVEMBER 27, 2015

ADDITIONS AND CORRECTIONS

Authors are urged to introduce these corrections into any reprints they distribute. Secondary (abstract) services are urged to carry notice ofthese corrections as prominently as they carried the original abstracts.