KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN...

22
KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT DAN TEBAL CORE TERHADAP PENINGKATAN KEKUATAN BENDING DAN IMPAK KOMPOSIT SANDWICH GFRP DENGAN CORE PVC Istanto, Arif Ismayanto, Ratna permatasari PS Teknik Mesin, Fakultas Teknik, Universitas Sebelas Maret, Surakarta ABSTRAK Komposit sandwich merupakan jenis komposit yang cocok untuk digunakan sebagai struktur. Salah satu jenis serat dan core yang banyak diaplikasikan di industri adalah serat gelas dan core Divinycell PVC. Penelitian ini bertujuan untuk menyelidiki pengaruh orientasi serat dan tebal core terhadap kekuatan bending dan impak komposit sandwich GFRP dengan core Divinycell PVC. Bahan penelitian adalah serat E-glass woven roving dengan density 300 gr/m 2 , unsaturated polyester resin 157 BQTN-EX, dan core Divinycell PVC H 60 (ρ = 60 kg/m 3 ). Spesimen uji terdiri dari lamina komposit GFRP (skin) dan komposit sandwich. Komposit skin dibuat dengan 5 variasi orientasi serat (0/90, 45/90, 30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri dari komposit sandwich dengan variasi tebal skin (2, 4, 6, dan 8 layer, orientasi serat 0/90) dengan tebal core 10 mm dan komposit sandwich dengan variasi tebal core (5, 10, 15, dan 20 mm) dengan skin 4 layer. Pembuatan komposit dilakukan dengan metode cetak tekan. Pengujian yang dilakukan meliputi pengujian bending (ASTM D 790-93 dan ASTM C 393-94), dan pengujian impak (ASTM D 5941 dan ASTM D 5942). Hasil penelitian komposit skin GFRP dengan variasi orintasi serat menunjukkan bahwa orientasi serat [(0/90) 4 ] mempunyai kekuatan bending tertinggi (226,62 Mpa) dan kekuatan impak tertinggi (0,057 J/mm 2 ). Skin 4 layer dengan orientasi serat [(0/90) 4 ] dipandang paling efektif sebagai penguat permukaan komposit sandwich. Semakin tebal core, semakin rendah kekuatan komposit sandwich. Namun semakin tebal core, kemampuan menahan momen dan energi patahnya tetap semakin meningkat. Penampang patahan komposit sandwich mengindikasikan kegagalan yang didominasi oleh core. Kekuatan komposit sandwich ini dapat ditingkatkan dengan mensubtitusikan core yang memiliki sifat mekanis lebih tinggi. Kata kunci : komposit sandwich, komposit skin, kekuatan bending, kekuatan impak PENDAHULUAN Penggunaan bahan komposit sebagai pengganti logam dalam bidang rekayasa sudah semakin meluas, tidak hanya dalam bidang transportasi tetapi juga merambah bidang lainnya seperti properti, arsitektur dan lain sebagainya. Berbagai keuntungan

Transcript of KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN...

Page 1: KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN OPTIMASI... · Web view30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri

KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT DAN TEBAL CORE TERHADAP PENINGKATAN KEKUATAN BENDING DAN

IMPAK KOMPOSIT SANDWICH GFRP DENGAN CORE PVC

Istanto, Arif Ismayanto, Ratna permatasariPS Teknik Mesin, Fakultas Teknik, Universitas Sebelas Maret, Surakarta

ABSTRAKKomposit sandwich merupakan jenis komposit yang cocok untuk digunakan sebagai struktur. Salah satu jenis serat dan core yang banyak diaplikasikan di industri adalah serat gelas dan core Divinycell PVC. Penelitian ini bertujuan untuk menyelidiki pengaruh orientasi serat dan tebal core terhadap kekuatan bending dan impak komposit sandwich GFRP dengan core Divinycell PVC. Bahan penelitian adalah serat E-glass woven roving dengan density 300 gr/m2,unsaturated polyester resin 157 BQTN-EX, dan core Divinycell PVC H 60 (ρ =60 kg/m3). Spesimen uji terdiri dari lamina komposit GFRP (skin) dan komposit sandwich. Komposit skin dibuat dengan 5 variasi orientasi serat (0/90, 45/90,30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri dari komposit sandwich dengan variasi tebal skin (2, 4, 6, dan 8 layer, orientasi serat 0/90) dengan tebal core 10 mm dan komposit sandwich dengan variasi tebal core (5,10, 15, dan 20 mm) dengan skin 4 layer. Pembuatan komposit dilakukan dengan metode cetak tekan. Pengujian yang dilakukan meliputi pengujian bending (ASTM D 790-93 dan ASTM C 393-94), dan pengujian impak (ASTM D 5941 dan ASTM D 5942). Hasil penelitian komposit skin GFRP dengan variasi orintasi serat menunjukkan bahwa orientasi serat [(0/90)4] mempunyai kekuatan bending tertinggi (226,62 Mpa) dan kekuatan impak tertinggi (0,057 J/mm2). Skin 4 layer dengan orientasi serat [(0/90)4] dipandang paling efektif sebagai penguat permukaan komposit sandwich. Semakin tebal core, semakin rendah kekuatan komposit sandwich. Namun semakin tebal core, kemampuan menahan momen dan energi patahnya tetap semakin meningkat. Penampang patahan komposit sandwich mengindikasikan kegagalan yang didominasi oleh core. Kekuatan komposit sandwich ini dapat ditingkatkan dengan mensubtitusikan core yang memiliki sifat mekanis lebih tinggi.

Kata kunci : komposit sandwich, komposit skin, kekuatan bending, kekuatan impak

PENDAHULUANPenggunaan bahan komposit sebagai pengganti logam dalam bidang

rekayasa sudah semakin meluas, tidak hanya dalam bidang transportasi tetapi juga merambah bidang lainnya seperti properti, arsitektur dan lain sebagainya. Berbagai keuntungan penggunaan komposit semakin dirasakan oleh industri dan masyarakat, misalnya ringan, tahan korosi, tahan air, performance-nya menarik, dan tanpa proses pemesinan. Karena sifat panel komposit yang ringan, maka beban akibat konstruksi tersebut juga menjadi lebih ringan. Harga produk komponen yang dibuat dari komposit dapat turun hingga 60% dibandingkan dengan produk logam (sumber: Kunjungan di PT. INKA Madiun). Bahkan,

Page 2: KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN OPTIMASI... · Web view30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri

PKMP-1-21-2

penggunaan bahan komposit ini diprediksi mampu mereduksi penggunaan bahan logam import, yang lebih mahal dan mudah terkorosi.

Komposit sandwich merupakan material yang tersusun dari tiga material atau lebih yang terdiri dari flat composite sebagai skin dan core di bagian tengahnya. Jika digunakan perekat untuk menggabungkan skin dan core, maka lapisan bahan perekat diperhitungkan sebagai komponen tambahan. Ketebalan lapisan perekat umumnya diabaikan karena lebih tipis dari ketebalan skin maupun core (ASTM C 274-99, 1998). Untuk mendapatkan struktur sandwich yang memiliki sifat mekanis tinggi maka diperlukan jenis skin dan core yang tepat. Dalam struktur sandwich, fungsi utama skin antara lain : sebagai pelindung core dari benturan, gesekan dan memperbaiki penampilan (Steeves dan Fleck, 2005). Dalam tugasnya sebagai lapisan pelindung, skin sangat tergantung pada jenis serat dan orientasinya. Serat menerima tegangan dari matrik dan meneruskan tegangan yang diberikan sesuai dengan orientasinya. Penentuan orientasi serat yang tepat akan sangat membantu dalam mentransfer tegangan tersebut sehingga bahan komposit yang dihasilkan memiliki sifat mekanis yang tinggi. Variasi ketebalan core juga turut mempengaruhi sifat mekanis komposit sandwich.

Komposit sandwich GFRP dengan core Divinycell PVC H 100 mempunyai kekuatan bending sebesar 70,977 MPa, dan kekuatan impak sebesar0,0718 J/mm2. Penggunaan core Divinycell PVC H 200 mampu meningkatkan kekuatan bending menjadi 81,92 MPa, dan kekuatan impaknya menjadi 0,0741J/mm2. Hasil penelitian tersebut dapat disimpulkan bahwa peningkatan density core Divinycell mampu meningkatkan kekuatan komposit sandwich (Kowangid dan Diharjo, 2003).

Kekuatan impak komposit GFRP dengan kombinasi serat E-glass chopped strand mat (CSM) 450 gr/m2 dengan serat E-glass moven roving (WR) 300 gr/m2

berkisar antara 0,084 - 0,116 J/mm2, dengan nilai rata-rata 0,099 J/mm2. Penggunaan density serat gelas yang lebih rendah (CSM 300 gr/m2 dan WR 300 gr/m2 akan menurunkan kekuatan impak komposit GFRP menjadi berkisar antara0,080 - 0,109 J/mm2, atau dengan nilai rata-rata 0,088 J/mm2 (Santoso danDiharjo, 2002).

Sudiyono dan Diharjo K. (2003) menyimpulkan bahwa rancangan komposit sandwich GFRP dengan core polyurethane foam (PUF) memiliki kelemahan di bagian core, yaitu mudah lepasnya ikatan komposit skin GFRP dengan core PUF. Hal ini disebabkan oleh sifat PUF yang mudah mripil. Jenis core ini tidak cocok untuk digunakan sebagai core komposit sandwich yang menerima beban dinamis. Core ini hanya cocok untuk beban statis tekan yang ringan.

Hillger (1998), mengemukakan bahwa ada beberapa macam tipe kerusakan pada pengujian impak yang dapat dideteksi, seperti retak dan delaminasi pada skin, debonding antara skin dan core, serta kerusakan di dalam core. Kerusakan tergantung pada geometri balok sandwich dan sifat bahan penyusunnya. Model kerusakan yang terjadi dapat berupa core shear, micro buckling pada skin, dan indentation dibawah loading rooller (Steeves dan Fleck,2005).

Penelitian ini bertujuan untuk menyelidiki optimasi pengaruh orientasi serat, tebal skin, dan tebal core terhadap sifat bending dan impak komposit sandwich dengan core Divinycell® PVC H 60. Analisis optimasi berdasarkan

Page 3: KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN OPTIMASI... · Web view30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri

PKMP-1-21-3

ketiga variabel tersebut di atas diharapkan dapat menemukan formulasi disain komposit sandwich yang memiliki sifat mekanis paling optimum. Pengamatan penampang patahan dilakukan untuk menyelidiki mekanisme kegagalan struktur komposit sandwich tersebut.

Kekuatan BendingUntuk mengetahui kekuatan bending suatu material, dapat dilakukan

pengujian bending. Pada umumnya, material komposit mempunyai nilai modulus elastisitas bending yang berbeda dengan nilai modulus elastisitas tariknya. Akibat pengujian bending, pada bagian atas spesimen akan mengalami tekanan, dan bagian bawah akan mengalami tarikan. Kekuatan tekan komposit lebih tinggi daripada kekuatan tariknya. Kegagalan yang terjadi akibat pengujian bending, komposit akan mengalami patah pada bagian bawah karena tidak mampu menahan tegangan tarik. Kekuatan bending komposit dapat dirumuskan (ASTM D790) :

σ b =3PL

...................................................................................... (1)2bd 2

P = beban (N), L = panjang span (mm), b = lebar (mm), dan d = tebal(mm). besarnya Momen bending dapat dihitung dengan rumus :

M = PL

.......................................................................................... (2)4

dengan catatan M = momen (N.mm). Jika uji bending dilakukan dengan metode midspan load maka kekuatan bending komposit sandwich (facing bending stress) dapat dihitung dengan rumus (ASTM C 393) :

σ =PL

2t (d + c)b

................................................................................ (3)

dengan catatan P = beban yang diberikan (N), d = tebal sandwich (mm), c = tebal core (mm), σ = kekuatan bending permukaan sandwich (MPa), t = tebal skin bawah (mm), L = panjang span (mm), b = lebar sandwich (mm).

Model Kegagalan Struktur SandwichModel kegagalan komposit sandwich akibat mengalami tegangan bending

(three/four point bending) biasanya berupa face yield/ micro buckling, core shear, core crushing, dan indentation (Steeves dan Fleck, 2004).

Kekuatan Impak

Gambar 1. Model kerusakan akibat beban bending

Kekuatan impak material komposit umumnya di bawah kekuatan impak logam. Untuk mendapatkan kekuatan impak komposit yang mendekati logam maka fraksi serat yang digunakan sebaiknya ± 60 %. Peralatan uji yang digunakan untuk pengujian impak ada dua jenis, yaitu impak Izod dan Charpy. Pengujian

Page 4: KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN OPTIMASI... · Web view30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri

impak komposit biasanya dilakukan dengan metode flat impact method, sesuai dengan aplikasinya sebagai panel struktur. Energi yang digunakan umtuk mematahkan spesimen dapat dihitung dengan persamaan 4.⎡ ⎛ α + β ⎞⎤E patah = WR⎢(cos β − cosα ) − (cosα '−

cosα )⎜ ⎟⎥ .................. (4)⎣ ⎝ α + α ' ⎠⎦Besarnya kekuatan impak dapat dihitung dengan persamaan 5.

EE patah

impack = A ................................................................................ (5)Berbagai jenis kegagalan material akibat pengujian impak ditunjukkan

pada gambar 2.

------- ------(a) Fracture (b) Tarik (c) Tekan (d) Delaminasi

Gambar 2. Karakteristik kegagalan akibat beban impak

METODE PENDEKATANBahan penelitian adalah serat E-glass woven roving dengan density 300

gr/m2, unsaturated polyester resin (UPRs)157 BQTN-EX, dan core divinycell PVC H 60 (ρ = 60 gr/m3). Spesimen uji terdiri dari lamina komposit GFRP (skin) dan komposit sandwich. Komposit skin dibuat dengan 5 variasi orientasi serat (0/90, 45/90, 30/90, 45/-45,dan 30/60) dengan fraksi volume serat 40%.

Komposit sandwich terdiri dari komposit sandwich dengan variasi tebal skin (2, 4, 6, 8 layer, orientasi serat 0/90) dengan tebal core 10 mm dan komposit sandwich dengan variasi tebal core (5, 10, 15, dan 20 mm) dengan skin 4 layer. Besarnya fraksi volume serat komposit skin pada rancangan komposit sandwich juga ditentukan 40%. Core Divinycell yang digunakan adalah jenis core segmen. Posisi sambungan core diletakkan pada bagian tengah sampel uji (yang dikenai beban). Pembuatan komposit dilakukan dengan metode cetak tekan. Untuk mengontrol besarnya fraksi volume serat, maka selama proses manufaktur diberikan stopper pada molding. Model komposit sandwich yang dibuat ditunjukkan pada gambar 3. Komposit hasil cetakan tersebut dipotong-potong menjadi spesimen uji.

Skin/laminat bagian atas GFRP (Polyester - Woven Roving)

(variasi tebal skin)

Core Divinycell® H 60 (variasi tebal core)

Skin/laminat bagian bawah GFRP (Polyester - Woven Roving)

(variasi tebal skin)

Gambar 3. Komposit sandwich GFRP dengan core Divinycell®

Page 5: KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN OPTIMASI... · Web view30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri

Pengujian bending komposit sandwichnya mangacu standar ASTM C 393-94 sedangkan pengujian impak komposit skin mengacu pada standar ASTM D-5942 dengan impak Charpy.

core

Skin sekunder P Skin primerDimensi Spesimen:Lebar = 40 mm Panjang Span = 60 mm Tebal sandwich = 12 mm

30 30 (detail dimensi di data hasil uji).

Skin sekunder

Support

50

Support

Pendulum

Skin primer

Dimensi Spesimen:

Lebar = 15 mmPanjang Span = 50 mm Tebal Sandwich = 12 mm (detail dimensi di data hasil uji)

Gambar 4. Prosedur pengujian Three Point Bending dan Impak CharpyBerhubung spesimen uji memiliki titik terlemah di daerah sambungan core

(daerah kosong), maka beban uji bending dan impak diarahkan pada titik tersebut. Hal ini dilakukan agar data yang diperoleh merupakan kekuatan terendah, sehingga jika diimplementasikan struktur sandwich tersebut akan tetap aman.

HASIL DAN PEMBAHASAN

Sifat Bending

Tabel 1. Data hasil uji bending skin komposit GFRP

Orientasi Serat E- glass WR (o)

JumlahLamina Vf (%) Momen (Nmm) Kekuatan

Bending (MPa)[(0/90)4] 4 40 1102.60 266.62

[{(30/-60)/(60/-30)}2] 4 40 757.90 192.28[{(45/-45) 4}] 4 40 708.07 182.39

[{(30/-60)/(0/90) }2] 4 40 571.02 152.07[{(45/-45)/(0/90)}2] 4 40 681.07 189.28

Berdasarkan analisis hasil uji bending komposit GFRP (skin) dengan variasi orientasi serat, kekuatan bending tertinggi terdapat pada skin dengan orientasi serat [(0/90)4] sebesar 266,62 MPa. Hal ini disebabkan oleh faktor orientasi serat yang searah beban. Momen maksimum dan kekuatan bending skin dengan orientasi serat [(0/90)4] memiliki harga yang paling tinggi.

Page 6: KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN OPTIMASI... · Web view30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri

Mom

en M

aksi

mum

, Nm

mM

omen

mak

sim

um, N

mm

K ek

u at

an B

end

ing,

M P

a

Kek

uata

n be

ndin

g, M

Pa

1200 300

1000

800

600

400

200

0(0/90) (30/-60)/

(60/-30)(45/-45) (30/-60)/

(0/90)(45/-45)/

(0/90)

250

200

150

100

50

0(0/90) (30/-60)/

(60/-30)(45/-45) (30/-60)/

(0/90)(45/-45)/

(0/90)

Orie ntas i s e rat Orie ntasi se rat

Gambar 5. Diagram batang momen maksimum dan kekuatan bending komposit GFRP variasi orientasi serat

Tabel 2. Data hasil uji bending komposit sandwich variasi tebal skin

Jumlah layerE-glass skin

Tebal core(mm)

Span(mm)

Momen(Nmm)

KekuatanBending (MPa)

Defleksi(mm)

2 10 60 13282.74 35.67 5.004 10 60 20060.88 40.72 11.256 10 60 20895.30 30.50 9.428 10 60 27875.12 29.89 9.08

Skin yang semakin tebal meningkatkan kemampuan komposit sandwich dalam menahan beban momen. Komposit sandwich dengan tebal skin 8 layer memiliki kemampuan menahan beban momen tertinggi (27.875,12 Nmm). Kekuatan bending tertinggi komposit sandwich dimiliki oleh komposit sandwich dengan skin 4 layer, yaitu sebesar 40,72 MPa (14,13 % lebih tinggi dari kekuatan bending komposit sandwich dengan skin 2 layer). Kenaikan kekuatan bending ini sangat signifikan jika dibandingkan dengan kekuatan bending komposit sandwich dengan tebal skin 6 dan 8 layer.

35000

30000

25000

20000

15000

10000

5000

0

0 2 4 6 8 10

Tebal skin (jumlah lamina E-glass)

50

40

30

20

10

0

0 2 4 6 8 10

Tebal skin (jumlah lamina E-glass)

Gambar 6. Kurva momen maksimum dan kekuatan bending komposit sandwich variasi tebal skin

Kenaikan kekuatan bending komposit sandwich tebal skin 4 layer disebabkan meningkatnya kemampuan komposit sandwich dalam menahan momen maksimum yang terjadi. Dengan kata lain, skin menahan beban sampai batas maksimumnya kemudian beban didistribusikan core pada seluruh luasan. Skin dan core memberikan kontribusi optimumnya pada peningkatan kekuatan bending komposit sandwich.

Page 7: KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN OPTIMASI... · Web view30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri

M o

men

mak

sim

um, N

m

m

K ek

uata

n B

endi

ng, M

P

a

Pada komposit sandwich dengan skin 6 dan 8 layer, core akan mengalami kegagalan terlebih dahulu. Penebalan skin tidak memberikan kontribusi kekuatan bending komposit sandwich jika masih menggunakan core yang sama, karena kekuatan bending komposit sandwich sangat dipengaruhi oleh sifat mekanis komponen penyusunnya.

Tabel 3. Data hasil uji bending komposit sandwich variasi tebal core

Jumlah layerE-glass skin

Tebal core(mm)

Span(mm)

Momen(Nmm)

KekuatanBending (MPa)

Defleksi(mm)

4 5 60 12331.17 77.01 5.334 10 60 18815.58 56.15 5.334 15 60 21062.07 33.77 4.254 20 60 22381.51 30.38 8.33

Kekuatan bending tertinggi terdapat pada komposit sandwich dengan tebal core 5 mm, yaitu sebesar 77,01 MPa. Peningkatan ketebalan core menyebabkan penurunan kekuatan bending komposit sandwich. Dengan tebal core yang lebih besar maka akan menyebabkan momen inersia menjadi lebih besar. Semakin besar momen inersia maka kekuatan bending komposit akan semakin menurun (kekuatan bending berbanding terbalik dengan momen inersia).

25000 100

20000 80

15000 60

10000 40

5000 20

00 5 10 15 20 25

Tebal core, mm

00 5 10 15 20 25

Tebal core, mm

Gambar 7. Kurva momen maksimum dan kekuatan bending komposit sandwich variasi tebal core

Core yang semakin tebal meningkatkan kemampuan komposit sandwich menahan momen maksimum. Namun, penebalan core secara otomatis juga meningkatkan momen inersia core sehingga berpengaruh terhadap kekuatan bending.

Sifat ImpakTabel 4. Data hasil uji impak izod komposit skin GFRP.

Orientasi Serat E- glass WR (0)

JumlahLamina

Vf(%) l x t (mm) E-Patah

(Joule)Kek. Impak

(J/mm2)[(0/90)4] 2 40 12.73 x 1.40 1.008 0.057

[{(30/-60)/(60/-30)}2] 2 40 12.83 x 1.37 0.902 0.051[{(45/-45) 4}] 2 40 12.70 x 1.35 0.727 0.042

[{(30/-60)/(0/90) }2] 2 40 12.83 x 1.33 0.920 0.054[{(45/-45)/(0/90)}2] 2 40 12.67 x 1.32 0.867 0.052

Page 8: KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN OPTIMASI... · Web view30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri

Ener

gi P

atah

, J

Kek

uata

n Im

pak,

J/m

m2

1.2 0.06

1 0.05

0.8 0.04

0.6 0.03

0.4 0.02

0.2 0.01

0(0/90) (30/-60)/

(60/-30)(45/-45) (30/-60)/

(0/90)

Orientasi serat

(45/-45)/ (0/90)

0(0/90) (30/-60)/

(60/-30)(45/-45) (30/-60)/

(0/90)

Orientasi serat

(45/-45)/ (0/90)

Gambar 8. Diagram batang energi patah dan kekuatan impak komposit GFRP variasi orientasi serat

Kekuatan impak tertinggi dimiliki oleh komposit skin dengan orientasi serat [(0/90)4]. Orientasi tersebut merupakan orientasi yang paling optimum. Orientasi serat 0o memberikan penguatan yang lebih dominan terhadap ketahanan impak. Komposit yang memiliki orientasi serat 0o memiliki energi patah dan kekuatan impak yang tertinggi (1,008 J dan 0,057 J/mm2), seperti ditunjukkan pada gambar 8.

Tabel 5. Data hasil uji impak charpy komposit sandwich variasi tebal skin.Jumlah layerE-glass skin

tebal core(mm)

UkuranLxt (mm)

Span(mm)

E-serap(Joule)

Kek. Impak(J/mm2)

2 10 13.67 x 11.22 50 5.924 0.0394 10 14.17 x 12.25 50 11.34 0.0656 10 14.38 x 13.33 50 14.47 0.0758 10 14.17 x 14.50 50 16.69 0.081

Hasil pengolahan data uji impak komposit sandwich variasi tebal skin menunjukkan bahwa energi patah dan kekuatan impak meningkat seiring dengan penambahan jumlah layer (tebal skin). Peningkatan kekuatan impak komposit sandwich optimum pada skin 4 layer (0,065 J/mm2). Harga kekuatan tersebut meningkat 43,1 % dibandingkan dengan komposit sandwich dengan skin 2 layer (0,037 J/mm2). Kekuatan impak komposit sandwich dengan skin 6 layer (0,075J/mm2) dapat dikatakan tidak terjadi peningkatan yang signifikan dibandingkan dengan kekuatan impak komposit sandwich dengan skin 4 layer (0,065 J/mm2). Dengan demikian, skin 4 layer dipandang lebih menguntungkan untukdiaplikasikan.

Berdasarkan gambar 10, komposit sandwich dengan tebal core 5 mm memiliki kekuatan impak yang lebih tinggi daripada sandwich dengan tebal core10, 15, dan 20 mm. Namun, energi patah komposit sandwich meningkat seiring dengan penambahan tebal core. Energi patah komposit sandwich dengan ketebalan core 10 mm semestinya lebih tinggi dari pada komposit sandwich dengan core 5 mm. Rendahnya energi patah komposit sandwich dengan core 10 mm dapat disebabkan oleh kurang kuatnya ikatan antara skin dengan core yang disebabkan oleh faktor manufaktur.

Page 9: KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN OPTIMASI... · Web view30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri

Ene

rgi P

atah

, JE

nerg

i Pat

ah,

J

Kek

uata

n Im

pak,

J/m

m 2

Kek

uata

n Im

pak,

J/m

m 2

20 0.1

0.0815

0.0610

0.04

50.02

00 2 4 6 8 10

Tebal skin (jumlah lamina E-glass)

00 2 4 6 8 10

Tebal skin (jumlah lamina E-glass)

Gambar 9. Kurva energi patah dan kekuatan impak komposit sandwich variasi tebal skin

Tabel 6. Data hasil uji impak Charpy komposit sandwich variasi tebal core.

Variasi Tebal core(mm)

Skin(layer)

UkuranL x t (mm)

Span(mm)

E-serap(Joule)

Kek. Impak(J/mm2)

5 4 15.47 x 07.35 50 10.894 0.09610 4 15.07 x 12.38 50 10.893 0.05915 4 14.90 x 17.57 50 22.788 0.08820 4 14.50 x 21.85 50 25.780 0.081

30 0.12

25 0.1

20 0.08

15 0.06

10 0.04

5 0.02

00 5 10 15 20 25

Tebal core, mm

00 5 10 15 20 25

Tebal core, mm

Gambar 10. Kurva energi patah dan kekuatan impak komposit sandwich variasi tebal core

Penampang patahan dari berbagai jenis struktur sandwich mengindikasikan bahwa kegagalan didominasi oleh faktor rendahnya sifat mekanis core. Kegagalan tersebut disebabkan oleh rendahnya kekuatan tekan core. Dengan demikian pola kegagalannya berupa core shear dan indentation seperti ditunjukkan pada gambar12.

Page 10: KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN OPTIMASI... · Web view30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri

Penampang Patahan Bending dan Impak

Core shear Core shear

Tebal core 5 mm

10 mm

Tebal core 10 mm 10 mm

10 mm

Indentation

Model kegagalan tidak bagitu nampak

Tebal core 15 mm10 mm

Tebal core 20 mm

Gambar 11. Model kegagalan uji bending komposit sandwich variasi tebal core(pandangan samping)

Skin patah Core shear

Tebal core 5 mm Tebal core 5 mm

Multiple core shear Delaminasi skin

Tebal core 10 mm Tebal core 20 mm

Gambar 12. Model kegagalan komposit sandwich akibat beban impak

Berdasarkan pengamatan dengan foto makro, kegagalan komposit sandwich ini didominasi oleh kegagalan core. Mekanisme kegagalan yang terjadi pada uji impak komposit sandwich antara lain (1) core pecah tidak dapat menahan beban impak, (2) core tidak mampu menahan beban tekan dan terdefleksi, dan (3) terjadi delaminasi antara komposit GFRP skin dengan core.

Page 11: KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT …directory.umm.ac.id/penelitian/PKMI/doc/KAJIAN OPTIMASI... · Web view30/90, 45/-45,dan 30/60). Spesimen uji komposit sandwich terdiri

KESIMPULANBerdasarkan pembahasan tersebut di atas, maka dapat disimpulkan bahwa

orientasi serat (0/90) memiliki kekuatan bending dan impak tertinggi. Orientasi serat yang searah beban akan meningkatkan kekuatan bending dan impak komposit GFRP. Peningkatan ketebalan skin akan meningkatkan energi patah dan kemampuan menahan beban bending komposit sandwich. Tebal skin pada komposit sandwich yang paling efektif adalah 4 layer. Peningkatan tebal core juga akan menurunkan kekuatan impak dan bending, namun kemampuan menahan momennnya tetap lebih tinggi. Tebal core efektif yang paling baik untuk diaplikasikan adalah 5 mm. Penampang patahan komposit sandwich mengindikasikan bahwa kegagalan didominasi oleh lemahnya kekuatan core.

UCAPAN TERIMA KASIHTim Peneliti PKMP mengucapkan terima kasih kepada DP2M Dikti yang

telah mendanai penelitian ini. Ucapan terima kasih yang tulus juga kami sampaikan kepada Kuncoro Diharjo ST., MT. yang telah membimbing penelitian ini.

DAFTAR PUSTAKAAnonim, 1998. ASTM C 274-99 standards, ‘Standard Terminology for

Composites and Structural Sandwich Construction’, New York.Hillger, W.M., 1998. ‘Stress Analysis of Fiber Reinforced Composite Material’,

McGraw Hills Book Company, New York, USA.Kowangid dan Diharjo K., 2003. ’Karakteristik Mekanis Komposit Sandwich

Serat Gelas Dengan Core PVC’, Skripsi, Jurusan Teknik Mesin FT-UNS, Surakarta.

Santoso B. dan Diharjo K., (2002). ‘Pengaruh berat serat Chooped Strand terhadap kekuatan tarik, bending dan impak komposit GFRP kombinasi serat gelas Chooped Strand dan Woven Roving’, Skripsi, Teknik Mesin FT UNS, Surakarta.

Sudiono dan Diharjo K., 2004. ‘Karakteritik Mekanis Komposit Sandwich SeratGlass dengan Core Foam/PU’. Skripsi, Teknik Mesin FT UNS, Surakarta.

Steeves C. A., dan Fleck N.A., 2004. ‘Colllaps Mechanism of Sandwich Beam with Composite Face and Foam Core Loaded in Three Point Bending’,

Available Online at www. sciencedirect.com.