KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei...

91
KALMAN FILTER Giulia Giordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January 18, 2016

Transcript of KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei...

Page 1: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

KALMAN FILTERGiulia Giordano

Teoria dei Sistemi e del ControlloProf. Franco Blanchini

Università degli Studi di Udine

January 18, 2016

Page 2: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIMEKALMAN FILTER

Rudolf Emil Kalman“A New Approach to Linear Filtering and Prediction Problems”

Transactions of the ASME, Journal of Basic Engineering, pp. 35–45,March 1960

Page 3: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Problem formulation

Discrete-time linear system:

x(k +1) = A(k)x(k) +Bv (k)v(k)y(k) = C (k)x(k) +w(k)

x ∈ Rn system statey ∈ Rq measured outputv ∈ Rp process disturbancew ∈ Rq measurement disturbance

Looking for a recursive algorithm that yields an estimate x of thesystem state

Giulia Giordano KALMAN FILTER 3 / 51

Page 4: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Problem formulation

Discrete-time linear system:

x(k +1) = A(k)x(k) +Bv (k)v(k)y(k) = C (k)x(k) +w(k)

x ∈ Rn system statey ∈ Rq measured outputv ∈ Rp process disturbancew ∈ Rq measurement disturbance

Looking for a recursive algorithm that yields an estimate x of thesystem state

Giulia Giordano KALMAN FILTER 3 / 51

Page 5: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 1

w and v are stochastic processes

w , v white noises: zero mean, independent componentsE [v(k)] = 0;E [v(k)v(h)>] = Q(k)δ (k−h), Q(k) > 0

E [w(k)] = 0;E [w(k)w(h)>] = R(k)δ (k−h), R(k) > 0

The statistics of x(k0) is knownE [x(k0)] = x0;E [(x(k0)−x0)(x(k0)−x0)>] = Var [x(k0)] = P0

v , w and x are uncorrelatedE [w(k)v(h)>] = 0, E [w(k)x(h)>] = 0, E [v(k)x(h)>] = 0

Giulia Giordano KALMAN FILTER 4 / 51

Page 6: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 1

w and v are stochastic processes

w , v white noises: zero mean, independent componentsE [v(k)] = 0;E [v(k)v(h)>] = Q(k)δ (k−h), Q(k) > 0

E [w(k)] = 0;E [w(k)w(h)>] = R(k)δ (k−h), R(k) > 0

The statistics of x(k0) is knownE [x(k0)] = x0;E [(x(k0)−x0)(x(k0)−x0)>] = Var [x(k0)] = P0

v , w and x are uncorrelatedE [w(k)v(h)>] = 0, E [w(k)x(h)>] = 0, E [v(k)x(h)>] = 0

Giulia Giordano KALMAN FILTER 4 / 51

Page 7: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 1

w and v are stochastic processes

w , v white noises: zero mean, independent componentsE [v(k)] = 0;E [v(k)v(h)>] = Q(k)δ (k−h), Q(k) > 0

E [w(k)] = 0;E [w(k)w(h)>] = R(k)δ (k−h), R(k) > 0

The statistics of x(k0) is knownE [x(k0)] = x0;E [(x(k0)−x0)(x(k0)−x0)>] = Var [x(k0)] = P0

v , w and x are uncorrelatedE [w(k)v(h)>] = 0, E [w(k)x(h)>] = 0, E [v(k)x(h)>] = 0

Giulia Giordano KALMAN FILTER 4 / 51

Page 8: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 1

w and v are stochastic processes

w , v white noises: zero mean, independent componentsE [v(k)] = 0;E [v(k)v(h)>] = Q(k)δ (k−h), Q(k) > 0

E [w(k)] = 0;E [w(k)w(h)>] = R(k)δ (k−h), R(k) > 0

The statistics of x(k0) is knownE [x(k0)] = x0;E [(x(k0)−x0)(x(k0)−x0)>] = Var [x(k0)] = P0

v , w and x are uncorrelatedE [w(k)v(h)>] = 0, E [w(k)x(h)>] = 0, E [v(k)x(h)>] = 0

Giulia Giordano KALMAN FILTER 4 / 51

Page 9: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 2

The filter belongs to the class of Luenberger observers:

x(k +1) = [A(k)−L(k)C (k)]x(k) +L(k)y(k)

L(k) ∈ Rn×q is the matrix we want to determine

Giulia Giordano KALMAN FILTER 5 / 51

Page 10: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 2

The filter belongs to the class of Luenberger observers:

x(k +1) = [A(k)−L(k)C (k)]x(k) +L(k)y(k)

L(k) ∈ Rn×q is the matrix we want to determine

Giulia Giordano KALMAN FILTER 5 / 51

Page 11: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Our goal

Estimation error e(k) = x(k)− x(k)

e(k +1) = [A(k)−L(k)C (k)]e(k) +Bv (k)v(k)−L(k)w(k)

We look for the sequence of matrices L(k) that minimizes

E [‖x(k)− x(k)‖2] = trE [(x(k)− x(k))(x(k)− x(k))>]

(trM = ∑

i

Mii , tr [SS>] = tr [S>S ] = ∑ij

S2ij

)

Giulia Giordano KALMAN FILTER 6 / 51

Page 12: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Our goal

Estimation error e(k) = x(k)− x(k)

e(k +1) = [A(k)−L(k)C (k)]e(k) +Bv (k)v(k)−L(k)w(k)

We look for the sequence of matrices L(k) that minimizes

E [‖x(k)− x(k)‖2] = trE [(x(k)− x(k))(x(k)− x(k))>]

(trM = ∑

i

Mii , tr [SS>] = tr [S>S ] = ∑ij

S2ij

)

Giulia Giordano KALMAN FILTER 6 / 51

Page 13: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Let us consider. . .

. . .P(k) = E [(x(k)− x(k))(x(k)− x(k))>]

Hence, P(k0) = P0 and, at first, the best estimate is x(k0) = x0

Given P(k),

P(k +1) = [A(k)−L(k)C (k)]P(k)[A(k)−L(k)C (k)]>+Bv (k)Q(k)B>v (k) +L(k)R(k)L>(k)

Giulia Giordano KALMAN FILTER 7 / 51

Page 14: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Let us consider. . .

. . .P(k) = E [(x(k)− x(k))(x(k)− x(k))>]

Hence, P(k0) = P0 and, at first, the best estimate is x(k0) = x0

Given P(k),

P(k +1) = [A(k)−L(k)C (k)]P(k)[A(k)−L(k)C (k)]>+Bv (k)Q(k)B>v (k) +L(k)R(k)L>(k)

Giulia Giordano KALMAN FILTER 7 / 51

Page 15: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Minimization

We choose L so as to minimize tr [P(k +1)]:

minL{tr [(A−LC )P(A−LC )>+BvQB>v +LRL>)]}=

minL{tr [APA>]−2tr [APC>L>]+tr [LCPC>L>]+tr [BvQB>v ]+tr [LRL>]}

Differentiate with respect to L and equate to zero:

2L(CPC>+R)−2APC> = 0 =⇒ L = APC>(CPC>+R)−1

Plug into the expression of P(k +1),

(A−LC )P(A−LC )>+BvQB>v +LRL>

= APA>−APC>(CPC>+R)−1CPA>+BvQB>v

Giulia Giordano KALMAN FILTER 8 / 51

Page 16: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Minimization

We choose L so as to minimize tr [P(k +1)]:

minL{tr [(A−LC )P(A−LC )>+BvQB>v +LRL>)]}=

minL{tr [APA>]−2tr [APC>L>]+tr [LCPC>L>]+tr [BvQB>v ]+tr [LRL>]}

Differentiate with respect to L and equate to zero:

2L(CPC>+R)−2APC> = 0 =⇒ L = APC>(CPC>+R)−1

Plug into the expression of P(k +1),

(A−LC )P(A−LC )>+BvQB>v +LRL>

= APA>−APC>(CPC>+R)−1CPA>+BvQB>v

Giulia Giordano KALMAN FILTER 8 / 51

Page 17: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Minimization

We choose L so as to minimize tr [P(k +1)]:

minL{tr [(A−LC )P(A−LC )>+BvQB>v +LRL>)]}=

minL{tr [APA>]−2tr [APC>L>]+tr [LCPC>L>]+tr [BvQB>v ]+tr [LRL>]}

Differentiate with respect to L and equate to zero:

2L(CPC>+R)−2APC> = 0 =⇒ L = APC>(CPC>+R)−1

Plug into the expression of P(k +1),

(A−LC )P(A−LC )>+BvQB>v +LRL>

= APA>−APC>(CPC>+R)−1CPA>+BvQB>v

Giulia Giordano KALMAN FILTER 8 / 51

Page 18: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Result

Optimal filter

x(k +1) = [A(k)−L(k)C (k)]x(k) +L(k)y(k)

L(k) = A(k)P(k)C>(k)[C (k)P(k)C>(k) +R(k)]−1

P(k) is recursively given by

P(k +1) = A(k)P(k)A>(k)−A(k)P(k)C>(k)[C (k)P(k)C>(k) +R(k)]−1C (k)P(k)A>(k)+Bv (k)Q(k)B>v (k),

with initial conditions P(k0) = P0 and x(k0) = x0

Giulia Giordano KALMAN FILTER 9 / 51

Page 19: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

We achieve similar results even if...

...v(k) and w(k) have a known nonzero mean: v(k), w(k)

Optimal filterx(k +1) =[A(k)−L(k)C (k)]x(k) +L(k)y(k)−L(k)w(k) +Bv (k)v(k)

Estimation error x(k +1)− x(k +1) = e(k +1) =

[A(k)−L(k)C (k)]e(k) +Bv (k)[v(k)−v(k)]−L(k)[w(k)−w(k)]

Giulia Giordano KALMAN FILTER 10 / 51

Page 20: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

We achieve similar results even if...

...v(k) and w(k) have a known nonzero mean: v(k), w(k)

Optimal filterx(k +1) =[A(k)−L(k)C (k)]x(k) +L(k)y(k)−L(k)w(k) +Bv (k)v(k)

Estimation error x(k +1)− x(k +1) = e(k +1) =

[A(k)−L(k)C (k)]e(k) +Bv (k)[v(k)−v(k)]−L(k)[w(k)−w(k)]

Giulia Giordano KALMAN FILTER 10 / 51

Page 21: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

We achieve similar results even if...

...v(k) and w(k) have a known nonzero mean: v(k), w(k)

Optimal filterx(k +1) =[A(k)−L(k)C (k)]x(k) +L(k)y(k)−L(k)w(k) +Bv (k)v(k)

Estimation error x(k +1)− x(k +1) = e(k +1) =

[A(k)−L(k)C (k)]e(k) +Bv (k)[v(k)−v(k)]−L(k)[w(k)−w(k)]

Giulia Giordano KALMAN FILTER 10 / 51

Page 22: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

In the presence of a known signal u ∈ Rm. . .

. . . for instance a control signal, the system becomes

x(k +1) = A(k)x(k) +Bv (k)v(k) +B(k)u(k)y(k) = C (k)x(k) +w(k)

Optimal filterx(k +1) = [A(k)−L(k)C (k)]x(k) +L(k)y(k) +B(k)u(k)

Estimation error x(k +1)− x(k +1) =

[A(k)−L(k)C (k)][x(k)− x(k)] +Bv (k)v(k)−L(k)w(k)

exactly as in the absence of u !

Giulia Giordano KALMAN FILTER 11 / 51

Page 23: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

In the presence of a known signal u ∈ Rm. . .

. . . for instance a control signal, the system becomes

x(k +1) = A(k)x(k) +Bv (k)v(k) +B(k)u(k)y(k) = C (k)x(k) +w(k)

Optimal filterx(k +1) = [A(k)−L(k)C (k)]x(k) +L(k)y(k) +B(k)u(k)

Estimation error x(k +1)− x(k +1) =

[A(k)−L(k)C (k)][x(k)− x(k)] +Bv (k)v(k)−L(k)w(k)

exactly as in the absence of u !

Giulia Giordano KALMAN FILTER 11 / 51

Page 24: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

In the presence of a known signal u ∈ Rm. . .

. . . for instance a control signal, the system becomes

x(k +1) = A(k)x(k) +Bv (k)v(k) +B(k)u(k)y(k) = C (k)x(k) +w(k)

Optimal filterx(k +1) = [A(k)−L(k)C (k)]x(k) +L(k)y(k) +B(k)u(k)

Estimation error x(k +1)− x(k +1) =

[A(k)−L(k)C (k)][x(k)− x(k)] +Bv (k)v(k)−L(k)w(k)

exactly as in the absence of u !

Giulia Giordano KALMAN FILTER 11 / 51

Page 25: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Steady-state (asymptotic) filtering algorithm

When all of the system matrices are constant, under suitableassumptions, P(k +1) tends to the symmetric, positive definitesolution P of the discrete-time algebraic Riccati equation

P = APA>−APC>(CPC>+R)−1CPA>+BvQB>v

ASYMPTOTIC Kalman filter

x(k +1) = (A−LC )x(k) +Ly(k)

whereL = APC>(CPC>+R)−1

P = APA>−APC>(CPC>+R)−1CPA>+BvQB>v

Giulia Giordano KALMAN FILTER 12 / 51

Page 26: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Steady-state (asymptotic) filtering algorithm

When all of the system matrices are constant, under suitableassumptions, P(k +1) tends to the symmetric, positive definitesolution P of the discrete-time algebraic Riccati equation

P = APA>−APC>(CPC>+R)−1CPA>+BvQB>v

ASYMPTOTIC Kalman filter

x(k +1) = (A−LC )x(k) +Ly(k)

whereL = APC>(CPC>+R)−1

P = APA>−APC>(CPC>+R)−1CPA>+BvQB>v

Giulia Giordano KALMAN FILTER 12 / 51

Page 27: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Duality

optimal LQ control, Q = H>H optimal observer, Q = IK feedback matrix: u(k) = Kx(k) L observer gain

are DUAL problems

Adual↔ A> B

dual↔ C> H>dual↔ Bv

P = A>PA−A>PB(B>PB +R)−1B>PA+H>H (LQ)dual↔

P = APA>−APC>(CPC>+R)−1CPA>+BvB>v (KF)

K =−(B>PB +R)−1B>PA L = APC>(CPC>+R)−1

K =−L>

Giulia Giordano KALMAN FILTER 13 / 51

Page 28: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Duality

optimal LQ control, Q = H>H optimal observer, Q = IK feedback matrix: u(k) = Kx(k) L observer gain

are DUAL problems

Adual↔ A> B

dual↔ C> H>dual↔ Bv

P = A>PA−A>PB(B>PB +R)−1B>PA+H>H (LQ)dual↔

P = APA>−APC>(CPC>+R)−1CPA>+BvB>v (KF)

K =−(B>PB +R)−1B>PA L = APC>(CPC>+R)−1

K =−L>

Giulia Giordano KALMAN FILTER 13 / 51

Page 29: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Duality

optimal LQ control, Q = H>H optimal observer, Q = IK feedback matrix: u(k) = Kx(k) L observer gain

are DUAL problems

Adual↔ A> B

dual↔ C> H>dual↔ Bv

P = A>PA−A>PB(B>PB +R)−1B>PA+H>H (LQ)dual↔

P = APA>−APC>(CPC>+R)−1CPA>+BvB>v (KF)

K =−(B>PB +R)−1B>PA L = APC>(CPC>+R)−1

K =−L>

Giulia Giordano KALMAN FILTER 13 / 51

Page 30: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Duality

optimal LQ control, Q = H>H optimal observer, Q = IK feedback matrix: u(k) = Kx(k) L observer gain

are DUAL problems

Adual↔ A> B

dual↔ C> H>dual↔ Bv

P = A>PA−A>PB(B>PB +R)−1B>PA+H>H (LQ)dual↔

P = APA>−APC>(CPC>+R)−1CPA>+BvB>v (KF)

K =−(B>PB +R)−1B>PA L = APC>(CPC>+R)−1

K =−L>

Giulia Giordano KALMAN FILTER 13 / 51

Page 31: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Kalman filter: asymptotic stability

e(k +1) = (A−LC )e(k) +Bvv(k)−Lw(k) stable?

P is the symmetric positive definite solution of

P = A[P−PC>(CPC>+R)−1CP]A>+BvQB>v

which is the

discrete-time Lyapunov equation

(A−LC )P(A−LC )>−P =−BvQB>v −LRL>

with BvQB>v +LRL> symmetric positive definite matrix

A−LC is asymptotically stable and the sequence {ek} goes to zerowhen v(k), w(k)≡ 0 ∀k

Giulia Giordano KALMAN FILTER 14 / 51

Page 32: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Kalman filter: asymptotic stability

e(k +1) = (A−LC )e(k) +Bvv(k)−Lw(k) stable?

P is the symmetric positive definite solution of

P = A[P−PC>(CPC>+R)−1CP]A>+BvQB>v

which is the

discrete-time Lyapunov equation

(A−LC )P(A−LC )>−P =−BvQB>v −LRL>

with BvQB>v +LRL> symmetric positive definite matrix

A−LC is asymptotically stable and the sequence {ek} goes to zerowhen v(k), w(k)≡ 0 ∀k

Giulia Giordano KALMAN FILTER 14 / 51

Page 33: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Kalman filter: asymptotic stability

e(k +1) = (A−LC )e(k) +Bvv(k)−Lw(k) stable?

P is the symmetric positive definite solution of

P = A[P−PC>(CPC>+R)−1CP]A>+BvQB>v

which is the

discrete-time Lyapunov equation

(A−LC )P(A−LC )>−P =−BvQB>v −LRL>

with BvQB>v +LRL> symmetric positive definite matrix

A−LC is asymptotically stable and the sequence {ek} goes to zerowhen v(k), w(k)≡ 0 ∀k

Giulia Giordano KALMAN FILTER 14 / 51

Page 34: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

CONTINUOUS-TIMEKALMAN-BUCY FILTER

Rudolf Emil Kalman and Richard Snowden Bucy“New Results in Linear Filtering and Prediction Theory”

Transactions of the ASME, Journal of Basic Engineering, pp. 95-108,March 1961

Page 35: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Problem formulation

Continuous-time linear system:

x(t) = A(t)x(t) +B(t)u(t) +Bv (t)v(t)y(t) = C (t)x(t) +w(t)

x ∈ Rn system statey ∈ Rq measured outputu ∈ Rm known inputv ∈ Rp process disturbancew ∈ Rq measurement disturbance

Looking for a recursive algorithm that yields an estimate x of thesystem state

Giulia Giordano KALMAN FILTER 16 / 51

Page 36: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Problem formulation

Continuous-time linear system:

x(t) = A(t)x(t) +B(t)u(t) +Bv (t)v(t)y(t) = C (t)x(t) +w(t)

x ∈ Rn system statey ∈ Rq measured outputu ∈ Rm known inputv ∈ Rp process disturbancew ∈ Rq measurement disturbance

Looking for a recursive algorithm that yields an estimate x of thesystem state

Giulia Giordano KALMAN FILTER 16 / 51

Page 37: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 1

w and v are stochastic processes

w , v white noises: zero mean, independent componentsE [v(t)] = 0;E [v(t)v(τ)>] = Q(t)δ (t− τ), Q(t) > 0

E [w(t)] = 0;E [w(t)w(τ)>] = R(t)δ (t− τ), R(t) > 0

The statistics of x(t0) is knownE [x(t0)] = x0;E [(x(t0)−x0)(x(t0)−x0)>] = Var [x(t0)] = P0

v , w and x are uncorrelatedE [w(t)v(τ)>] = 0, E [w(t)x(τ)>] = 0, E [v(t)x(τ)>] = 0

Giulia Giordano KALMAN FILTER 17 / 51

Page 38: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 1

w and v are stochastic processes

w , v white noises: zero mean, independent componentsE [v(t)] = 0;E [v(t)v(τ)>] = Q(t)δ (t− τ), Q(t) > 0

E [w(t)] = 0;E [w(t)w(τ)>] = R(t)δ (t− τ), R(t) > 0

The statistics of x(t0) is knownE [x(t0)] = x0;E [(x(t0)−x0)(x(t0)−x0)>] = Var [x(t0)] = P0

v , w and x are uncorrelatedE [w(t)v(τ)>] = 0, E [w(t)x(τ)>] = 0, E [v(t)x(τ)>] = 0

Giulia Giordano KALMAN FILTER 17 / 51

Page 39: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 1

w and v are stochastic processes

w , v white noises: zero mean, independent componentsE [v(t)] = 0;E [v(t)v(τ)>] = Q(t)δ (t− τ), Q(t) > 0

E [w(t)] = 0;E [w(t)w(τ)>] = R(t)δ (t− τ), R(t) > 0

The statistics of x(t0) is knownE [x(t0)] = x0;E [(x(t0)−x0)(x(t0)−x0)>] = Var [x(t0)] = P0

v , w and x are uncorrelatedE [w(t)v(τ)>] = 0, E [w(t)x(τ)>] = 0, E [v(t)x(τ)>] = 0

Giulia Giordano KALMAN FILTER 17 / 51

Page 40: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 1

w and v are stochastic processes

w , v white noises: zero mean, independent componentsE [v(t)] = 0;E [v(t)v(τ)>] = Q(t)δ (t− τ), Q(t) > 0

E [w(t)] = 0;E [w(t)w(τ)>] = R(t)δ (t− τ), R(t) > 0

The statistics of x(t0) is knownE [x(t0)] = x0;E [(x(t0)−x0)(x(t0)−x0)>] = Var [x(t0)] = P0

v , w and x are uncorrelatedE [w(t)v(τ)>] = 0, E [w(t)x(τ)>] = 0, E [v(t)x(τ)>] = 0

Giulia Giordano KALMAN FILTER 17 / 51

Page 41: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 2

The filter belongs to the class of Luenberger observers:

˙x(t) = [A(t)−L(t)C (t)]x(t) +L(t)y(t) +B(t)u(t)

L(t) ∈ Rn×q is the matrix we want to determine

Giulia Giordano KALMAN FILTER 18 / 51

Page 42: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 2

The filter belongs to the class of Luenberger observers:

˙x(t) = [A(t)−L(t)C (t)]x(t) +L(t)y(t) +B(t)u(t)

L(t) ∈ Rn×q is the matrix we want to determine

Giulia Giordano KALMAN FILTER 18 / 51

Page 43: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Our goal

Estimation error e(t) = x(t)− x(t)

e(t) = [A(t)−L(t)C (t)]e(t) +Bv (t)v(t)−L(t)w(t)

We look for the matrix L(t) that minimizes

E [‖x(t)− x(t)‖2] =E [e>(t)e(t)] = trE [(x(t)− x(t))(x(t)− x(t))>]

choosing P(t) = E [(x(t)− x(t))(x(t)− x(t))>]

Giulia Giordano KALMAN FILTER 19 / 51

Page 44: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Our goal

Estimation error e(t) = x(t)− x(t)

e(t) = [A(t)−L(t)C (t)]e(t) +Bv (t)v(t)−L(t)w(t)

We look for the matrix L(t) that minimizes

E [‖x(t)− x(t)‖2] =E [e>(t)e(t)] = trE [(x(t)− x(t))(x(t)− x(t))>]

choosing P(t) = E [(x(t)− x(t))(x(t)− x(t))>]

Giulia Giordano KALMAN FILTER 19 / 51

Page 45: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Our goal

Estimation error e(t) = x(t)− x(t)

e(t) = [A(t)−L(t)C (t)]e(t) +Bv (t)v(t)−L(t)w(t)

We look for the matrix L(t) that minimizes

E [‖x(t)− x(t)‖2] =E [e>(t)e(t)] = trE [(x(t)− x(t))(x(t)− x(t))>]

choosing P(t) = E [(x(t)− x(t))(x(t)− x(t))>]

Giulia Giordano KALMAN FILTER 19 / 51

Page 46: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Sampled system, ∆t small enough

e(t + ∆t) = [I +A ∆t−LC ∆t]e(t) +Bv ∆t v(t)−L ∆t w(t)

(eM∆t = ∑

+∞

k=0Mk (∆t)k

k! = I +M∆t + 12!M

2(∆t)2 + 13!M

3(∆t)3 + . . .)

cf. Euler

Hence, given P(t),P(t + ∆t) = [I +A ∆t−LC ∆t]P(t)[I +A ∆t−LC ∆t]>+BvQB

>v ∆t +LRL> ∆t

lim∆t→0P(t+∆t)−P(t)

∆t = P(t) = [A(t)−L(t)C (t)]P(t) +P(t)[A(t)−L(t)C (t)]>+Bv (t)Q(t)B>v (t) +L(t)R(t)L>(t)

Giulia Giordano KALMAN FILTER 20 / 51

Page 47: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Sampled system, ∆t small enough

e(t + ∆t) = [I +A ∆t−LC ∆t]e(t) +Bv ∆t v(t)−L ∆t w(t)

(eM∆t = ∑

+∞

k=0Mk (∆t)k

k! = I +M∆t + 12!M

2(∆t)2 + 13!M

3(∆t)3 + . . .)

cf. Euler

Hence, given P(t),P(t + ∆t) = [I +A ∆t−LC ∆t]P(t)[I +A ∆t−LC ∆t]>+BvQB

>v ∆t +LRL> ∆t

lim∆t→0P(t+∆t)−P(t)

∆t = P(t) = [A(t)−L(t)C (t)]P(t) +P(t)[A(t)−L(t)C (t)]>+Bv (t)Q(t)B>v (t) +L(t)R(t)L>(t)

Giulia Giordano KALMAN FILTER 20 / 51

Page 48: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Sampled system, ∆t small enough

e(t + ∆t) = [I +A ∆t−LC ∆t]e(t) +Bv ∆t v(t)−L ∆t w(t)

(eM∆t = ∑

+∞

k=0Mk (∆t)k

k! = I +M∆t + 12!M

2(∆t)2 + 13!M

3(∆t)3 + . . .)

cf. Euler

Hence, given P(t),P(t + ∆t) = [I +A ∆t−LC ∆t]P(t)[I +A ∆t−LC ∆t]>+BvQB

>v ∆t +LRL> ∆t

lim∆t→0P(t+∆t)−P(t)

∆t = P(t) = [A(t)−L(t)C (t)]P(t) +P(t)[A(t)−L(t)C (t)]>+Bv (t)Q(t)B>v (t) +L(t)R(t)L>(t)

Giulia Giordano KALMAN FILTER 20 / 51

Page 49: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Minimization

We choose L so as to minimize tr [P(t)]:

minL{tr [AP−LCP +PA>−PC>L>+BvQB>v +LRL>]}

Differentiate with respect to L and equate to zero:

−2PC>+2LR = 0 =⇒ L = PC>R−1

Plug into the expression of P(t),

AP +PA>−PC>R−1CP +BvQB>v

Giulia Giordano KALMAN FILTER 21 / 51

Page 50: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Minimization

We choose L so as to minimize tr [P(t)]:

minL{tr [AP−LCP +PA>−PC>L>+BvQB>v +LRL>]}

Differentiate with respect to L and equate to zero:

−2PC>+2LR = 0 =⇒ L = PC>R−1

Plug into the expression of P(t),

AP +PA>−PC>R−1CP +BvQB>v

Giulia Giordano KALMAN FILTER 21 / 51

Page 51: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Minimization

We choose L so as to minimize tr [P(t)]:

minL{tr [AP−LCP +PA>−PC>L>+BvQB>v +LRL>]}

Differentiate with respect to L and equate to zero:

−2PC>+2LR = 0 =⇒ L = PC>R−1

Plug into the expression of P(t),

AP +PA>−PC>R−1CP +BvQB>v

Giulia Giordano KALMAN FILTER 21 / 51

Page 52: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Result

Optimal filter

˙x(t) = [A(t)−L(t)C (t)]x(t) +L(t)y(t) +B(t)u(t)

L(t) = P(t)C>(t)R−1(t)

where

P(t) = A(t)P(t) +P(t)A>(t)−P(t)C>(t)R−1C (t)P(t) +Bv (t)Q(t)B>v (t)

with initial conditions P(t0) = P0 and x(t0) = x0

Giulia Giordano KALMAN FILTER 22 / 51

Page 53: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Steady-state (asymptotic) filtering algorithm

When all of the system matrices are constant, under suitableassumptions, P(t) tends to zero and P is the symmetric, positivedefinite solution P of the continuous-time algebraic Riccati equation

AP +PA>−PC>R−1CP +BvQB>v = 0

ASYMPTOTIC Kalman filter

˙x(t) = (A−LC )x(t) +Ly(t) +Bu(t)

doveL = PC>R−1

AP +PA>−PC>R−1CP +BvQB>v = 0

Giulia Giordano KALMAN FILTER 23 / 51

Page 54: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Steady-state (asymptotic) filtering algorithm

When all of the system matrices are constant, under suitableassumptions, P(t) tends to zero and P is the symmetric, positivedefinite solution P of the continuous-time algebraic Riccati equation

AP +PA>−PC>R−1CP +BvQB>v = 0

ASYMPTOTIC Kalman filter

˙x(t) = (A−LC )x(t) +Ly(t) +Bu(t)

doveL = PC>R−1

AP +PA>−PC>R−1CP +BvQB>v = 0

Giulia Giordano KALMAN FILTER 23 / 51

Page 55: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Dualityoptimal LQ control, Q = H>H optimal observer, Q = IK feedback matrix: u(k) = Kx(k) L observer gain

↓are DUAL problems

Adual↔ A> B

dual↔ C> H>dual↔ Bv

A>P +PA−PBR−1B>P +H>H = 0 (LQ)dual↔

AP +PA>−PC>R−1CP +BvB>v = 0 (KF)

K =−R−1B>P L = PC>R−1

K =−L>

Giulia Giordano KALMAN FILTER 24 / 51

Page 56: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Dualityoptimal LQ control, Q = H>H optimal observer, Q = IK feedback matrix: u(k) = Kx(k) L observer gain

↓are DUAL problems

Adual↔ A> B

dual↔ C> H>dual↔ Bv

A>P +PA−PBR−1B>P +H>H = 0 (LQ)dual↔

AP +PA>−PC>R−1CP +BvB>v = 0 (KF)

K =−R−1B>P L = PC>R−1

K =−L>

Giulia Giordano KALMAN FILTER 24 / 51

Page 57: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Dualityoptimal LQ control, Q = H>H optimal observer, Q = IK feedback matrix: u(k) = Kx(k) L observer gain

↓are DUAL problems

Adual↔ A> B

dual↔ C> H>dual↔ Bv

A>P +PA−PBR−1B>P +H>H = 0 (LQ)dual↔

AP +PA>−PC>R−1CP +BvB>v = 0 (KF)

K =−R−1B>P L = PC>R−1

K =−L>

Giulia Giordano KALMAN FILTER 24 / 51

Page 58: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Dualityoptimal LQ control, Q = H>H optimal observer, Q = IK feedback matrix: u(k) = Kx(k) L observer gain

↓are DUAL problems

Adual↔ A> B

dual↔ C> H>dual↔ Bv

A>P +PA−PBR−1B>P +H>H = 0 (LQ)dual↔

AP +PA>−PC>R−1CP +BvB>v = 0 (KF)

K =−R−1B>P L = PC>R−1

K =−L>Giulia Giordano KALMAN FILTER 24 / 51

Page 59: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Kalman filter: asymptotic stability

e(t) = (A−LC )e(t) +Bvv(t)−Lw(t) stable?

P is the symmetric positive definite solution of

AP +PA>−PC>R−1CP +BvQB>v = 0

which is the

continuous-time Lyapunov equation

[A−LC ]P +P[A−LC ]> =−BvQB>v −LRL>

with BvQB>v +LRL> symmetric positive definite matrix

A−LC is asymptotically stable and e(t) tends to zero whenv(t), w(t)≡ 0 ∀t

Giulia Giordano KALMAN FILTER 25 / 51

Page 60: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Kalman filter: asymptotic stability

e(t) = (A−LC )e(t) +Bvv(t)−Lw(t) stable?

P is the symmetric positive definite solution of

AP +PA>−PC>R−1CP +BvQB>v = 0

which is the

continuous-time Lyapunov equation

[A−LC ]P +P[A−LC ]> =−BvQB>v −LRL>

with BvQB>v +LRL> symmetric positive definite matrix

A−LC is asymptotically stable and e(t) tends to zero whenv(t), w(t)≡ 0 ∀t

Giulia Giordano KALMAN FILTER 25 / 51

Page 61: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Kalman filter: asymptotic stability

e(t) = (A−LC )e(t) +Bvv(t)−Lw(t) stable?

P is the symmetric positive definite solution of

AP +PA>−PC>R−1CP +BvQB>v = 0

which is the

continuous-time Lyapunov equation

[A−LC ]P +P[A−LC ]> =−BvQB>v −LRL>

with BvQB>v +LRL> symmetric positive definite matrix

A−LC is asymptotically stable and e(t) tends to zero whenv(t), w(t)≡ 0 ∀t

Giulia Giordano KALMAN FILTER 25 / 51

Page 62: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

EXAMPLES AND APPLICATIONS

Page 63: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputModel

x(t) = Ax(t) +B[u(t) + v(t)]y(t) = Cx(t) +w(t)

with

A =

[0 10 0

], B =

[01

]C =

[1 0

]mechanical system mq = F , con x1 = q, x2 = q, u = F/m, withdisturbances v and w .

Sampled system −→ discrete-time system matrices −→discrete-time Kalman filterx(k +1) = (A−LC )x(k) +Ly(k) +Bu(k).

Giulia Giordano KALMAN FILTER 27 / 51

Page 64: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputSimulation

State space trajectory: x blue, x redu = 1, Ts = 1, Q = 1, R = 2

Giulia Giordano KALMAN FILTER 28 / 51

Page 65: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputSimulation

u = 1, Ts = 1, Q = 1, R = 2

Error x− x for the two components Comparison: x(1) blue, x(1) red;x(2) green, x(2) black

Giulia Giordano KALMAN FILTER 29 / 51

Page 66: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputModel

x(t) = Ax(t) +B[u(t) + v(t)]y(t) = Cx(t) +w(t)

with

A =

[0 10 0

], B =

[01

]C =

[1 0

]Now rewrite the system approximating the derivative with Euler’smethod: x(t + τ) = [I + τA]x(t) +Bτ[u(t) + v(t)] and computethe continuous-time Kalman filterx(t + τ) = (I +Aτ−LCτ)x(t) +Lτy(t) +Bτu(t).

Giulia Giordano KALMAN FILTER 30 / 51

Page 67: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputSimulation

State space trajectory: x blue, x redu = 1, τ = 0.01, Q = 1, R = 2

Giulia Giordano KALMAN FILTER 31 / 51

Page 68: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputSimulation

u = 1, τ = 0.01, Q = 1, R = 2

Error x− x for the two components Comparison: x(1) blue, x(1) red;x(2) green, x(2) black

Giulia Giordano KALMAN FILTER 32 / 51

Page 69: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputMarginally stable system with disturbances: the model

Transfer function 1s2+ω2 , with ω = 2.

Discrete-time system version, discrete-time Kalman filter.

Giulia Giordano KALMAN FILTER 33 / 51

Page 70: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputMarginally stable system with disturbances: simulation

State space trajectory: x blue, x red

Giulia Giordano KALMAN FILTER 34 / 51

Page 71: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputMarginally stable system with disturbances: simulation

Ts = 0.2, Q = 1, R = 1

Error x− x Comparison: x(1) blue, x(1) red;x(2) green, x(2) black

Giulia Giordano KALMAN FILTER 35 / 51

Page 72: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputStable system with disturbances: model

Transfer function 1s2+300s+20000 .

Discrete-time version of the system, discrete-time Kalman filter.

Giulia Giordano KALMAN FILTER 36 / 51

Page 73: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputStable system with disturbances: simulation

State space trajectory: x blue, x red

Giulia Giordano KALMAN FILTER 37 / 51

Page 74: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputStable system with disturbances: simulation

Ts = 0.2, Q = 1, R = 1

Error x− x Comparison: x(1) blue, x(1) red;x(2) green, x(2) black

Giulia Giordano KALMAN FILTER 38 / 51

Page 75: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Output estimate

For a system with disturbances

. . . and a known input

x(k +1) = Ax(k) +Bv(k)

+Eu(k)

z(k) = Hx(k)

y(k) = Cx(k) +Dw(k)

we want to estimate output z based on measured output y :Kalman filter:

x(k +1) = (A−LC )x(k) +Ly(k)

+Eu(k)

z(k) = Hx(k)

where:L = APC>(CPC>+R)−1

P = APA>+APC>(CPC>+R)−1CPA>+BQB>.

Giulia Giordano KALMAN FILTER 39 / 51

Page 76: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Output estimate

For a system with disturbances

. . . and a known input

x(k +1) = Ax(k) +Bv(k)

+Eu(k)

z(k) = Hx(k)

y(k) = Cx(k) +Dw(k)

we want to estimate output z based on measured output y :

Kalman filter:

x(k +1) = (A−LC )x(k) +Ly(k)

+Eu(k)

z(k) = Hx(k)

where:L = APC>(CPC>+R)−1

P = APA>+APC>(CPC>+R)−1CPA>+BQB>.

Giulia Giordano KALMAN FILTER 39 / 51

Page 77: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Output estimate

For a system with disturbances

. . . and a known input

x(k +1) = Ax(k) +Bv(k)

+Eu(k)

z(k) = Hx(k)

y(k) = Cx(k) +Dw(k)

we want to estimate output z based on measured output y :Kalman filter:

x(k +1) = (A−LC )x(k) +Ly(k)

+Eu(k)

z(k) = Hx(k)

where:L = APC>(CPC>+R)−1

P = APA>+APC>(CPC>+R)−1CPA>+BQB>.

Giulia Giordano KALMAN FILTER 39 / 51

Page 78: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Output estimate

For a system with disturbances . . . and a known input

x(k +1) = Ax(k) +Bv(k) +Eu(k)

z(k) = Hx(k)

y(k) = Cx(k) +Dw(k)

we want to estimate output z based on measured output y :Kalman filter:

x(k +1) = (A−LC )x(k) +Ly(k)

+Eu(k)

z(k) = Hx(k)

where:L = APC>(CPC>+R)−1

P = APA>+APC>(CPC>+R)−1CPA>+BQB>.

Giulia Giordano KALMAN FILTER 39 / 51

Page 79: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Output estimate

For a system with disturbances . . . and a known input

x(k +1) = Ax(k) +Bv(k) +Eu(k)

z(k) = Hx(k)

y(k) = Cx(k) +Dw(k)

we want to estimate output z based on measured output y :Kalman filter:

x(k +1) = (A−LC )x(k) +Ly(k) +Eu(k)

z(k) = Hx(k)

where:L = APC>(CPC>+R)−1

P = APA>+APC>(CPC>+R)−1CPA>+BQB>.

Giulia Giordano KALMAN FILTER 39 / 51

Page 80: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With disturbances onlyMasses and springs system: model

x = Ax +Bv

z = Czx

y = Cyx +w

k1 = k2 = 1, m1 = m2 = m3 = 1

A =

0 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1−1 1 0 0 0 01 −2 1 0 0 00 1 −1 0 0 0

, B =

000100

,

Cz =[1 0 0 0 0 0

], Cy =

[0 0 1 0 0 0

].

Giulia Giordano KALMAN FILTER 40 / 51

Page 81: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With disturbances onlyMasses and springs system: simulation

Ts = 1, Q = 1, R = 1

Giulia Giordano KALMAN FILTER 41 / 51

Page 82: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With disturbances onlyThree-floor building: model

k1 = 2, k12 = 1, k23 = 1, ϕ = 0.01

A =

0 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1

−(k1 +k12) k12 0 −ϕ 0 0k12 −(k12 +k23) k23 0 −ϕ 00 k23 −k23 0 0 −ϕ

, B =

000−1−1−1

,

Cz =[1 0 0 0 0 0

], Cy =

[0 1 0 0 0 0

]

Giulia Giordano KALMAN FILTER 42 / 51

Page 83: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With disturbances onlyThree-floor building: simulation

Ts = 1, Q = 1, R = 1

Giulia Giordano KALMAN FILTER 43 / 51

Page 84: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With disturbances onlyCar damper: model

k1 = 2, k2 = 3, h = 0.1

A =

0 0 1 00 0 0 1

−(k1 +k2) k2 −h hk2 −k2 h −h

, B =

00k10

,Cz =

[1 0 0 0

], Cy =

[1 −1 0 0

].

Giulia Giordano KALMAN FILTER 44 / 51

Page 85: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With disturbances onlyCar damper: simulation

Ts = 1, Q = 1, R = 1

Giulia Giordano KALMAN FILTER 45 / 51

Page 86: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputSecond-order system: model

Giulia Giordano KALMAN FILTER 46 / 51

Page 87: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputSecond-order system: simulation

ω = 2, Ts = 0.2, Q = 1, R = 1

Giulia Giordano KALMAN FILTER 47 / 51

Page 88: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputFourth-order system: model

Giulia Giordano KALMAN FILTER 48 / 51

Page 89: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputFourth-order system: simulation

ω1 = 4, ω2 = 4, Ts = 0.2, Q = 1, R = 1

Giulia Giordano KALMAN FILTER 49 / 51

Page 90: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputSystem with selective prefilters: model

Giulia Giordano KALMAN FILTER 50 / 51

Page 91: KALMAN FILTER - dimi.uniud.itfranco/Kalman_filter.pdf · KALMAN FILTER GiuliaGiordano Teoria dei Sistemi e del Controllo Prof. Franco Blanchini Università degli Studi di Udine January18,2016

DISCRETE-TIME KALMAN FILTERCONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known inputSystem with selective prefilters: simulation

ω = 4, ωv = 4, ωw = 2, Ts = 0.2, β = 1, γ = 1, Q = 1, R = 1

Giulia Giordano KALMAN FILTER 51 / 51