Kasahara Published By: The American Society of ... … · BioOne sees sustainable scholarly...

14
BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. PersonIdentityServiceImpl Karyotypic Data on 28 Species of Scinax (Amphibia: Anura: Hylidae): Diversity and Informative Variation Author(s) :Dario E. Cardozo, Daniela M. Leme, João F. Bortoleto, Glaucilene F. Catroli, Diego Baldo, Julián Faivovich, Francisco Kolenc, Ana P. Z. Silva, Claudio Borteiro, Célio F. B. Haddad, and Sanae Kasahara Source: Copeia, 2011(2):251-263. 2011. Published By: The American Society of Ichthyologists and Herpetologists DOI: URL: http://www.bioone.org/doi/full/10.1643/CH-09-105 BioOne (www.bioone.org ) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use . Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

Transcript of Kasahara Published By: The American Society of ... … · BioOne sees sustainable scholarly...

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, researchlibraries, and research funders in the common goal of maximizing access to critical research.

PersonIdentityServiceImpl

Karyotypic Data on 28 Species of Scinax (Amphibia: Anura: Hylidae): Diversityand Informative VariationAuthor(s) :Dario E. Cardozo, Daniela M. Leme, João F. Bortoleto, Glaucilene F. Catroli, Diego Baldo,Julián Faivovich, Francisco Kolenc, Ana P. Z. Silva, Claudio Borteiro, Célio F. B. Haddad, and SanaeKasaharaSource: Copeia, 2011(2):251-263. 2011.Published By: The American Society of Ichthyologists and HerpetologistsDOI:URL: http://www.bioone.org/doi/full/10.1643/CH-09-105

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, andenvironmental sciences. BioOne provides a sustainable online platform for over 170 journals and books publishedby nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance ofBioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercialinquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

Karyotypic Data on 28 Species of Scinax (Amphibia: Anura: Hylidae):

Diversity and Informative Variation

Dario E. Cardozo1, Daniela M. Leme2, Joao F. Bortoleto2, Glaucilene F. Catroli2,Diego Baldo3,4, Julian Faivovich5, Francisco Kolenc6, Ana P. Z. Silva7,Claudio Borteiro6, Celio F. B. Haddad8, and Sanae Kasahara2

The hylid frog genus Scinax is the most species-rich within Hylinae, with more than 100 recognized species grouped inthe S. catharinae and S. ruber clades. The karyotypes of 14 species of the S. catharinae clade and 14 of the S. ruber cladewere analyzed, several of them for the first time. All studied species presented 2n = 2x = 24 biarmed chromosomes (FN =48) and no identifiable sex chromosomes. There are two alternate states associated with the size and morphology ofpair 1, corresponding to the S. catharinae clade and to the S. ruber clade. The morphology of pairs 2 and 6 alsodifferentiate the species of both major clades. Species of the S. ruber clade in general have Ag-NORs in pair 11, as iscommonly observed among hylines with 2n = 24. The Ag-NORs’ position in the long arms of pair 11 is interstitial in S.fuscomarginatus, S. fuscovarius, S. nasicus, S. similis, S. squalirostris, and S. uruguayus, and terminal in S. acuminatus, S.curicica, S. duartei, S. granulatus, S. hayii, and S. perereca. The single exception among species of the S. ruber clade is S. alter,which has terminal Ag-NORs at the long arms of pair 3. Most species of the S. catharinae clade have Ag-NORs in pair 6,representing a putative synapomorphy of this clade, while the Ag-NORs in pair 11 that occur in S. canastrensis are mostparsimoniously interpreted as a reversion. C-banding is predominantly centromeric, but in the S. catharinae clade thereis a greater amount of heterochromatin than in the S. ruber clade. This study corroborates the occurrence of informativevariation, some already considered in a previous cladistic analysis, and reports new characters, outlining thesignificance of cytogenetic data for the systematics of Scinax.

THE hylid frog genus Scinax comprises more than 100species (Frost, 2011), distributed from southernMexico to east-central Argentina, with the largest

number of species occurring in the Atlantic forest ofsoutheastern Brazil (Pombal et al., 1995; Faivovich, 2002;Frost, 2011). This genus has been the subject of severalrevisions (see taxonomic history in Faivovich, 2002). Therecognition of two major clades (S. catharinae and S. ruberclades) has been supported by analyses based on adult andlarval morphology, osteology, myology, reproductive biol-ogy, chromosome morphology, and molecular data (Faivo-vich, 2002; Faivovich et al., 2005). The S. catharinae cladeincludes the S. catharinae and the S. perpusillus groups andthe S. ruber clade includes the S. rostratus and the S.uruguayus groups, as well as more than 40 species whichremain unassigned to any group of the S. ruber clade.

Chromosome information is available for 19 species ofScinax, mostly derived from standard staining methods(Duellman, 1967; Rabello et al., 1971; Nunes and Fagundes,2008). Although the studied species of Scinax have very similar2n 5 2x 5 24 karyotypes, some conspicuous differences havebeen observed, mainly in regard to the morphology of pair 1and the location of Ag-NORs. The goal of the present study isto improve our knowledge on the cytogenetics of Scinax,provide new information that allows re-evaluation of avail-

able data, and enlarge the data set of chromosome charactersthat would be useful for the study of chromosome evolutionin this genus. The standard stained karyotypes of 28 species ofScinax are described, 20 of them for the first time. In addition,differential staining (C-banding and Ag-NORs) is used formany of these species. The results are discussed in the light ofour current phylogenetic knowledge of the genus (Faivovich,2002; Faivovich et al., 2005).

MATERIALS AND METHODS

We karyotyped 170 specimens belonging to 28 species ofScinax of both recognized major clades (Table 1). Institu-tional abbreviations follow Leviton et al. (1985), with theaddition of CFBH for Celio F. B. Haddad Collection, RioClaro, Sao Paulo, Brazil, and ZVC-B for Vertebrate ZoologyCollection, Facultad de Ciencias, Universidad de la Repub-lica, Montevideo, Uruguay. Chromosome spreads wereprepared directly from intestinal epithelium or bonemarrow, liver, and testis (Schmid, 1978; Baldissera et al.,1993). Mitotic and meiotic chromosome preparations werestained with a Giemsa-PBS solution (pH 6.8). The silver-staining of nucleolar organizer regions (Ag-NORs) and C-banding were performed according to Howell and Black(1980) and Sumner (1972), respectively.

1 CONICET–IBIGEO, Museo de Ciencias Naturales, Universidad Nacional de Salta, Mendoza 2, 4400, Salta, Argentina; E-mail:[email protected].

2 Departamento de Biologia, Instituto de Biociencias, Universidade Estadual Paulista, UNESP, Av. 24A, 1515, 13506 900, Rio Claro, SP, Brasil;E-mail: (SK) [email protected]; and (GFC) [email protected].

3 Laboratorio de Genetica Evolutiva, Facultad de Ciencias Exactas, Quımicas y Naturales, Universidad Nacional de Misiones, Felix de Azara1552, 3300 Posadas, Misiones, Argentina; E-mail: [email protected]. Send reprint requests to this address.

4 Instituto de Herpetologıa, Fundacion Miguel Lillo, Miguel Lillo 251, CP: 4000 San Miguel de Tucuman, Argentina.5 Division Herpetologıa, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’—CONICET, Angel Gallardo 470, 1405 Buenos Aires,

Argentina; E-mail: [email protected] Seccion Herpetologıa, Museo Nacional de Historia Natural, 25 de Mayo 582, Montevideo, Uruguay; E-mail: (FK) [email protected]; and

(CB) [email protected] Laboratorio de Ecologia e Evolucao, Instituto Butantan, Av. Vital Brasil 1500, 05503 900, Sao Paulo, SP, Brasil; E-mail: [email protected] Departamento de Zoologia, Instituto de Biociencias, Universidade Estadual Paulista, UNESP, Av. 24A, 1515, 13506 900, Rio Claro, SP, Brasil;

E-mail: [email protected]: 8 June 2009. Accepted: 6 January 2011. Associate Editor: T. W. Reeder.F 2011 by the American Society of Ichthyologists and Herpetologists DOI: 10.1643/CH-09-105

Copeia 2011, No. 2, 251–263

Tab

le1.

Mo

rph

om

etr

icA

naly

sis

ofth

eC

hro

mo

som

es

ofSp

eci

es

ofSci

na

xo

fth

eP

rese

ntStu

dy,

Incl

ud

ing

Cla

de

an

dSpeci

es

Gro

up

.RL

=R

ela

tive

len

gth

,CR

=C

entr

om

eri

cra

tio

,CI=

Cen

tro

meri

cin

dex,

CT

=C

hro

moso

me

typ

e:

m=

meta

centr

ic,sm

=su

bm

eta

cen

tric

,an

dst

=su

bte

loce

ntr

ic.

Cla

de

(Gro

up

)Sp

eci

es

Ch

rom

oso

me

pair

12

34

56

78

91

01

11

2

S.ca

tharin

ae

(S.ca

tharin

ae)S.

alb

icans

(Boke

rman

n,

19

67

)

RL

12

.12

10

.98

10

.80

10

.24

9.7

18

.73

8.6

27

.02

6.2

25

.48

5.2

64

.82

CR

2.8

96

0.0

72

.43

60

.08

3.1

56

0.0

24

.43

60

.71

4.3

06

0.0

53

.67

60

.21

3.3

96

0.1

11

.62

60

.42

1.4

16

0.4

31

.36

60

.36

1.1

36

0.1

51

.09

60

.08

CI

0.2

66

0.0

10

.29

60

.01

0.2

46

0.0

10

.19

60

.02

0.1

96

0.0

20

.21

60

.01

0.2

36

0.0

10

.39

60

.06

0.4

26

0.0

80

.43

60

.06

0.4

76

0.0

30

.48

60

.02

CT

smsm

stst

stst

stm

mm

mm

S.arg

yreo

rnatu

s(M

iranda-

Rib

eiro

,1

92

6)

RL

11

.07

10

.91

0.9

10

.49

9.8

89

.01

7.3

56

.74

6.2

56

.19

6.1

85

.04

CR

2.0

16

0.3

02

.02

60

.53

2.8

86

0.2

71

.88

60

.26

1.8

16

0.0

83

.36

60

.08

2.5

56

0.3

71

.34

60

.16

1.0

46

0.0

41

.02

60

.01

1.1

66

0.1

71

.04

60

.10

CI

0.3

36

0.0

30

.34

60

.06

0.2

66

0.0

20

.35

60

.03

0.3

66

0.0

10

.23

60

.01

0.2

86

0.0

30

.43

60

.03

0.4

96

0.0

10

.49

60

.01

0.4

66

0.0

40

.49

60

.02

CT

smsm

smsm

smst

smm

mm

mm

S.aria

dne

(Boke

rman

n,

19

67

)

RL

13

.67

11

.58

11

.03

10

.61

9.3

98

.66

7.5

55

.83

5.7

85

.70

5.5

44

.66

CR

2.6

36

0.1

32

.36

60

.15

2.4

36

0.2

71

.91

60

.17

2.5

06

0.3

93

.07

60

.18

2.6

66

0.2

71

.03

60

.04

1.0

76

0.0

21

.26

60

.14

1.1

46

0.1

51

.07

60

.04

CI

0.2

86

0.0

10

.30

60

.01

0.2

86

0.0

20

.34

60

.02

0.2

96

0.0

30

.25

60

.01

0.2

86

0.0

20

.49

60

.02

0.4

96

0.0

10

.44

60

.03

0.4

96

0.0

10

.48

60

.01

CT

smsm

smsm

smst

smm

mm

mm

S.aro

moth

yella

Faiv

ovi

ch,

20

05

RL

11

.07

10

.91

0.9

10

.49

9.8

89

.01

7.3

56

.74

6.2

56

.19

6.1

85

.04

CR

2.1

86

0.2

32

.04

60

.23

2.5

06

0.1

22

.76

60

.25

2.4

86

0.2

53

.17

60

.08

2.1

06

0.1

01

.32

60

.16

1.1

76

0.1

41

.37

60

.11

1.1

16

0.0

81

.37

60

.10

CI

0.3

26

0.0

20

.33

60

.03

0.2

96

0.0

10

.27

60

.03

0.2

86

0.0

20

.24

60

.01

0.3

26

0.0

20

.43

60

.03

0.4

66

0.0

30

.42

60

.02

0.4

76

0.0

20

.42

60

.02

CT

smsm

smsm

smst

smm

mm

mm

S.ber

thae

(Bar

rio,1

96

2)R

L1

2.6

31

1.5

21

0.5

09

.12

9.8

18

.33

8.1

36

.73

6.4

06

.11

5.5

35

.19

CR

2.5

06

0.1

12

.55

60

.07

2.3

26

0.1

92

.81

60

.31

2.4

36

0.1

53

.40

60

.25

2.7

26

0.2

21

.33

60

.16

1.1

26

0.1

11

.32

60

.23

1.2

16

0.1

21

.31

60

.10

CI

0.2

96

0.0

10

.28

60

.01

0.3

06

0.0

20

.26

60

.02

0.2

96

0.0

10

.23

60

.01

0.2

76

0.0

20

.43

60

.03

0.4

76

0.0

20

.43

60

.04

0.4

56

0.0

20

.43

60

.02

CT

smsm

smsm

smst

smm

mm

mm

S.ca

nast

rensi

s(C

ardoso

and

Had

dad

,1

98

2)

RL

12

.18

10

.65

10

.61

10

.54

9.4

58

.53

7.5

97

.42

7.0

45

.84

5.7

24

.43

CR

2.1

96

0.1

72

.35

60

.10

1.7

66

0.2

42

.83

60

.07

1.1

46

0.1

12

.34

60

.23

2.0

96

0.2

01

.35

60

.14

1.6

16

0.0

81

.19

60

.22

1.0

66

0.0

71

.31

60

.15

CI

0.3

16

0.0

20

.30

60

.01

0.3

66

0.0

30

.26

60

.01

0.1

16

0.0

20

.27

60

.04

0.3

26

0.0

20

.43

60

.03

0.3

76

0.0

10

.46

60

.05

0.4

66

0.0

60

.43

60

.03

CT

smsm

smsm

msm

smm

mm

mm

S.hie

malis

(Had

dad

and

Pom

bal

,1

98

7)

RL

12

.85

11

.41

11

.05

10

.71

10

.11

9.6

98

.12

6.0

65

.67

5.5

34

.53

4.2

7C

R2

.62

60

.48

2.4

46

0.2

62

.86

60

.37

2.1

56

0.1

62

.67

60

.42

3.4

46

0.2

02

.79

60

.09

1.3

06

0.3

51

.16

60

.17

1.6

26

0.2

11

.25

60

.04

1.1

06

0.0

7C

I0

.28

60

.04

0.2

86

0.0

40

.31

60

.06

0.3

06

0.0

30

.28

60

.04

0.2

36

0.0

10

.26

60

.01

0.4

46

0.0

60

.46

60

.03

0.3

86

0.0

30

.44

60

.01

0.4

86

0.0

2C

Tsm

smsm

smsm

stsm

mm

mm

mS.

litto

ralis

(Pom

bal

and

Gord

o,1

99

1)R

L1

1.7

71

0.7

71

0.4

89

.91

9.4

88

.63

8.5

27

.21

6.6

56

.14

5.5

54

.89

CR

2.6

26

0.1

62

.01

60

.18

2.8

06

0.1

82

.86

60

.21

2.7

96

0.1

93

.35

60

.36

2.4

96

0.3

01

.96

60

.26

1.5

56

0.3

91

.18

60

.10

1.1

56

0.0

91

.15

60

.06

CI

0.2

86

0.0

10

.33

60

.02

0.2

66

0.0

10

.26

60

.01

0.2

66

0.0

10

.23

60

.02

0.2

96

0.0

20

.34

60

.03

0.4

06

0.0

60

.46

60

.02

0.4

76

0.0

20

.47

60

.01

CT

smsm

smsm

smst

smm

mm

mm

S.lo

ngili

neu

s(L

utz

,1

96

8)

RL

11

.69

10

.94

10

.64

9.6

69

.44

8.4

88

.34

7.1

36

.37

6.1

95

.66

5.4

6C

R2

.59

60

.32

2.3

76

0.3

72

.55

60

.33

2.4

56

0.2

72

.14

60

.24

3.1

36

0.4

82

.52

60

.28

1.5

36

0.1

91

.29

60

.16

1.3

16

0.2

81

.14

60

.13

1.1

86

0.1

1C

I0

.28

60

.02

0.3

06

0.0

30

.28

60

.03

0.2

96

0.0

20

.32

60

.02

0.2

56

0.0

20

.29

60

.02

0.4

06

0.0

30

.44

60

.03

0.4

46

0.0

50

.47

60

.03

0.4

66

0.0

2C

Tsm

smsm

smsm

stsm

mm

mm

mS.

obtria

ngul

atus

(Lut

z,1973)

RL

12

.71

10

.65

10

.20

9.9

09

.54

8.3

17

.99

7.3

06

.73

6.0

45

.32

5.3

1C

R2

.25

60

.03

2.8

66

0.2

22

.29

60

.09

2.7

86

0.3

22

.64

60

.14

3.1

56

0.0

32

.39

60

.18

1.1

76

0.1

41

.39

60

.15

1.2

56

0.2

71

.13

60

.01

1.0

76

0.0

4C

I0

.31

60

.01

0.2

66

0.0

20

.30

60

.01

0.2

76

0.0

20

.28

60

.01

0.2

46

0.0

10

.24

60

.01

0.4

66

0.0

30

.42

60

.03

0.4

56

0.0

50

.47

60

.01

0.4

86

0.0

1C

Tsm

smsm

smsm

stsm

mm

mm

m

252 Copeia 2011, No. 2

Cla

de

(Gro

up

)Sp

eci

es

Ch

rom

oso

me

pair

12

34

56

78

91

01

11

2

S.riz

ibili

s(B

oke

rman

n,

19

64

)

RL

12

.24

11

.83

10

.67

10

.24

9.5

78

.38

7.7

86

.89

6.3

06

.06

5.6

24

.42

CR

2.7

66

0.2

02

.26

60

.17

2.7

06

0.2

42

.55

60

.36

2.6

16

0.2

53

.43

60

.17

2.8

36

0.2

21

.38

60

.28

1.2

66

0.2

41

.12

60

.09

1.1

46

0.0

21

.12

60

.10

CI

0.2

76

0.0

10

.31

60

.02

0.2

76

0.0

20

.28

60

.03

0.2

86

0.0

20

.23

60

.01

0.2

66

0.0

20

.42

60

.05

0.4

56

0.0

50

.47

60

.02

0.4

76

0.0

20

.47

60

.02

CT

smsm

smsm

smst

smm

mm

mm

S.tr

apic

hei

roi

(A.Lu

tzan

dB

.Lu

tzin

Lutz

,1

95

4)

RL

12

.36

12

.13

11

.76

9.6

99

.52

8.7

08

.06

6.1

85

.96

5.9

45

.21

4.4

9C

R2

.59

60

.03

2.6

46

0.3

12

.47

60

.66

2.9

46

0.5

22

.61

60

.25

3.2

16

0.3

62

.57

60

.22

1.1

86

0.2

81

.23

60

.24

1.3

56

0.0

91

.09

60

.02

1.1

26

0.1

0C

I0

.28

60

.03

0.2

36

0.0

40

.28

60

.05

0.2

66

0.0

20

.28

60

.02

0.2

46

0.0

20

.28

60

.02

0.4

26

0.0

50

.45

60

.05

0.4

76

0.0

20

.47

60

.02

0.4

76

0.0

2C

Tsm

smsm

smsm

stsm

mm

mm

mS.

cath

arin

ae

(S.per

pusi

llus)

Scin

ax

sp.1

RL

12

.38

12

.01

11

.07

10

.50

9.5

69

.27

8.4

56

.54

6.0

85

.31

4.6

44

.19

CR

2.0

56

0.1

62

.33

60

.27

3.5

16

0.1

34

.43

60

.03

3.8

46

0.2

44

.74

60

.10

3.4

56

0.0

21

.69

60

.23

1.4

06

0.1

81

.20

60

.22

1.4

76

0.0

21

.15

60

.09

CI

0.3

36

0.0

20

.25

60

.05

0.2

76

0.0

70

.18

60

.01

0.2

16

0.0

10

.21

60

.01

0.2

26

0.0

10

.34

60

.03

0.3

46

0.0

30

.46

60

.04

0.4

06

0.0

10

.47

60

.02

CT

smsm

stst

stst

stm

mm

mm

Scin

ax

sp.2

RL

12

.45

11

.95

10

.98

10

.69

9.6

39

.30

8.3

86

.32

6.2

15

.28

4.6

84

.13

CR

2.6

26

0.4

82

.44

60

.26

2.8

66

0.3

72

.15

60

.16

2.6

76

0.4

23

.44

60

.20

2.7

96

0.0

91

.30

60

.35

1.1

66

0.1

71

.62

60

.21

1.2

56

0.0

41

.10

60

.07

CI

0.2

86

0.0

40

.28

60

.04

0.3

16

0.0

60

.30

60

.03

0.2

86

0.0

40

.23

60

.01

0.2

66

0.0

10

.44

60

.06

0.4

66

0.0

30

.38

60

.03

0.4

46

0.0

10

.48

60

.02

CT

smsm

smsm

smst

smm

mm

mm

S.ru

ber

(unas

sign

edto

any

group)

S.acu

min

atu

s(C

ope,

18

62

)RL

16

.57

11

.83

10

.37

9.7

78

.75

8.3

86

.61

6.3

45

.80

5.6

25

.16

4.8

0C

R1

.19

60

.11

1.5

66

0.0

52

.04

60

.20

2.5

56

0.2

72

.44

60

.26

2.4

26

0.1

72

.02

60

.08

1.1

56

0.1

11

.25

60

.09

1.2

66

0.1

41

.30

60

.18

1.0

96

0.0

9C

I0

.46

60

.02

0.3

96

0.0

10

.33

60

.02

0.2

86

0.0

20

.29

60

.02

0.2

96

0.0

10

.33

60

.01

0.4

76

0.0

20

.45

60

.02

0.4

46

0.0

30

.44

60

.04

0.4

86

0.0

2C

Tm

msm

smsm

Smsm

mm

mm

mS.

alte

r(L

utz

,1

97

3)

RL

14

.71

2.8

61

0.7

81

0.4

98

.64

7.8

47

.00

6.2

66

.13

5.9

24

.84

4.5

4C

R1

.27

60

.11

1.2

16

0.2

92

.03

60

.67

2.3

56

0.3

72

.23

60

.15

2.2

96

0.4

41

.33

60

.08

1.2

96

0.1

51

.09

60

.05

1.0

76

0.0

81

.48

60

.28

1.1

46

0.0

8C

I0

.44

60

.02

0.4

66

0.0

60

.34

60

.07

0.3

06

0.0

30

.31

60

.01

0.3

16

0.0

40

.43

60

.01

0.4

46

0.0

30

.48

60

.01

0.4

86

0.0

20

.41

60

.05

0.4

76

0.0

2C

Tm

msm

smsm

smm

mm

mm

mS.

curic

ica

Pugl

iese

,Pom

bal

,an

dSa

zim

a,2

00

4

RL

16

.08

11

.54

10

.35

10

.63

9.3

38

.25

6.5

56

.21

5.8

25

.55

5.4

64

.23

CR

1.1

06

0.0

91

.48

60

.14

1.9

06

0.4

12

.55

60

.28

2.4

56

0.3

22

.41

60

.37

1.7

66

0.4

11

.30

60

.29

1.1

76

0.1

61

.17

60

.11

1.1

86

0.1

81

.18

60

.18

CI

0.4

86

0.0

20

.40

60

.02

0.3

56

0.0

50

.28

60

.02

0.2

96

0.0

30

.30

60

.03

0.3

76

0.0

20

.44

60

.05

0.4

56

0.0

30

.46

60

.02

0.4

66

0.0

30

.46

60

.03

CT

mm

smsm

smsm

smm

mm

mm

S.duart

ei(L

utz

,1

95

1)

RL

14

.64

12

.15

10

.22

10

.46

9.2

18

.52

6.8

86

.50

5.8

05

.73

4.4

85

.41

CR

1.1

06

0.0

91

.43

60

.31

1.9

46

0.2

42

.13

60

.30

2.0

76

0.3

22

.23

60

.32

1.4

06

0.2

41

.38

60

.20

1.2

66

0.1

71

.19

60

.18

1.2

26

0.1

51

.29

60

.11

CI

0.4

86

0.0

20

.42

60

.04

0.3

46

0.0

30

.32

60

.03

0.3

36

0.0

30

.31

60

.03

0.4

26

0.0

40

.42

60

.03

0.4

46

0.0

30

.46

60

.04

0.4

56

0.0

30

.44

60

.02

CT

mm

smsm

smsm

mm

mm

mm

S.eu

rydic

e(B

oke

rman

n,

19

68

)

RL

15

.48

12

.69

10

.73

10

.25

9.2

37

.71

6.6

25

.99

5.7

85

.70

5.2

54

.57

CR

1.1

76

0.0

81

.55

60

.19

2.3

36

0.4

62

.68

60

.43

2.2

16

0.4

02

.45

60

.45

1.4

06

0.2

71

.52

60

.25

1.3

36

0.1

31

.36

60

.25

1.1

86

0.1

41

.47

60

.30

CI

0.4

66

0.0

20

.39

60

.03

0.3

06

0.0

40

.27

60

.03

0.3

26

0.0

40

.29

60

.04

0.4

26

0.0

50

.40

60

.04

0.4

36

0.0

20

.43

60

.05

0.4

56

0.0

30

.39

60

.06

CT

mm

smsm

smsm

mm

mm

mm

S.fu

sco-

marg

inatu

s(L

utz

,1

92

5)

RL

15

.35

11

.66

10

.00

9.3

08

.54

8.0

17

.38

7.2

06

.39

6.3

25

.67

4.1

8C

R1

.10

60

.08

1.3

16

0.0

71

.81

60

.14

2.3

06

0.1

82

.24

60

.28

2.3

96

0.3

51

.86

60

.19

1.1

26

0.0

61

.11

60

.11

1.2

56

0.0

71

.97

60

.20

1.1

16

0.0

8C

I0

.48

60

.02

0.4

36

0.0

10

.36

60

.02

0.3

06

0.0

20

.31

60

.02

0.3

06

0.0

30

.35

60

.02

0.4

76

0.0

10

.48

60

.02

0.4

56

0.0

10

.34

60

.02

0.4

76

0.0

2C

Tm

msm

smsm

smsm

mm

msm

m

Tab

le1.

Co

ntin

ued

.

Cardozo et al.—Karyotypes of Scinax 253

Cla

de

(Gro

up

)Sp

eci

es

Ch

rom

oso

me

pair

12

34

56

78

91

01

11

2

S.fu

scova

rius

(Lutz

,1

92

5)

RL

14

.68

11

.02

10

.88

10

.76

9.2

8.3

16

.61

6.2

26

.22

5.9

95

.62

4.4

9C

R1

.15

60

.09

1.3

46

0.1

92

.06

60

.11

2.8

56

0.0

92

.40

60

.19

2.7

36

0.2

62

.15

60

.16

1.2

96

0.2

31

.68

60

.10

1.1

56

0.1

11

.98

60

.25

1.8

56

0.2

3C

I0

.47

60

.02

0.4

36

0.0

40

.33

60

.01

0.2

46

0.0

10

.30

60

.02

0.2

36

0.0

10

.32

60

.02

0.4

46

0.0

40

.36

60

.01

0.4

66

0.0

20

.34

60

.03

0.3

56

0.0

3C

Tm

msm

smsm

smsm

mm

msm

smS.

gra

nula

tus

(Pet

ers,

18

71

)

RL

15

.09

12

.14

10

.71

10

.08

8.4

08

.08

6.3

16

.17

6.1

35

.95

5.8

75

.08

CR

1.1

96

0.0

91

.47

60

.09

2.1

06

0.1

92

.30

60

.07

2.0

36

0.1

82

.05

60

.17

1.6

56

0.1

11

.15

60

.12

1.1

56

0.1

11

.26

60

.09

2.0

36

0.1

21

.29

60

.07

CI

0.4

66

0.0

20

.41

60

.01

0.3

26

0.0

20

.30

60

.01

0.3

36

0.0

20

.33

60

.02

0.3

86

0.0

20

.47

60

.03

0.4

76

0.0

20

.44

60

.02

0.3

36

0.0

10

.44

60

.01

CT

mm

smsm

smsm

mm

mm

smm

S.hayi

i(B

arbour,

19

09

)R

L1

6.0

71

3.0

61

0.3

71

0.2

38

.90

8.1

76

.70

6.2

15

.56

5.1

94

.49

5.0

5C

R1

.07

60

.05

1.4

26

0.0

92

.82

60

.14

2.2

96

0.2

72

.12

60

.34

2.1

76

0.0

81

.80

60

.14

1.2

46

0.0

91

.18

60

.08

1.2

36

0.1

91

.13

60

.12

1.2

66

0.2

2C

I0

.48

60

.01

0.4

16

0.0

20

.26

60

.01

0.3

16

0.0

20

.32

60

.04

0.3

26

0.0

10

.36

60

.02

0.4

56

0.0

20

.46

60

.02

0.4

56

0.0

40

.47

60

.03

0.4

56

0.0

4C

Tm

msm

smsm

smsm

mm

mm

mS.

nasi

cus

(Cope,

18

62

)RL

14

.44

12

.49

9.9

48

.86

8.7

27

.66

6.6

56

.60

6.6

06

.53

6.0

65

.45

CR

1.1

06

0.0

71

.37

60

.15

2.0

76

0.1

62

.54

60

.15

2.4

46

0.1

92

.50

60

.09

1.9

06

0.2

01

.19

60

.21

1.3

16

0.2

31

.13

60

.06

1.7

36

0.1

71

.37

60

.09

CI

0.4

86

0.0

20

.42

60

.03

0.3

36

0.0

20

.28

60

.01

0.2

96

0.0

20

.29

60

.01

0.3

56

0.0

30

.46

60

.02

0.4

46

0.0

40

.47

60

.01

0.3

76

0.0

20

.42

60

.02

CT

mm

smsm

smsm

smm

mm

smm

S.per

erec

aPom

bal

,H

addad

,an

dKas

ahar

a,1

99

5

RL

15

.84

12

.20

11

.35

9.5

69

.48

8.2

16

.00

5.9

95

.98

5.9

23

.92

5.5

3C

R1

.07

60

.04

1.5

46

0.1

12

.26

60

.22

2.4

16

0.1

52

.08

60

.08

2.4

66

0.2

92

.06

60

.14

1.1

16

0.1

21

.24

60

.09

1.2

26

0.0

81

.89

60

.05

1.1

36

0.1

1C

I0

.48

60

.01

0.3

96

0.0

20

.31

60

.02

0.2

96

0.0

10

.33

60

.01

0.2

96

0.0

20

.33

60

.01

0.4

86

0.0

30

.45

60

.02

0.4

56

0.0

20

.35

60

.01

0.4

76

0.0

2C

Tm

msm

smsm

smsm

mm

msm

m

S.si

mili

s(C

och

ran,

19

52

)

RL

15

.76

13

.34

11

.21

10

.40

8.1

07

.81

6.6

96

.09

5.4

45

.25

5.1

94

.72

CR

1.1

16

0.0

81

.38

60

.09

2.0

06

0.1

82

.68

60

.07

2.3

16

0.3

72

.28

60

.16

1.8

36

0.0

61

.23

60

.16

1.2

06

0.1

51

.25

60

.15

2.0

06

0.1

21

.19

60

.12

CI

0.4

76

0.0

20

.42

60

.02

0.3

36

0.0

20

.27

60

.01

0.3

16

0.0

10

.31

60

.02

0.3

56

0.0

10

.45

60

.03

0.4

66

0.0

30

.45

60

.03

0.3

36

0.0

10

.46

60

.03

CT

mm

smsm

smsm

smm

mm

smm

S.sq

ualir

ost

ris(L

utz

,1

92

5)

RL

14

.94

12

.49

9.3

29

.31

8.9

88

.41

6.8

06

.69

6.6

85

.59

5.6

55

.13

CR

1.1

46

0.0

91

.47

60

.16

2.0

16

0.1

02

.50

60

.04

2.2

46

0.0

12

.38

60

.14

1.8

96

0.0

91

.17

60

.08

1.2

16

0.0

81

.25

60

.02

2.0

46

0.0

81

.28

60

.07

CI

0.4

76

0.0

20

.41

60

.03

0.3

36

0.0

10

.29

60

.01

0.3

16

0.0

10

.30

60

.01

0.3

56

0.0

10

.46

60

.02

0.4

56

0.0

20

.44

60

.01

0.3

36

0.0

10

.44

60

.01

CT

mm

smsm

smsm

smm

mm

smm

S.ru

ber

(S.uru

guayu

s)S.

uru

guayu

s(S

chm

idt,

19

44

)

RL

14

.21

12

.60

10

.14

9.8

89

.72

7.9

06

.43

6.3

55

.95

5.7

55

.63

5.4

5C

R1

.11

60

.07

1.5

46

0.1

11

.89

60

.07

2.4

96

0.1

22

.19

60

.10

2.4

96

0.2

31

.97

60

.12

1.1

76

0.1

21

.28

60

.14

1.2

66

0.1

81

.90

60

.17

1.1

56

0.1

3C

I0

.46

60

.01

0.4

16

0.0

10

.35

60

.01

0.2

96

0.0

10

.31

60

.01

0.2

96

0.0

20

.34

60

.02

0.4

66

0.0

20

.46

60

.04

0.4

56

0.0

40

.35

60

.02

0.4

76

0.0

3C

Tm

msm

smsm

smsm

mm

msm

m

Tab

le1.

Co

ntin

ued

.

254 Copeia 2011, No. 2

The morphometric measurements of chromosomes weremade using Micromeasure v3.3 software (Reeves and Tear,2000) and the mitotic chromosomes were arranged indecreasing size, following the nomenclature of Green andSessions (1991, 2007) of metacentric (m), submetacentric (sm),or subtelocentric (st) for biarmed chromosomes. The relativelength (RL), centromeric index (CI), and centromeric ratio(CR) were calculated. We used the term ‘homoeology’ todesignate the homology present between chromosomes ofdifferent species that have descended from a commonancestral chromosome (Huskins, 1932). In this sense, althoughthe chromosomes were arranged by decreasing size, this orderwas altered in the case of the third and fourth chromosomepairs of S. curicica and S. duartei; the second and third pairs of S.albicans; and the 11th and 12th pairs of S. duartei, S. hayii, and S.perereca, to indicate apparent homoeology. We used x (basicchromosome number), n (gametic chromosome number), 2n(somatic chromosome number), and FN (fundamental num-ber of chromosome arms) as suggested by White (1954). Otherabbreviations used are: NORs (nucleolar organizer regions); p(short arm); q (long arm); sc (secondary constrictions).

RESULTS

Description of karyotypes.—All 28 species of Scinax presented2n 5 24 chromosomes and FN of 48 chromosome arms,with six large or medium pairs, and six small-sized pairs

(Figs. 1–4; Table 1). Although in 15 species we analyzed onlyone sex, cytologically heteromorphic sex chromosomeswere not observed. The karyotypes of the 14 species of theS. catharinae clade were quite similar. The most divergentfeatures were the st pairs 3, 4, 5, and 7 of S. albicans andScinax sp. 1 (perpusillus group), which are sm-like in theremainder species of the clade, and only in S. canastrensis thefifth pair was m. Similarly, karyotypes of the 14 species of S.ruber clade were very similar, with some small differences inthe chromosome pairs 7, 11, and 12. Karyotypes differednotably between these two major clades, with the first andsecond pairs being m in the S. ruber clade and sm in the S.catharinae clade, and the sixth pair being sm in the S. ruberclade and st in the S. catharinae clade. Intraspecific variationwas minimal; only one specimen of S. similis (CFBH 5932)had heteromorphic pairs 3 and 4, probably due to areciprocal translocation between them (Kasahara, pers.obs.). NOR-bearing chromosomes frequently presented scin all studied species (Figs. 1G, 2C–E, 3D, 3G, 4A–D, 4F),very prominent in some (e.g., S. rizibilis, Scinax sp. 1[perpusillus group], and S. similis; Figs. 2C, 2E, 4D). Malesexhibited 12 bivalents in diplotene-diakinesis or metaphaseI cells, most of them ring-shaped, with two terminalchiasmata. Metaphase II cells presented 12 chromosomes.

Differential staining.—Silver staining was performed in allspecies, except for S. trapicheiroi. In the S. catharinae clade,

Fig. 1. Giemsa stained karyotypes and chromosomes after Ag-NOR technique (inset) of eight species of the Scinax catharinae clade assigned to theS. catharinae group. In A–E and G–H, Ag-NORs are in pair 6; in F(a,b), Ag-NORs are in pair 11, but in one female an additional Ag-labeling is seen atthe p in one of the homologues of pair 6 (b). The arrows indicate the sc. Scale bar 5 10 mm.

Cardozo et al.—Karyotypes of Scinax 255

Ag-NORs were located on pair 6p. They appeared intersti-tially in S. albicans, S. aromothyella, S. hiemalis, S. longilineus,Scinax sp. 1 (perpusillus group), and Scinax sp. 2 (perpusillusgroup), and proximally in S. argyreornatus, S. ariadne, S.berthae, S. littoralis, S. obtriangulatus, and S. rizibilis (Figs. 1,2A–C, 2E–F). In two males of S. canastrensis, Ag-NORs were atthe terminal of pair 11q (Fig. 1Fa), and a female (CFBH16729) had an additional labeling at p of one of thehomologues of pair 6, totaling three Ag-NORs in all analyzedmetaphases (Fig. 1Fb). Most species of the S. ruber cladeshowed Ag-NORs on pair 11q. They were located at theterminal region in S. acuminatus, S. curicica, S. duartei, S.granulatus, S. hayii, and S. perereca (Figs. 3A, 3C–D, 3H, 4A,4C), or in the proximal region in S. fuscomarginatus, S.fuscovarius, S. nasicus, S. similis, S. squalirostris, and S.uruguayus (Figs. 3F–G, 4B, 4D–F). In S. eurydice, Ag-NORswere terminal on pair 11q in three specimens (Fig. 3Eb), butin one female (CFBH 4003) the Ag+ labeling appeared in theproximal region (Fig. 3Ea). Another variation was observedin one male of S. hayii (unvouchered specimen) in which, inaddition to the NORs-bearing pair 11, a terminal labelingwas observed in q of one of the homologues of pair 8(Fig. 4Ab). The single exception among studied species ofthe S. ruber clade is S. alter, which had terminal Ag-NORs onpair 3q (Fig. 3B). Heteromorphism related to size of Ag-NORswas frequently observed, and in one specimen of S. alter(CFBH 17293; Fig. 3Bb) and one of S. hiemalis (CFBH 16723),the labeling was reduced or almost indistinguishable andonly a single Ag-NOR was seen per metaphase.

C-banding was obtained from most species, except for S.fuscomarginatus, Scinax sp. 1 (perpusillus group), S. trapi-cheiroi, and S. uruguayus. The banding pattern was predom-inantly centromeric (Figs. 5–8), with the amount of hetero-chromatin greater in some species of the S. catharinae group,

such as S. aromothyella, S. berthae, S. canastrensis, andparticularly in S. longilineus that showed very prominentpericentromeric C-positive blocks. Other species, mainly ofthe S. ruber clade, presented very subtle centromeric labelingof C-bands, which were missing in some chromosomes.Positive C-bands coincident with NORs sites were noticed insome karyotypes (e.g., S. argyreornatus, S. curicica, S. eurydice,S. hiemalis, S. similis, and S. squalirostris).

DISCUSSION

Differences in chromosome morphology between species ofScinax were initially pointed out by Bogart (1973), whoanalyzed S. albicans (as S. catharinae), S. brieni, S. perpusillus,S. rostratus, and S. ruber. He noticed that while karyotypes ofS. rostratus and S. ruber were similar to most other specieswith 24 chromosomes then included in the genus Hyla,those of S. albicans and S. brieni had more sm chromosomes,and those of S. perpusillus could be considered intermediatebetween these two pairs of species. Faivovich (2002)compiled information on chromosome morphology ofScinax, and noticed that Bogart (1973) did not providecentromeric indexes, making it difficult to assess chromo-some morphology from his plates, beyond the obvious caseof pair 1. For this reason, only the sm or m morphology ofpair 1 of S. albicans, S. brieni, S. elaeochrous, S. fuscomargina-tus, S. fuscovarius, S. hayii, S. perereca, S. perpusillus, S.rostratus, S. ruber, S. squalirostris, and S. staufferi (Becak,1968; Barrio and Pistol de Rubel, 1970; Rabello, 1970;Anderson, 1991; Baldissera et al., 1993; Pombal et al., 1995)was included as a character by Faivovich (2002) in hisphylogenetic analysis, which resulted in the recognition ofthe two major clades of Scinax.

The present study reports more informative variationregarding the chromosome morphology of Scinax. Pairs 1

Fig. 2. Giemsa stained karyotypes and chromosomes after Ag-NOR technique (inset) of six species of the Scinax catharinae clade, four of them (A–D) assigned to the S. catharinae and two (E–F) to the S. perpusillus group. In A–C and E–F, Ag-NORs are in pair 6. The arrows indicate the sc. Scalebar 5 10 mm.

256 Copeia 2011, No. 2

and 2 are sm in the S. catharinae clade and m in the S. ruberclade. Species of the latter unassigned to species group and S.uruguayus (S. uruguayus group) showed no differences in themorphology of the m pair 1. In the S. catharinae clade, thesize of pairs 1 and 2 is similar (RL 5 12.22 6 0.69% and RL 5

11.29 6 0.54%, respectively), whereas in the S. ruber cladepair 1 is longer than pair 2 (RL 5 15.27 6 0.71% and RL 5

12.29 6 0.63%, respectively). Changes in centromereposition in presumed homoeologous chromosomes of thesame size are, in general, attributed to pericentric inversions.This rearrangement might explain the differences inchromosome morphology between species of the two clades.However, since pairs 1 and 2 have different size, othermechanisms might be involved, such as addition/loss ofrepetitive sequences or unidentified structural chromosomealterations. In this case, available C-banding provided noconclusive evidence.

The x 5 12 occurs in most members of the Hylinae,including some other taxa (Pseudis and Sphaenorhynchus) ofDendropsophini, the tribe in which Scinax has beenincluded. In all studied karyotypes of these hylines, pairs 1and 2 are m and probably homoeologous to those of speciesof the S. ruber clade. In the karyotypes of Dendropsophus (2n5 30), pairs 1 and 2 are sm as in the S. catharinae clade, butprobably not homoeologous to them, because they are

significantly smaller and their size equivalent to pairs 3 and4 of the hylines with 2n 5 24 (Gruber et al., 2005). Thus, thesm morphology of pairs 1 and 2 are most likely synapomor-phies of the S. catharinae clade.

The position of NORs provide informative variation inScinax. Almost all studied species of the S. catharinae cladehave the Ag-NORs in pair 6. Although this has not beenconfirmed by silver impregnation in S. trapicheiroi, it issuggested by the position of the secondary constrictions.Bogart (1973) considered that pair 5 presented sc in S. brieniof the S. catharinae clade; however, this discrepancy mightbe due to a different criterion of homoeology assessment,likely due to pairs 5 and 6 being very similar in size. Thus, S.brieni may be another species illustrating the conservedposition of the NORs in the S. catharinae clade. The onlystudied species of the clade with different position of NORsis S. canastrensis, with terminal Ag-NORs in pair 11 like manyspecies of the S. ruber clade (S. acuminatus, S. curicica, S.duartei, S. granulatus, S. hayii, and S. perereca). However, inthe female of S. canastrensis, there was one Ag-NOR in onechromosome of pair 6. This might be an indication that in S.canastrensis a NOR in pair 6 still occurs, but may be inactive.In the phylogenetic hypothesis of Faivovich (2002), S.canastrensis is not in a particularly basal position withinthe S. catharinae clade, suggesting that the presence of NORs

Fig. 3. Giemsa stained karyotypes and chromosomes after Ag-NOR technique (inset) of eight species of the Scinax ruber clade, unassigned to anygroup. Ag-NORs are in pair 11, at terminal region in A, C, D, E(b), and H, or at proximal region in E(a), F, and G. In B, Ag-NORs are in pair 3, but onlyone labeling is seen in the chromosomes in (a), which are the same as the karyogram sequentially submitted to Ag-impregnation; in (b) one of thehomologues 3 showed tiny Ag-NOR. The arrows indicate the sc. Scale bar 5 10 mm.

Cardozo et al.—Karyotypes of Scinax 257

at the interstitial of pair 6q is likely a synapomorphy of the S.catharinae clade, while the presence of NORs in pair 11 in S.canastrensis is a reversion to the ancestral state. AnotherDendropsophini with NORs on pair 6q is Pseudis caraya(Busin et al., 2006), but in all other Pseudis species they arelocated on pair 7q, or their equivalent chromosome in P.cardosoi (with 2n 5 2x 5 28 due to fissions of first andsecond pairs; Busin et al., 2001, 2006, 2008). In Dendropso-phus, the location of NORs is highly variable, with specieshaving them alternatively on pairs 1, 7, 10, 11, 13, 14, and15, or even multiple NORs (Medeiros et al., 2003; Gruber etal., 2005). Unfortunately, their position is unknown inScarthyla, Xenohyla, and Sphaenorhynchus. Another possibleinformative character is the position of the ribosomal geneswhich seem to be close to the centromere in S. argyreornatus,S. ariadne, S. berthae, S. littoralis, S. obtriangulatus and S.rizibilis, whereas they are more interstitial on 6p in the otherspecies of the clade.

Almost all studied species of the S. ruber clade have Ag-NORs in pair 11, with the exception of S. alter. Previousstudies (Anderson, 1991; Baldissera et al., 1993; Pombal etal., 1995; Kasahara et al., 2003) seem to confirm this finding,even though the position of Ag-NORs has been assigned tochromosome pairs 10, 11, or 12, according to differentauthors. Faivovich (2002) included the position of the NORsas a character, stressing that published differences for S.fuscovarius (NORs in pair 10 [Anderson, 1991] vs. pair 11[Baldissera et al., 1993]) could actually be due to problems inhomoeology assessment, probably due to the generalmorphological similarities among pairs 10, 11, and 12. Hefurther considered as different states the NORs in pair 12 asreported in S. staufferi (Anderson, 1991), S. hayii (Baldisseraet al., 1993), and S. perereca (Pombal et al., 1995), and NORs

in pair 10 as reported in S. elaeochrous (Anderson, 1991).Given the morphological similarity of these small-sizedchromosome pairs, their homoeology cannot be unequivo-cally established, and this character needs to be re-evaluatedand likely modified in future phylogenetic analyses. Similarhomoeology problems as suggested by differences in theNOR-bearing pair seem to occur in some other 2n 5 24hylids of the genera Hypsiboas, Bokermannohyla, Hyla,Aparasphenodon, Corythomanthis, and Itapotihyla, allocatedto the other three tribes, e.g., Cophomantini, Hylini, andLophiohylini (Anderson, 1991; Baldissera et al., 1993;Kasahara et al., 2003; Ananias et al., 2004; Gruber et al.,2007). Comparing the BrdU replication banding patterns(Kasahara et al., 2003; Gruber et al., 2007), Ag-NOR-bearingchromosomes are homoeologous in S. fuscovarius, Aparas-phenodon brunoi, Corythomanthis greeningi, Itapotihyla langs-dorffii, Hypsiboas crepitans, H. raniceps, and in H. albopuncta-tus (the latter with 2n 5 22 or 2n 5 22 + B), although notalways arranged in the same position in the karyograms.This may be taken as evidence that the NOR-bearing pair 11of S. ruber clade is homoeologous to those seen in species ofall four Hylinae tribes, and that this character state may beplesiomorphic for Hylinae. The finding of Ag-NORs in pair 3in S. alter deserves further study. Recent evidence suggeststhat S. alter, S. auratus, S. crospedospilus, and S. cuspidatusmight be related (Alves and Carvalho e Silva, 2002; Alves etal., 2004), so it is worth studying the karyotypes of thesespecies in order to determine the location of the NORs.

The position of the Ag-NORs on pair 11q is variable in theS. ruber clade. It could either be placed proximally, as ithappens in S. fuscomarginatus, S. fuscovarius, S. nasicus, S.similis, S. squalirostris, and S. uruguayus, or terminally (S.acuminatus, S. curicica, S. duartei, S. granulatus, S. hayii, and S.

Fig. 4. Giemsa stained karyotypes and chromosomes after Ag-NOR technique (inset) of six species of the Scinax ruber clade. Scinax uruguayusbelongs to the S. uruguayus group and the remaining species are unassigned to any group. Ag-NORs are in pair 11, at terminal region in A (a,b) andC, or at proximal region in B, D, E, and F. The chromosomes in A (b), correspond to pairs 8 and 11; one of the homologues 11 showed tiny Ag-NOR.The arrows indicate the sc. Scale bar 5 10 mm.

258 Copeia 2011, No. 2

Fig. 5. C-banded karyotypes of eight species of the Scinax catharinae clade assigned to the S. catharinae group. Scale bar 5 10 mm.

Fig. 6. C-banded karyotypes of four species of the Scinax catharinae clade, of which Scinax sp. 2 (perpusillus group) belongs to the S. perpusillusgroup and the remaining to the S. catharinae group. Scale bar 5 10 mm.

Cardozo et al.—Karyotypes of Scinax 259

Fig. 7. C-banded karyotypes of six species of the Scinax ruber clade unassigned to any group. Scale bar 5 10 mm.

Fig. 8. C-banded karyotypes of six species of the Scinax ruber clade unassigned to any group. Scale bar 5 10 mm.

260 Copeia 2011, No. 2

perereca). Both positions were observed in individuals of S.eurydice. Variability in Ag-NOR size is relatively common inanurans (Schmid et al., 1991). While differential activity ofribosomal genes in homologous chromosomes is a possibleexplanation, this variation might be the consequence ofdifferent length of the rDNA segment, resulting fromunequal crossing-over or exchange between sister chroma-tids. The two cases with a single Ag-NOR detected in somemetaphases (S. alter and S. hiemalis) may represent a partialloss of the ribosomal cistrons in one of the homologues,which could be confirmed by FISH techniques using a rDNAfluorescent probe. This technique would also be useful toinvestigate if the additional Ag-stained sites in S. hayii (inchromosome 8) and in S. canastrensis (in chromosome 6) areactually NORs or silver stained proteins associated with arepetitive region.

The C-banding analyses revealed differences between thetwo major clades of Scinax. Species of the S. ruber cladeshowed a small centromeric labeling, whereas those of the S.catharinae clade have a relatively greater amount ofheterochromatin with prominent C-positive bands in thecentromeres, and even in the pericentromeric region in thecases of S. aromothyella, S. berthae, S. canastrensis, S. littoralis,and S. longilineus.

Scinax is a species-rich and taxonomically complex clade,and much remains to be learned about its karyotypicdiversity and evolution. Future work should address theuse of techniques that allow a suitable assessment ofchromosomal homoeology, in order to enhance the numberof informative karyotypic characters to study the phyloge-netic relationships and chromosome evolution in thisNeotropical genus.

MATERIAL EXAMINED

Scinax acuminatus: Argentina: Chaco: Departamento Chaca-buco: Charata, MLP DB 2765, 2773 (males); Corrientes:Departamento Curuzu Cuatia: El Oscuro, MLP DB 2535–8,2542, 2544 (3 males, 3 females).Scinax albicans: Brazil: Rio de Janeiro: Petropolis, CFBH10176–9 (males).Scinax alter: Brazil: Sao Paulo: Ubatuba, CFBH 17293 (male);Santa Catarina: Rancho Queimado, CFBH 16733 (female).Scinax argyreornatus: Brazil: Sao Paulo: Ilha do Cardoso,CFBH 17273 (juvenile), 17288–91 (3 males, 1 juvenile).Scinax ariadne: Brazil: Sao Paulo: Sao Jose do Barreiro, CFBH19543 (female).Scinax aromothyella: Argentina: Misiones: DepartamentoCainguas: Aristobulo del Valle, Balneario del Arroyo CunaPiru, MLP DB 5067 (male); Parque Provincial Salto Encan-tado, MLP DB 3544 (male). Uruguay: Departamento Treintay Tres: Quebrada de los Cuervos, ZVCB 14561–3 (males).Scinax berthae: Argentina: Corrientes: Departamento SantoTome: Gdor. Virasoro, MLP DB 3087–8, 3093 (males);Misiones: Departamento Candelaria: Fachinal MLP DB3908 (male); Profundidad MLP DB 2909 (male); Departa-mento Capital: Villa Lanus, Campus UNaM, MLP DB 3127(male); Posadas, Barrio Villa Blosset, MLP DB 3014–5, 5068–70 (males); Departamento Iguazu: Pto. Iguazu, MLP DB1198, 5018 (males). Brazil: Sao Paulo: Itirapina, unvou-chered specimens (male). Uruguay: Rocha: Banado de SantaTeresa, ZVCB 14559–60 (males).Scinax canastrensis: Brazil: Minas Gerais: Furnas, CFBH16729–31 (2 males, 1 female).

Scinax curicica: Brazil: Minas Gerais: Serra do Cipo, CFBH16732 (male).

Scinax duartei: Brazil: Minas Gerais: Itamonte, CFBH 10187(male); Rio de Janeiro: Petropolis, CFBH 10188 (male).

Scinax eurydice: Brazil: Sao Paulo: Jundiaı, CFBH 16736 (male);Sao Jose dos Campos, CFBH 4003–5 (2 females, 1 male).

Scinax fuscomarginatus: Argentina: Corrientes: DepartamentoItuzaingo: Ituzaingo, Reserva Santa Maria, MLP DB 4214–8,4220–1, 4225, 4227, 4231–2 (9 males, 2 females).

Scinax fuscovarius: Argentina: Catamarca: Departamento Sier-ras El Alto, MLP DB 2667 (female); Jujuy: DepartamentoManuel Belgrano: Parque Provincial Yala, Laguna Rodeo, MLPDB 4800 (male); Misiones: Departamento Cainguas: Aristobulodel Valle, Balneario del Arroyo Cuna Piru, MLP DB 2636, 2805(male, female); Departamento Capital: Posadas, Barrio VillaSarita, MLP DB 2920 (male); Villa Lanus, Campus UNaM, MLPDB 3064, 3066, 3075, 3077, 3100, 3124, 3129, 3133, 3135, (8males, 1 female); Posadas, MLP DB 2783, 3060 (males);Departamento Gral. Manuel Belgrano: Andresito, ParqueProvincial Cametti, MLP DB 1982 (female); DepartamentoGuaranı: El Soberbio, Refugio Tangara, MLP DB 2813 (female);Salta: Departamento Rosario de Lerma: Encon Grande, MLPDB 2557, 2559, 2563 (2 males, 1 female). Brazil: Parana:Condoi, CFBH 5929 (male); Sao Paulo: Rio Claro, CFBH 5931,16704, 17292 (1 juvenile, 2 females); Santa Maria da Serra,CFBH 3983 (male); Socorro, unvouchered specimen (male).

Scinax granulatus: Argentina: Misiones: Departamento Gua-ranı: Parque Provincial Mocona, MLP DB 4056, 4060, 4071(males). Uruguay: Departamento San Jose: Playa Penino,MLP DB 6798 (male).

Scinax hayii: Brazil: Minas Gerais: Camanducaia, unvou-chered specimens (3 males, 1 female); Sao Paulo: Campos doJordao, CFBH 13648 (male).

Scinax hiemalis: Brazil: Sao Paulo: Jundiai, CFBH 16723–4(males).

Scinax littoralis: Brazil: Sao Paulo: Ubatuba, CFBH 16734–5,16737 (males).

Scinax longilineus (Lutz, 1968): Brazil: Minas Gerais: Pocos deCaldas, 16725–6 (males).

Scinax nasicus: Argentina: Misiones: Departamento Capital:Villa Lanus, Campus UNaM, MLP DB 3062–3, 3065, 3067,3076, 3099, 3112–4 (7 males, 2 females); Salta: DepartamentoOran: Pichanal, Ruta Provincial No. 5 and San Francisco River,MLP DB 4794 (male); Santa Fe: Departamento Vera: Vera, MLPDB 2722 (male); Santiago del Estero: Departamento Gral.Taboada: Anatuya, MLP DB 2761 (male).

Scinax obtriangulatus: Brazil: Sao Paulo: Sao Jose do Barreiro,CFBH 19544 (male).

Scinax perereca: Argentina: Misiones: Departamento Guaranı:Parque Provincial Mocona, MLP DB 4057–9, 4061, 4070(males); Departamento San Pedro: Colonia Victoria, MLP DB1925 (male); Colonia Victoria, Arroyo 3 vueltas, MLP DB1959 (male). Brazil: Sao Paulo: Riberao Branco, CFBH 13640–1, 1646, 13649 (males).

Scinax rizibilis: Brazil: Sao Paulo: Riberao Branco, CFBH13637–9, 13642–5, 13647 (5 males, 3 females).

Scinax similis: Argentina: Corrientes: Departamento Ituzaingo:Ituzaingo, Reserva Santa Maria, MLP DB 4343 (male);Misiones: Departamento Candelaria: Campo San Juan, MLPDB 4042 (male); Departamento Capital: Villa Lanus, CampusUNaM, MLP DB 1349–51, 3140 (males); Posadas, RutaNacional No. 12, Km. 1329, MLP DB 3373 (male). Brazil:Minas Gerais: Tres Marias, CFBH 5932–3 (females); Sao Paulo:Itirapina, CFBH 6567–8 (males); Rio Claro, CFBH 6587 (male).

Cardozo et al.—Karyotypes of Scinax 261

Scinax squalirostris: Argentina: Misiones: Departamento Cap-ital: Posadas, Barrio Villa Blosset, MLP DB 2998–9, 3001–4,3012–3 (males); Villa Lanus, Campus UNaM, MLP DB 3047(male). Brazil: Sao Paulo: Itirapina, CFBH 6566 (male).Uruguay: San Jose: Delta del Tigre, ZVCB 14564 (male).

Scinax trapicheiroi: Brazil: Sao Paulo: Ubatuba, CFBH 16703(female).

Scinax uruguayus: Uruguay: Departamento Treinta y Tres:Quebrada de los Cuervos, ZVCB 14574–6 (males).

Scinax sp. 1 (perpusillus group): Brazil: Rio de Janeiro: Paratı,CFBH 16727–8 (1 male, 1 female).

Scinax sp. 2 (perpusillus group): Brazil: Sao Paulo: Ilha doCardoso, CFBH 17274–6 (male, female, juvenile).

ACKNOWLEDGMENTS

D. Cardozo, D. Baldo, and J. Faivovich thank CONICET. D.Cardozo and D. Baldo acknowledge ANPCyT, Argentina forGrants PICT (16-35045) and PICT-O (37035). J. Faivovichthanks FAPESP procs. 05/56756-0 and 06/52088-5. J.Faivovich and D. Baldo acknowledge ANPCyT, Argentinafor Grants PICT (06-223, 07-2202). DML, JFB, APZS, C.Haddad, and S. Kasahara are greatly indebted to FAPESP andCNPq for financial support. F. Kolenc and C. Borteiroacknowledge E. Zinemanas for providing working space atlab, and Agencia Nacional de Investigacion e Innovacion.We acknowledge C. Prado, P. Garcia, A. Miyoshi, J. Zina, F.Toledo, L. Giasson, D. Barrasso, D. Martı, M. Pereyra, S.Rosset, L. Cotichelli, C. Tomatis, M. Tedros, and C. Prigionifor providing or collaborating in the collection of somespecimens, and C. Mileo and S. Gruber for help with thefigures.

LITERATURE CITED

Alves, A. C. R., and S. P. Carvalho e Silva. 2002.Description of the tadpoles of Scinax alter and S. cuspidatus(Anura: Hylidae). Journal of Herpetology 36:133–137.

Alves, A. C. R., M. R. Gomes, and S. P. Carvalho e Silva.2004. Description of the tadpole of Scinax auratus (Wued–Neuwied). Revista Brasileira de Zoologia 21:315–317.

Ananias, F., P. C. A. Garcia, and S. M. Recco-Pimentel.2004. Conserved karyotypes in the Hyla pulchella speciesgroup (Anura, Hylidae). Hereditas 140:42–48.

Anderson, K. 1991. Chromosome evolution in HolarcticHyla tree frogs, p. 299–328. In: Amphibian Cytogeneticsand Evolution. D. M. Green and S. K. Sessions (eds.).Academic Press, San Diego.

Baldissera, F. A., Jr., P. S. L. Oliveira, and S. Kasahara.1993. Cytogenetics of four Brazilian Hyla species (Am-phibia–Anura) and description of a case with a supernu-merary chromosome. Revista Brasileira de Genetica16:335–345.

Barrio, A., and D. Pistol de Rubel. 1970. Caracterısticas delcariotipo de los pseudidos (Amphibia–Anura). Physis79:505–510.

Becak, M. L. 1968. Chromosomal analysis of eighteenspecies of Anura. Caryologia 21:191–208.

Bogart, J. P. 1973. Evolution of anuran karyotypes,p. 337–349. In: Evolutionary Biology of the Anurans. J. L.Vial (ed.). University of Missouri Press, Columbia, Mis-souri.

Busin, C. S., G. V. Andrade, J. Bertoldo, M. L. Del Grande,M. Uetanabaro, and S. M. Recco-Pimentel. 2008.

Cytogenetic analysis of four species of Pseudis (Anura,Hylidae), with the description of ZZ/ZW sex chromosomesin P. tocantins. Genetica 133:119–127.

Busin, C. S., V. Giovani, and S. H. Recco-Pimentel. 2001.Chromosomal rearrangements of variation in the numberof chromosomes in Pseudis (Amphibia, Anura). Genetica110:131–141.

Busin, C. S., A. Pimentel Lima, C. Peralta De AlmeidaPrado, C. Strumann, S. Sequeira, Jr., and S. M. Recco-Pimentel. 2006. Chromosomal differentiation of popula-tions of Lysapsus limellus limellus, L. l. bolivianus, and ofLysapsus caraya (Hylinae, Hylidae). Micron 37:355–362.

Duellman, W. E. 1967. Additional studies of chromosomesof anuran amphibians. Systematic Zoology 16:38–43.

Faivovich, J. 2002. A cladistic analysis of Scinax (Anura:Hylidae). Cladistics 18:367–393.

Faivovich, J., C. F. B. Haddad, P. C. A. Garcia, D. R. Frost,J. A. Campbell, and W. C. Wheeler. 2005. Systematicreview of the frog family Hylidae, with special reference toHylinae: phylogenetic analysis and taxonomic revision.Bulletin of the American Museum of Natural History294:1–240.

Frost, D. R. 2011. Amphibian Species of the World: anOnline Reference. Version 5.5. American Museum ofNatural History, New York. Electronic Database accessibleat http://research.amnh.org/herpetology/amphibia/

Green, D. M., and S. K. Sessions. 1991. Nomenclature forchromosomes, p. 431–432. In: Amphibian Cytogeneticsand Evolution. D. M. Green and S. K. Sessions (eds.).Academic Press, San Diego.

Green, D. M., and S. K. Sessions. 2007. Karyology andcytogenetics, p. 2756–2841. In: Amphibian Biology. Vol. 7.H. Heatwole and M. Tyler (eds.). Surrey Beatty and Sons,Chipping Norton, Australia.

Gruber, S. L., C. F. B. Haddad, and S. Kasahara. 2005.Evaluating the karyotypic diversity in species of Hyla(Anura: Hylidae) with 2n 5 30 chromosomes based on theanalysis of ten species. Folia Biologica 51:68–75.

Gruber, S. L., C. F. B. Haddad, and S. Kasahara. 2007.Chromosome banding in three species of Hypsiboas(Hylidae, Hylinae), with special reference to a new caseof B-chromosome in anuran frogs and to the reduction ofthe diploid number of 2n 5 24 to 2n 5 22 in the genus.Genetica 130:281–291.

Howell, W. M., and D. A. Black. 1980. Controlled silver-staining of nucleolus organizer regions with a protectivecolloidal developer: a 1-step method. Experientia 36:1014–1015.

Huskins, C. L. 1932. A cytological study of Vilmorin’sunfixable dwarf wheat. Journal of Genetics 25:113–124.

Kasahara, S., A. P. Z. Silva, S. L. Gruber, and C. F. B.Haddad. 2003. Comparative cytogenetic analysis on fourtree frog species (Anura, Hylidae, Hylinae) from Brazil.Cytogenetic and Genome Research 103:155–162.

Leviton, A. E., R. H. Gibbs, Jr., E. Heal, and C. E. Dawson.1985. Standards in herpetology and ichthyology: part I.Standard symbolic codes for institutional resource collec-tions in herpetology and ichthyology. Copeia 1985:802–832.

Medeiros, L. R., D. C. Rossa-Feres, and S. M. Recco-Pimentel. 2003. Chromosomal differentiation of Hylasanborni (Anura, Hylidae) with a description of NORpolymorphism in H. nana. Journal of Heredity 94:49–154.

Nunes, R. R. A., and V. Fagundes. 2008. Cariotipos de oitoespecies de anfıbios das subfamılias Hylinae e Phyllome-

262 Copeia 2011, No. 2

dusinae (Anura, Hylidae) do Espırito Santo, Brasil. Boletimdo Museu de Biologia Mello Leitao 23:21–36.

Pombal, J., Jr., C. F. B. Haddad, and S. Kasahara. 1995. A newspecies of Scinax (Anura: Hylidae) from southeastern Brazilwith comments on the genus. Journal of Herpetology 29:1–6.

Rabello, M. N. 1970. Chromosomal studies in Braziliananurans. Caryologia 23:45–59.

Rabello, M. N., M. L. Becak, and W. Becak. 1971.Contribuicao a citotaxonomia da famılia Hylidae. Arqui-vos do Museu Nacional 54:285–286.

Reeves, A., and J. Tear. 2000. Micromeasure. Version 3.3.Avalaible at http://www.colostate.edu/Depts/Biology/MicroMeasure

Schmid, M. 1978. Chromosome banding in Amphibia I.Constitutive heterochromatin and nucleolus organizerregions in Bufo and Hyla. Chromosoma 66:361–388.

Schmid, M., C. Steinlein, K. Kausch, and T. Haaf. 1991.Sex-determinating mechanisms and sex chromosomes inAmphibia, p. 393–430. In: Amphibian Cytogenetics andEvolution. D. M. Green and S. K. Sessions (eds.). AcademicPress, San Diego.

Sumner, A. T. 1972. A simple technique for demonstratingcentromeric heterochromatin. Experimental Cell Research75:304–306.

White, M. J. D. 1954. Animal Cytology and Evolution.Cambridge University Press, Cambridge, U.K.

Cardozo et al.—Karyotypes of Scinax 263