Justification of Fédération International de Beton, FIB ...

27
Justification of Fédération International de Beton, FIB, 2000 model for elastic modulus of normal and high-performance concrete, HPC Persson, Bertil 2001 Link to publication Citation for published version (APA): Persson, B. (2001). Justification of Fédération International de Beton, FIB, 2000 model for elastic modulus of normal and high-performance concrete, HPC. (Report TVBM (Intern 7000-rapport); Vol. 7159). Division of Building Materials, LTH, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Transcript of Justification of Fédération International de Beton, FIB ...

Page 1: Justification of Fédération International de Beton, FIB ...

LUND UNIVERSITY

PO Box 117221 00 Lund+46 46-222 00 00

Justification of Fédération International de Beton, FIB, 2000 model for elastic modulusof normal and high-performance concrete, HPC

Persson, Bertil

2001

Link to publication

Citation for published version (APA):Persson, B. (2001). Justification of Fédération International de Beton, FIB, 2000 model for elastic modulus ofnormal and high-performance concrete, HPC. (Report TVBM (Intern 7000-rapport); Vol. 7159). Division ofBuilding Materials, LTH, Lund University.

Total number of authors:1

General rightsUnless other specific re-use rights are stated the following general rights apply:Copyright and moral rights for the publications made accessible in the public portal are retained by the authorsand/or other copyright owners and it is a condition of accessing publications that users recognise and abide by thelegal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private studyor research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will removeaccess to the work immediately and investigate your claim.

Page 2: Justification of Fédération International de Beton, FIB ...

LUND INSTITUTE OF TECHNOLOGYLUND UNIVERSITY

Division of Building Materials

Justification of Fédérationlnternational de Bétoh, FlB, 2000Model for Elastic Modulus ofNormal and High-PerformanceConcrete, HPC

Bertil Persson

ryBM-7159 Lund 2001

Page 3: Justification of Fédération International de Beton, FIB ...
Page 4: Justification of Fédération International de Beton, FIB ...

Justification of Fédération International de Béton, FIB, 2000 Model forElastic Modulus of Normal and High-Performance Concrete, HPC

B. Persson

Division of Building Materials, Lund Institute of Technology, Lund University, P.O. BoxII8, SE-221 00 Lund, Sweden

ABSTRACT

This article outlines an experimental and theoretical comparison between the FIB 2000 Modelfor Elastic Modulus of Normal Concrete, NC, and HPC and I44 laboratory tests. Twodimensions of specimen were studied (56 and 100 mm) and one climate (20 "C, sealed or withambient relative humidity, P.H, 60Vo). The age dependence did not seem to be well correlatedbetween the derived and the measured elastic modulus. The FIB 2000 Model overestimatedthe elastic modulus of mature concrete, and in contrast, slightly underestimated the elasticmodulus of young NC. However, as a whole, the derived modulus when using the FIB modelwas about 1207o of the elastic modulus measured at loading. A relationship to strength was

found for this diversity with an increasing overestimation of the E-modulus at low strength.

1. FIB 2OOO MODEL FOR NC AND HPC

The model originated from European work in the field over 10 years [1-6]. The elasticmodulus of concrete was derived according to the following formula:

Edt¡=21.5' (f"*(f,^s)1/3' exp((1-(28/t/t¡)05' sD)) (1)

1:_JcmO -f,,,tt1

10 MPadenotes 28-day strength (MPa)denotes age (days)

=1daydenotes constant given in Table 1

Table 1. Constants in equations (1) and (2)

Type of cement and concrete strength Notification sSlowly hardening, concrete strength < 60 MPa SL

Normal or rapid hardening cement, concrete strength < 60 MPa N, R

Rapid hardening high-strength cement, concrete strength < 60 MPa RS

0.38

0.25

0.20

All types of cements, concrete strength > 60 MPa SL. N. R. RS O.2O

Page 5: Justification of Fédération International de Beton, FIB ...

2

2. METHODS

In all 16 concretes were cast of 2 Portland cements, 1 slowly hardening (Degerhamn, SL)and 1 normal hardening (Slite, S), Table 2. wlb varied between 0.24 and 0.80 with 28-daystrength varying between 24 and 141 MPa (100-mm cube). The aggregate content variedbetween 0.7 and 0.75 and consisted of quartzite sandstone, Table 3. Natural sand was used.

The mixed proportions had silica fume, Table 4 [8-16]. After demolding at 1 day's age

measurement points of steel screws were fixed into items cast in the concrete cylinders on

three sides of them. Half of the specimens were sealed with adhesive aluminum foil.For cylinders 56 mm in diameter 3 LVDT gauging devices were mounted on the side of the

cylinder in order to determine the deformation. The loading for the 56-mm cylinders was

applied were rapidly, after about 0.01 s, in order to obtain the "true" modulus of elasticity

[17]. For the 100-mm cylinders the loading was applied in a more traditional way with a rateof about 1 MPa/s (over which period substantial creep took place, especially at young ages

[8]). The observed elastic modulus was smaller at slow loading. Mechanical devices wereused when the deformation was measured on the 100-mm cylinders in turn calibrated tolength by an INVAR rod.

Table 2.The chemical composition of the cements 18-161

Chemical composition (Vo) Normal (S) Slowly hardenine (SL)

CaOsio2AlzO¡FezO:KzONa2OMgoSo¡Ignition losses

COzClinker minerals:CzS

C¡SC¡AC¿AFPhysical propertiesWater demandInitial setting timeDensitySpecific surface

62204.42.3t.40.23.53.12.4t.9

652t.63.54.40.580.050.782.070.470.14

2t5lt.7t3

t4518

7

28Vo

154 min.3122kglmj364 m2lks.

257o

145 min.3214kglm3305 mzlks.

Table 3 - Properties of the aggregate (quartzite sandstone) [71

Compressive strength(MPa)

Split tensile strength(MPa)

Elastic modulus(GPa)

Ignition losses(7o)

333 15 60 0.3

Page 6: Justification of Fédération International de Beton, FIB ...

3

Table 4. Mix proportions and strength of concretes, cylinder diameter, d (kg/m3, MPa, cm)Mix Cement, c Cement type Silica fume, s w/b Sand filler Air (Vo) 28-day strength d1

2

J

45

6

7

8

2l3238N38550Ns0s80N80s

460440445455

s30490545500389360400285340250260

2I444523

5051

495550

0.360.340.340.30.280.210.210.240.240.320.380.380.500.500.800.80

4.81.1

40.91.1

1.21

1.3

1.3

12

T2

r.4t33.51.2t.9

6985

698999106

t12t14147554286306I242l

6

6

6

6

6

6

6

6

10

10

10

10

10

10

10

10

495

SLSLSLSLSLSLSLSLSLNNNNNNN

50106

68145JJ

r65

185

3. RBSULTS AND ANALYSES (SEE ALSO APPENDICES)

3.1 ResultsEvaluations according to the FIB 2000 model were plotted versus the measured laboratory

results, Figures 1-2. Cylinders 56-mm with quasi-instantaneous loading were used from Iday' age up to 500 days' age. Loading of air and sealed cured specimens showed no

significant difference between the measured moduli of elasticity, Figure 1. Figure 2 shows an

overestimation with the FIB Model increased with age. Figure 3 shows the ratio of derived tomeasured elastic modulus versus strength. Calculations according to the FIB 2000 Model at

500 days' age showed about 307o larger values compared with the measured value -independent of strength, Figure 3. At 1-3 days' age the elastic modulus was overestimated byabout 207o. At 28 days' age an overestimation by about l)Vo of the E-modulus occurred. InFigure 4 the value of the overestimation with the FIB Model is confirmed also for a moretraditional way of obtaining the E-modulus (a slow loadin g rate of about I MPa/s). The effectof strength level is clear in Figure 4. The overall overestimation with the FIB Model was

about 23Vo.For mature HPC (high strength) the estimated value was more correct, Figure 4.

3.2 AnalysesPreviously a comparison was performed between measured shrinkage of HPC and

shrinkage estimated by the FIB 2000 Model [18]. In the present study on the elastic modulustwo parameters may affect the overestimation and strength dependence of the FIB Model:

o Too alarge exponent for the time dependence of strength, 0.5o In contrast a too low exponent for the strength dependence,ll3

The ratio of the elastic modulus with the FIB 2000 Model, Eç¡¡¡, àîd measured, E*, is shownin Figure 5-6. The number of specimens is given in Table 5. The following loading age, t(days), and 28-day strength,/,- (MPa), dependences were calculated (GPa):

Page 7: Justification of Fédération International de Beton, FIB ...

4

60Go.o=50ot,otr;40tr,E'= 30t,Èt20oEI

ul10

60GÀoY50ot,otro40tr

Ë30Ø¿

E20oEI

UJ10

10 20 30 40 50 60

Measured E-modulus (GPa)

trEc(Ð-air(<29d,____)aEc(Q-air(500d,----). Ec(t) - sealed (< 29 d, _ )

Figure 1. FIB model estimation vs measuredresults, 56-mm cyl., air or sealed curing.

'1,80

1,60

1,40

1,20

1,00

0,80

60

10 20 30 40 50

Measured E-modulus (GPa)

o Ec(t) - 1-3 d (_ )

trEc(t) -28d(___)ÂEc(t)-500d(---)

Figure 2. FIB model estimations versus themeasured laboratory results, 56-mm cyl..

X

0 50 100 150

28-day strength (MPa)

xEc(t)-2d (---) xEc(t)-7d (---- )

o Ec(t) - 28 d ( --- ) a Ec(t) - e0 d ( -lFigure 4. Ratio of derived to measuredelastic modulus vs strength, 100-mm cyl..

X

.x

1,80

1,60

1,40

1,20

'1,00

8eolîl¡e8rrE=túloø9=ã=o=rEö9EtrúEr(õo-.e€Eg

e3IIE-c tl.=olEE¡n>tt'=oo=Ediat, 0):EËp9ä'ntbg.9oa!=añ

0,8080 100

28-day strength (MPa)

120

oEc(t)- 1 d (-) xEc(t) -2-3d (---)o Ec(t) - 28 d (___) a Ec(t) - 500 d ( - - - )

Figure 3. Ratio of derived to measuredelastic modulus versus strength, 56-mm cyl..

^2Þ ü,'

{: ,A¿,

'.9oO--<60

8

o^s

X

A

A

A

ã

.E

r-¡_

trx{ x

X

Ax

A

Ax

tr\ü

xX

-."4

Page 8: Justification of Fédération International de Beton, FIB ...

5

Table 5. Elastic modulus with the FIB 2000 Model and measured- number of specimens [8,9].d (mm) E. (GPa) E" (GPa) f". (MPa) Ec(t)-t d Ec(t)-2-z¿ Ec(t)-zd Ec(t)-28 ¿ Ec(t)-eg d Ec(t)-sgg d Ec(t)+otar

JJ56100

Total2l

453l

9360

t6

I6

32t648

16

t632

t6

t6

8064144

I6r6

16

t6

f,^tEqt¡

E-

E4¡y'8*= l'14' to'022e

E4ty'E^ = 2.67' f,^ -0. t 896

denotes the 28-day strength (MPa)denotes the loading age (days),

denotes the elastic modulus with the FIB 2000 Model (GPa)denotes the measured elastic modulus (GPa)

(2)

(3)

0 50 100

28-day s'trength (MPa)

o 56-mm cylinder r 100-mm cylinder

Figure 6. Elastic modulus with the FIBModel to measured vs 28-day strength [8,9].

Ë g 1'5

ËRø9ftrEo 1E#9õËE8eE tt 0,5

9o:E 0)

E6;E-E

Ë*trEestrEtrrr

1,5

ta

0,5

10 100 1000

Loading age (days)

. 56-mm cylinder r 100-mm cylinder

Figure 5. Elastic modulus with the FIBModel to measured vs loading age [8,9]

150

4. SUMMARY AND CONCLUSIONS

An experimental and theoretical comparison between the elastic modulus estimated with the

FIB 2000 Model for Normal and High-Performance Concrete and I44laboratory tests on 16

concretes was performed. Two dimensions of specimen were studied (56 and 100 mm) and

one climate (20 "C, sealed or relative humidity 607o). The following conclusions were drawn:

The age dependence did not seem to be well correlated between the derived and themeasured elastic modulus.The FIB 2000 Model overestimated the elastic modulus of mature concrete, and incontrast, slightly underestimated the elastic modulus of young NC.As a whole, the derived modulus with the FIB model was about 1207o of the elasticmodulus measured at loading.A relationship to strength was found for this diversity with an increasingoverestimation of the E-modulus at low strength.

a

a

IT

TT

I a

a

oTI

'o oo

a

a

Page 9: Justification of Fédération International de Beton, FIB ...

6

REFERENCES

1. CEB Bulletin d'Information, 199, Comité Euro-International du Béton, Lausanne (1990).

2. CEB_FIB Model Code 1990, CEB Bulletin d'Information, No. 2l3l2l4 (1993).3. European Committee for Standardization (CEN), ENV 1992-1, Design of Concrete

Structures, Part 1: General Rules and Rules for Buildings (1991).4. H.S. Müllef ,"Znt Vorhersage der Schwindenverformungen von Bauteilen aus Beton", On

the Prediction of Shrinkage of Concrete. Salutation Paper for Prof. Reinhardt (1999).

5. H.S. Müller, C.H. Küttner and V Kvitsel, Issue for RFGC - ACI'Workshop, Paris (1999),

6. H.S. Müller and V. Kvicel, Creep and Shrinkage Model for Normal and HPC - conceptfor a uniform code-type approach, ACI, Paris (2000)

l. M. Hassanzadeh, Fracture Mechanical Properties of HPC, Report M4:05, Lund Inst. ofTechnology, Div. Building Materials, Lund University (1994) 8-13.

8. B. Persson, Quasi-instantaneous and Long-term Deformations of HPC with Some RelatedProperties, Doctoral Thesis, Report TVBM-1016, Lund University, Lund (1998), 500 pp.

9. B. Persson, Deformations of House Construction Concrete - Effect of ProductionMethods on Elastic Modulus, Creep and Shrinkage, TVBM-3088, Lund (1999) 7l pp.

10. B. Persson, Shrinkage and Strength of Self-compacting Concrete with Different Kinds ofFiller, Report U00.13, Division of Buitding Materials, Lund University, Lund (2000) 2 pp.

11. B. Persson, Quasi-instantaneous and Long-term Deformations of HPC with Sealed

Curing, Advanced Cement Based Materials 8 (1998) 1-16.

12.8. Persson, Influence of Maturity on Creep of HPC, Materials and Structures 32 (1999)506-519.

13. B. Persson, Experimental Studies on Shrinkage in HPC, Cement and Concrete Research.

28 (t991) 1023-1036.14. B. Persson, Basic Deformations of HPC at Early Ages, Nordic Concrete Research 20

(1997) s9-74.15. B. Persson, Strength and Shrinkage of Self-compacting Concrete, International'Workshop

on Shrinkage in Concrete, Ed. by V. Baroghel-Bouny and P.-C. Aïtcin (2000) 2l-99.16. B. Persson. Creep, Shrinkage and Elastic Modulus of Self-compacting Concrete. Proc.

First Int. RILEM Symposium, Stockholm, Ed.: Skarendahl and Peterson (1999) 239-250.l7 .P. Acker, Creep and Shrinkage of Concrete, Proc. Fifth International RILEM Symposium

on Creep and Shrinkage in Barcelona. RILEM E & FN Spon. London (1993) 3-I4.18. B. Persson, Validation of Fédération International de Béton, FIB, 2000 Model for

Shrinkage in Normal Concrete and HPC, Report TVBM-7157, Division of BuildingMaterials, Lund Institute of Technology, Lund University, Lund (2001) 108 pp.

Page 10: Justification of Fédération International de Beton, FIB ...

7Appe¡dixliþelast

fc23,00

32,00

24,00

44,00

27,00

30,00

23,00

37,00

38,0045,00

30,0061 ,0036,00

63,00

35,00

69,00

26,00

50,00

44,00

86,0043,00

58,0048,00

91,00

46,00

106,00

58,00

111,00

67,00

1 18,00

65,00

1 18,00

8,524

5282

22

40

64115

15

3548

90

37

3456

9038

66

83

130

24

50

8512842

58

59117

46

58

f".69,00

69,00

85,00

85,00

69,00

69,00

89,00

89,0099,00

99,00

106,00

106,00

112,00

112,00

1 14,00

1 14,00

69,00

69,00

85,00

85,00

69,0069,00

89,00

89,00

99,00

99,00106,00

106,00

1 12,00

1 12,00

1 14,00

1 14,00

69

69

6969

85

85

85

85

69

69

69

6989

89

8989

99

99

99

99'106

106

106

106

112112112112114114

ELm

18,20

25,70

25,70

27,80

23,'t023,30

22,00

28,60

28,20

31 ,9022,50

32,4027,10

35,80

27,80

37,2025,90

33,40

23,60

34,2028,80

30,60

32,10

35,8025,40

37,60

33,90

38,1 0

37,00

43,80

35,70

40,70

15,1

25,4

32,5

38,517,9

28,6

34,545

15,3

28

31,6

38,9

29,227

35,640

28,2

34,6

36,546

24,4

30,2

37,946,7

29,5

35

35,547,1

31 ,8

36,2

26,63

31 ,1028,55

33,33

26,63

31 ,1028,99

33,85

30,03

35,07

30,72

35,88

31 ,2936,54

31 ,4836,76

31,10

40,90

33,3343,85

31 ,1040,90

33,8544,52

35,0746,13

35,8847,19

36,54

48,06

36,76

48,35

1,002,00

1,00

2,O0

1,002,00

1,00

2,00

1,00

2,00

1,002,00

1,002,00

1,002,00

2,00

28,00

2,00

28,00

2,00

28,00

2,O0

28,00

2,O0

28,00

2,O0

28,00

2,0028,00

2,00

28,00

1,002,00

3,0028,00

1,00

2,00

3,00

28,00

1,00

2,O0

3,0028,00

1,00

2,00

3,0028,00

1,00

2,003,00

28,00

1,00

2,00

3,00

28,001,00

2,00

3,0028,00

1,00

2,00

S

0,20

0,20

0,20

0,20

0,20

o,20

0,20

0,20

0,20

0,200,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,200,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,200,20

o,20

o,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,200,20

0,20

0,20

0,20

0,20

0,20

0,20

o,20

0,20

0,20o,20

o,20

0,200,200,20

0,20

Ec

40,90

40,90

43,85

43,85

40,90

40,90

44,52

44,52

46,13

46,13

47,1947,19

48,0648,06

48,35

48,35

40,90

40,90

43,85

43,85

40,90

40,90

44,52

44,52

46,13

46,13

47,19

47,19

48,06

48,06

48,35

48,35

40,90

40,9040,90

40,90

43,85

43,85

1,00

1,00

2,00

2,00

3,00

3,004,00

4,00

5,00

5,006,00

6,00

7,007,00

8,00

8,00

1,00

1,00

2,00

2,00

3,00

3,000,00

60,00

5,00

5,00

6,00

6,007,00

7,00

8,00

8,00

1,00

E"1,¡ - air (< 29 d ) EcrLr-air(500d,----) Ecrt) -sealed (<29d,-) t

26,63

31 ,1033,31

40,9028,55

33,33

35,7043,85

26,63

31 ,1033,31

40,90

28,99

33,85

36,2544,52

30,03

35,07

37,56

46,13

30,72

35,88

38,4347,19

31 ,2936,54

39,1448,06

31 ,4836,76

43 85

43 85

40 90

40 9040 9040 90

44 52

44 5244 52

44 5246 13

46 13

46 13

46 13

47 19

47 19

47 19

47 19

48 0648 0648 0648 0648 35

48 35

200

300

400

500

600

700

800

Page 11: Justification of Fédération International de Beton, FIB ...

IAppendixliþelast

83

13s

69

8ó5B

9tl0ólll117

I l8ó8

89

69

l0tìlólló121

129

66,64

114

114

69

85B9

69

99't0ó

112114

69

85

89

69

99

10ó

112114

92,88

40,5

51 ,1

33,3

34,2

30,ó37,2

37,5

38, I

43,8

40,7

35,5

34,5

32,8

40,5

40,3

41,4

46,9

41,3

33,21

44,15

47,32

48,0544,15

49,79

50,94

51 ,8852,18

44,15

47,32

48,05

44,15

49,79

50,94

51,88

52,1848,56

39,3748,35

36,28

3,0028,00

s00,00s00,00500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00

38,49

0,20

0,20

0,200,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

o,20

o,20

0,20

0,20

0,20

48,35

48,35

40,90

43,85

44,52

40,90

46,13

47,19

48,06

48,35

40,90

43,85

44,52

40,90

46,13

47,19

48,0648,35

I

22

67a

I

2

4

5

67

I

60

50

40

30

20

10

0

(5o.oõttoEd¡l!G.=ìøJ

EttoEI

t¡J

35,67

1 1xo'7031

R2 = 0,7384ót

20 40

Measured E-modulus (GPa)

tr Ec(r) - air (< 29 d, ____ )

a Ec(t) - air (500 d, - - - - ). Ec(t) - sealed (< 29 d, _ )

0 60

=ii;!¿i:J,jffiaPR2 = 0,86i

Page 12: Justification of Fédération International de Beton, FIB ...

9Appendix fibelastaqe

fc f"t69,00

69,0085,00

85,0069,00

69,00

89,00

89,00

99,00

99,00

106,00

106,00

1 12,00

112,00

1 14,001 14,00

69,00

69,00

85,00

85,00

69,00

69,00

89,00

89,00

99,00

99,00106,00106,00

112,00

112,00

1 14,00

1 14,00

69

69

69

69

85

85

8585

69

69

69

69

89

89

89

89

99

99

99

99106

106

106

106

112112

112112114114

114

Em

18,20

25,7025,70

27,80

23,10

23,30

22,O0

28,60

28,20

31,90

22,50

32,4027,10

35,8027,80

37,2025,90

33,4023,60

34,2028,80

30,60

32,10

35,8025,40

37,6033,90

38,10

37,0043,80

35,7040,70

15,1

25,4

32,5

38,5

17,928,6

34,545

15,3

28

31,6

38,929,2

27

35,6

40

28,2

34,6

36,546

24,4

30,2

37,946,7

29,5

35

35,547,'l

31,8

36,240,5

Ec(r) - 1-3 d (_ ) Ecrrl- 28 d (___ )

26,63

31 ,1028,55

33,3326,63

31,1028,99

33,85

30,03

35,07

30,72

35,88

31,2936,54

31 ,4836,76

31 ,10

Ec(l)-500d(---) t sE"1,00 0,20 40,90

2,00 0,20 40,9023,00

32,0024,00

44,0027,00

30,0023,00

37,00

38,0045,00

30,00

61 ,0036,00

63,00

35,00

69,0026,00

50,0044,O0

86,0043,00

58,00

48,00

91 ,0046,00

106,00

58,00111,00

67,00118,00

65,00118,00

8,526424,01

51 ,8482,81

22,O9

39,69

64114,49

15,21

34,81

47,61

90,25

37,21

33,64

56,25

90,25

38,44

65,61

82,81129,9624,O1

50,41

84,64't27,69

42,2557,76

59,29116,64

46,2457,7682,81

33,33

31 ,10

33,85

35,07

35,88

36,54

36,76

40,90

43,85

40,90

44,52

46,13

47,19

48,06

48,35

40,90

43,85

40,90

44,52

46,1 3

47,19

1,00

1,00

2,002,00

3,00

3,004,00

4,00

5,00

5,00

6,00

6,00

7,00

7,00

8,008,001,00

1,00

2,00

2,00

3,00

3,00

0,00

60,00

5,00

5,00

6,006,00

7,007,00

8,00

8,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

0,00

60,00

26,63

31 ,1033,31

1,00 0,20 43,85

2,00 0,20 43,85

1,00 0,20 40,90

2,00 0,20 40,90

1,00 0,20 44,52

2,00 0,20 44,52

1,00 0,20 46,13

2,00 0,20 46,13

1,00 0,20 47,19

2,OO 0,20 47,19

1,00 0,20 48,06

2,00 0,20 48,06

1,00 0,20 48,35

2,00 0,20 48,35

2,00 0,20 40,90

28,00 0,20 40,90

2,OO 0,20 43,85

28,00 0,20 43,85

2,00 0,20 40,90

28,00 0,20 40,90

2,00 0,20 44,52

28,00 0,20 44,52

2,00 0,20 46,13

28,00 0,20 46,13

2,OO O,20 47,19

28,00 0,20 47,19

2,00 0,20 48,06

28,00 0,20 48,06

2,00 0,20 48,35

28,00 0,20 48,35

1,00 0,20 40,90

2,00 0,20 40,90

3,00 0,20 40,90

28,00 0,20 40,90'1,00 0,20 43,85

2,00 0,20 43,85

3,00 0,20 43,85

28,00 0,20 43,85

1,00 0,20 40,90

2,00 0,20 40,90

3,00 0,20 40,90

28,00 0,20 40,90

1,OO 0,20 44,52

2,OO 0,20 44,52

28,55

33,33

35,70

26,63

31 ,1033,31

28,99

33,85

36,25

30,03

35,07

37,56

30,72

35,88

38,43

31 ,2936,5439,1 4

31,4836,7639,37

3,0028,00

1,00

2,OO

3,00

28,001,00

2,003,00

28,00

1,00

2,OO

3,0028,00

1,002,OO

3,00

0,20

0,20

0,200,20o,20

0,20o,20

o,20

0,20o,20

o,20

0,200,20

0,200,200,20o,20

44,52

44,52

46,1346,13

46,13

46,13

47,1947,19

47,19

47,1948,06

48,0648,06

48,06

48,3548,35

48,35

48,06

Page 13: Justification of Fédération International de Beton, FIB ...

Aopendix fibelastaoe

134,56

69

58

91

r0ólll117

I r8ó8B9

69

l0tlróiló121

129

66,63

11469

8589

6999

10ó

112114

69

85

8969

99

t0ó112114

s1,1

33,334,2

30,ó

37,2

37,5

38, t

43,8

40,7

35,5

34,5

32,840,5

40,3

41,4

46,9

41,3

33,21

10

48,35

44,99

44,15

47,32

48,05

44,15

49,79

50,94

51,88

52,1844,15

47,32

48,05

44,15

49,79

50,94

51 ,8852,1848,56

28,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00500,00

500,00

500,00

500,00

500,00

500,00

500,00

38,49

0,20o,20

0,20

0,20

0,20

0,20

0,20

o,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

48,35

40,90

43,85

44,52

40,90

46,13

47,19

48,06

48,3540,90

43,85

44,52

40,90

46,13

47,19

48,06

48,35

44,99

I

2

6

7

II

2

6

7

I32,97

60õo-oY500)!,oÊ,

õ' 40tr

=óuØEã20oÊI

l¡¡10

10 20 30 40Measured E-modulus (GPa)

o Ec(r) - 1-3 d (_) tr Ec(t) - 28 d (___)aEc(t)-500d(---)

50

AA 4t tr

ooo

Page 14: Justification of Fédération International de Beton, FIB ...

11Appendix f ibelaststrenqth

f"23,00

32,0024,0044,00

27,00

30,0023,00

37,00

38,00

45,00

30,00

61 ,0036,00

63,00

35,00

69,0026,00

50,00

44,00

86,00

43,00

58,0048,00

91 ,0046,00

106,00

58,00

111,00

67,00

1 18,00

65,00

1 18,00

8,526424,01

51,84

82,81

22,09

39,6964

1't4,49

15,21

34,81

47,61

90,25

37,21

33,64

56,25

90,2538,44

65,61

82,81

129,96

24,01

50,41

84,64

127,69

42,25

57,7659,29

116,64

46,2457,76

E,18,2025,7025,70

27,80

23,10

23,30

22,00

28,60

28,20

31,9022,50

32,4027,10

35,8027,80

30,60

32,10

35,8025,40

37,6033,90

38,10

37,00

43,80

35,7040,70

15,1

25,4

32,538,517,9

28,6

34,5

45

15,3

28

31,6

38,929,2

27

35,640

28,2

34,636,5

4624,4

30,2

37,9

46,729,5

3535,547,1

31,836,2

f".69,00

69,0085,00

85,00

69,00

69,00

89,00

89,00

99,00

99,00'106,00

106,00

112,00

112,O0

1 14,00

114,00

69,00

69,00

85,00

85,00

69,00

69,00

89,00

89,00

99,0099,00

106,00106,00

112,00

112,00

1 14,00

1 14,00

69

6969

69

8585

85

85

69

69

69

69

89

8989

89

9999

99

99106

106106

106

112112112112114114

1,21

1,20

1,33

1,18

1 ,10

1,11

1,02

0,991,20

1,41

1,08

1,05

1,38

1,06

0,99

1,03

1,002,00

1,002,00

1,00

2,00

1,00

2,00

1,00

2,00'1,00

2,00

1,00

2,00

1,00

2,00

2,00

28,00

2,00

28,00

2,00

28,00

2,00

28,00

2,0028,00

2,00

28,00

2,00

28,00

2,00

28,00

1,00

2,00

3,0028,00

1,002,00

3,0028,00

1,00

2,00

3,00

28,00

1,00

2,00

3,0028,00

1,002,00

3,0028,00

1,00

2,00

3,0028,00

1,00

2,00

3,0028,00

1,002,OO

E"(r) - 1 d (_) Ec(|)-2-3d(_-_)1,46

1 ,11

1 ,15

1,32

1,07

1,37

1 ,15

1,13

Ec(t) -28d(___) Ecr0-500d(---) t

37 20

25 90

33 40

23 60

34 20

28 80

1,22

1,28

1,34

1,24

1,23

1,24

1 ,10

1 ,19

099

1,76

1,59

1,74

1,07

1,26

1,06

1,22

1,O2

1,17

1,03

1,11

1,05

1,25

1,O2

1,01

1,03

1,19

1,01

1,O4

1,10

1,06

0,97

1,05

1,11

1,00

1,01

0,991,02

1,02

Page 15: Justification of Fédération International de Beton, FIB ...

12Appendix f ibelaststrenqth

82,81

134,56

69

58

9lt0ólll117

ì l8ó8

89

69

t01

lrólìó121

129

66,63

40,5

51,1

33,3

34,2

30,ó

37,2

37,538. r

43,840,7

35,5

34,5

32,8

40,5

40,3

41,4

46,9

41,3

33,21

1,60

1,40

1,20

1,00

0,80

114

114ó9

85

89

6999

l0ó112114

ó9

85

89

6999

l0ó112

\1492,88

o,97

1,11

0,9s

1,13

1,33't,38

1,57

1 ,191,331,34

1 ,181,28

1,24

1,37

1,47

1,09

1,24

1,23

1,11

1,26

1,29

3,0028,00

500,00

s00,00

s00,00

500,00

500,00

500,00500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,00

500,001,20

801

1,26

B0 100

28-day strength (MPa)

û2I¡.=.cE=o=EE ¡¡J>ït'Ioo=Edi.t, afc€ç9F¡¡i €Eg.9oËPcñ

60

oEc(t)- 1 d (_) xEc(t) -2-3d (_-_)trEc(t) - 28 d (___) a Ec(r) - 500 d ( - - - )

120

Y=-0,0022x+1,3287R2 = 0,0948

8

-aA\

E

Étr

8A

^

x

Page 16: Justification of Fédération International de Beton, FIB ...

13Appendix fibelaststrenqth

0,50

1,50

Ec

40,90 1,0040,90 1,00

43,85 2,O0

43,85 2,00

40,90 3,0040,90 3,0044,52 4,00

44,52 4,00

46,13 s,0046,13 5,00

47,19 6,0047,19 6,00

48,06 7,0048,06 7,OO

48,35 8,00

48,35 8,00

40,90 1,00

40,90 1,00

43,85 2,00

43,85 2,00

40,90 3,00

40,90 3,00

44,52 4,0044,52 4,00

46,13 5,00

46,13 5,00

47,19 6,0047,19 6,0048,06 7,00

48,06 7,00

48,35 8,0048,35 8,0040,90 1,00

40,9040,9040,9043,85 2,00

43,8543,85

43,85

40,90 3,00

s

0,20

0,20o,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,200,20

0,20

0,20

0,20

0,20

0,20

0,20

0,200,20

0,20o,20

0,20

0,20

0,200,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,200,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20o,20

0,20

0,20o,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20o,20

0,20o,200,20

40,9040,9040,9044,52

44,5244,52

44,52

46,1346,1346,1346,1347,1947,1947,1947,1948,0648,0648,0648,0648,3548,35

4,00

5,00

6,00

7,O0

8,00

Page 17: Justification of Fédération International de Beton, FIB ...

14

I

2

3

4

5

ó

7

Õ

I

2

3

4

5

6

7

t]

0,20 48,35

0,20 48,35

0,20 40,90

0,20 43,85

o,20 44,52

0,20 40,90

0,20 46,13

0,20 47,19

0,20 48,06

0,20 48,35

0,20 40,90

0,20 43,85

0,20 44,52

0,20 40,90

0,20 46,13

0,20 47,19

0,20 48,06

0,20 48,35

44,99

Page 18: Justification of Fédération International de Beton, FIB ...

Appendix fibelastl0015

Ec(r) -2d (_-_) Ec(ù-7d(_--_ ) Ec(r) -28d(___) EcrÐ-90d(---)1,331,09

1,06

1,091,14

1,13

fcó3,00

ó3,00

I10,00103,00

t41,00124,00

158,00

134,00

3ó,00

3ó,0050,00

50,00

59,0054,00

ór,0064,00

45,00

4ó,0046,00

5ó,00

42,00

54,0043,00ó0,00

ó5,00

ó5,00

76,00

79,00

8ó,00

8ó,00

98,0094,00

23,00

23,0027,OO

27,00

30,00

35,00

38,00

38,00

43,0043,00

52,O0

55,00

ór,00ó3,0067,00

67,0014,00

I4,0024,00

24,00

28,00

30,00

32,00

26,O0

18,00

18,0027,O0

27,OO

32,00

32,0034,0035,00

1,09

1,20

1,15

1,29

1,28

1,2'l

1,11

1,07

1,18'1 ,31

1,381,12

1,13

1,17

1,19

1,21

1,07

1,12

1,34

1,42

09

07

E-modul (försegling) fcm29,60 141,00

27,70 124,00

40,80 141,00

38,80 124,00

45,50 141,00

43,90 124,00

47,40 r4r,0044,20 124,00

23,90 59,00

22,10 54,00

27,90 59,002s,30 54,0028,20 59,00

33,60 54,00

39,80 59,00

38,60 54,00

19,30 42,00

19,90 54,00

25,60 42,00

24,50 54,00

27,30 42,00

27,60 54,00

28,30 42,00

30,00 54,0027,60 Bó,00

28,60 8ó,00

29,90 8ó,00

31,90 8ó,00

38,80 8ó,00

37,70 8ó,00

40,00 8ó,00

36,60 8ó,00

14,70 30,00

14,10 35,00

1ó,ó0 30,00

14,70 35,0016,40 30,00

15,20 35,00

25,80 30,00

21,00 35,00

23,40 ó1,00

22,80 ó3,0028,00 ór,0026,80 ó3,00

35,30 ó1,00

32,90 ó3,00

35,80 ó1,00

32,50 ó3,00

I ó,80 28,00

16,30 30,00

21,50 28,00

22,20 30,00

25,80 28,00

23,90 30,00

22,20 28,00

19,60 30,00

ì ó,30 32,00

14,80 32,0021,OO 32,00

18,90 32,0028,50 32,0025,60 32,00

29,90 32,002s,60 32,00

27,43 59,8r

275

082089

1,892,15

1,20

1,29

1,41

1,74

32N

3BN

38S

50N

50s

80N

BOS

27

37

1,10

1,07

1,15

1,20

1,14

1,17

0,85

0,88

0,95

1,05

49

68

20

281,11

1,21

1,17

1,30

1,11

1,24

1 ,181,30

1,55

1,64

180

1,05 1,23 t,3r

1,18

1,39r,33 1,23

Page 19: Justification of Fédération International de Beton, FIB ...

16Appendix fibelastl00

0,80

0 50 100 150

1,90

8Eo=$ Et,oot!trÈul'-

5t,+o

=9Eä2 É't'zoioI¡J tr+Go-.o $t,ooES

Ax

A

Ax

ütr

X*

tr

{(

xX

X

r x

xEc(r) -2d (_-_) xEc(t) -7 d(_--_ )

tr Ec(t) - 28 d ( ___ ) a Ec(t) - e0 d ( ---)

Page 20: Justification of Fédération International de Beton, FIB ...

17Appendix fibelastl00

t2,00

2,O0

7,00

7,00

28,00

28,00

90,00

90,00

2,OO

2,O0

7,00

7,OO

28,00

28,00

90,00

90,00

2,00

2,00

7,O0

7,00

28,00

28,00

90,00

90,002,OO

2,00

7,00

7,OO

28,00

28,00

90,00

90,002,002,00

7,007,OO

28,00

28,00

90,00

90,002,00

2,00

7,00

7,OO

28,00

28,00

90,00

90,002,OO

2,00

7,00

7,OO

28,00

28,00

90,00

90,002,OO

2,007,00

7,0028,0028,00

90,00

90,00

S

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,38

0,38

0,38

0,38

0,38

0,38

0,38

0,38

0,38

0,38

0,38

0,38

0,38

0,38

0,38

0,38

0,20o,20

0,20

0,20

0,200,20

0,20

0,20

0,38

0,38

0,38

0,380,38

0,380,38

0,38

0,20

0,200,200,200,200,20o,200,200,380,380,380,380,380,380,380,380,380,380,380,380,380,380,380,38

Ec

51,9039,68

47,78

46,74

51 ,9049,72

53,90

51 ,0232,94

32,94

36,74

36,74

38,83

37,70

39,26

39,89

35,48

35,74

35,74

38,1 6

34,67

37,70

34,94

39,0440,10

40,1042,24

42,79

44,02

44,O2

45,97

45,34

28,3728,37

29,93

29,93

31,00

32,63

33,54

33,54

34,94

34,94

37,23

37,93

39,26

39,6840,51

40,51

24,05

24,05

28,78

28,78

30,29

31,0031,6729,55

26,15

26,1 5

29,9329,93

31,6731,67

32,3232,6336,64

Page 21: Justification of Fédération International de Beton, FIB ...

l8Appendix fibelasttime

56-mm cylinder1 1,26

2,5 1,11

28 1,13

500 '1,29

2 1,05

7 1,2328 1,31

56-mm cylinder1,22

1,28

1,34

1,24

1,23

1,241,'l

1,'l 9

1,06

0,971,05

1,11

1

1,01

1,02

0,95

1,14

1,13

1,381,12

1,27

1,37'1,1 3

1,'t71,89

2,15

1,11

1,21

1,17

1,3

1,11

1,241,215625

100-mm cylinder

1,05

1,23

1,31

-g

Ë p 1,5

9õ¡=Ìt ofo=P= d 1

Ëe Eor EEOaO E ^tr(õ È vrJtr

-1 1394x0'022e

10 100

Loading age (days)

1 1 000

a 56-mm cylinder r 100-mm cylinder

fcm 100-mm cylinder

1,14

1,13

1,381,'12

1,27

1,37

1,13

1,17

1,89

2,15'1

,11

1,21

1,'t71,3

'l ,11

1,24

69

85

69

89

99106

11211469

85

69

89

99

106

112114141

12459

5442

54

868630

35

61

63283032

32

I o 1,5Ec){iJ=aÃãEfE

Ë* 1

trEE€#Ë 0,5

0 50 100

28-day strength (MPa)

o 56-mm cylinder t 100-mm cylinder

ITt Ila

oIt

fooo oo

1 896

R2 = 0,2877Y=2

76,34375 150

Page 22: Justification of Fédération International de Beton, FIB ...

19Appendix 1801

iload J(t,to)m J(r,r0) fcmo fcmtage

4

11

'19

42

71

91

130

178

241

317

342

522

901

1041

1381'161

1

1721

3

l010

41

70

90

129

177

240

3ló381

521

900

t040

I 380'ló10

1720

n(10)

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54't,54

1,54

1,54

1,54

1,54

1,54

1,54

1,54

fi0

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

0,55

f¡RH

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35'1,35

1,35

1,35

1,35

1,35

1,35

1,35'1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

1,35

RHd94 56

94 56

94 56

94 56

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

0,91

betaH

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,50

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

604,60

fi(r,10)

0,00

0,01

o,o2

0,04

0,06

o,o7

0,10

0,13

0, 16

0,'19

0,21

o,26

Ec

0,o42

0,o42

0,o42

o,o42

0,o42

0,o42

0,042

0,042

o,o42

o,o42

0,o42

0,o42

137

t5l152

t&ló0

167

174

175

178

184

t95

ì98

185

198

200

t9s

200

0 33 0,042

0 35 0,042

0 39 0,042

o 40 0,042

o 41 0,042

0 00 0,042

0 00 0,042

0 00 0,042

0 00 0,042

0 00 0,042

0 00 0,042

0 00 0,042

0 00 0,042

0,00 0 042

0,00 0 042

0,00 0 042

0,00 0 042

0,00 0 042

0,00 0 042

0,00 0 042

0,00 0 042

0,00 0 042

0,00 0 042

0,00 0 042

0,00 0 042

0,00 0 042

0,00 0 042

bela(t0)beta(fcm)alfal alfaz

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

o,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

0,70 0,90

o,70 0,90

0,70 0,90

0,70 0,90

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

94 56

37

37

38

38

39

40

40

41

42

43

44

45

46

46

46

37

s7

s7

37

37

37

37

37

37

37

37

37

37

37

37

37

37

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

0,45

Ec(t0)

o,o27

o,027

o,027

o,o27

0,027

0,027

0,027

0,027

0,027

0,027

0,027

o,o27

0,027

0,027

0,027

0,027

0,027

0,027

0,o27

o,027

o,o27

0,o27

0,027

0,027

o,o27

o,o27

0,o27

0,o27

o,o27

o,o27

o,o27

o,o27

o,o27

o,o27

o,o27

o,o27

o,o27

o,o27

o,o27

S

0,20

0,20

0,20

0,20

0,20

0,20

o,20

o,20

o,20

o,20

o,20

0,20

o,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

0,20

o,20

0,20

0,20

0,20

0,20

0,20

0,20

o,20

o,20

0,20

0,20

l0 beta(t,t0)

1 0,00

1 0,o2

1 0,03

1 0,06

1 0,10

1 0,13

1 0,16

1 0,23

1 0,28

1 0,34

1 0,39

1 0,46

1 0,60

1 0,63

1 0,70

1 0,73

1 0,74

1 0,00

1 0,00

1 0,00

1 0,00'1 0,00'I 0,00

1 0,00

1 0,00

1 0,00

1 0,00

1 0,00

1 0,00

1 0,00

1 0,00

1 0,00''l 0,00'I 0,00

1 0,00

1 0,00

1 0,00

1 0,00'I 0,00

14 A2

14 82

14 82

14 82

14 A2

14 82

14 82

14 82

14 a2

14 A2

14 A2

'14 82

14 82

14 82

14 82

14 82

14 82

14 82

14 82

14 82

14 82

14 82

14 82

14 A2

14 82

14 82

14 E2

14 82

14 82

14 82

14 82

14 82

14 82

14 82

14 82

14 82

14 82

14 82

14 82

94 56

94 56

94 56

94 56

ot,o

=oOao(ENCLo=tL9-c -E'=eo=otr.gCL

Eoo

50

45

40

35

30

25

20

15

10

5

0

Y = 1,27xo'67

R2 = 0,82

a

0 50 100 150Measured compl¡ance (mi llionhts/MPa)

200 250

Page 23: Justification of Fédération International de Beton, FIB ...

Appendix cdmfc00l

20

Cdmfc00l

Stress/cube strengl Stress/cube strength = 0,323 18,2

32 25,724 25,744 27,827 23,1

30 23,3

23 22

37 28,638 28,2

31,94530 22,5ór 32,43ó 27,1

ó3 35,835 27,869 37,2

2s,92650 33,4

23,6448ó 34,2

43 28,830,ó58

48 32,1

35,89l46 25,4

37,6r0ó58 33,9

lll 38, r

3767llB 43,8

35,7ó5lr8 40,7

E_El

o"l'"tr<\&Å f-- t-

\-*.J rfr-

ffiE

45oi40.?î ss

å0 "^bP""3E 2sJO

EE 20

5; r5

Eq rotoBÂoô

0

0 20 100 120

s Stress/cube strength = 0,3

Stress/cube strength = 0,ó

40 ó0 80

Cube sfenglh (MPo)

Page 24: Justification of Fédération International de Beton, FIB ...

Appendix elosl70421

elost704

fcO.5 fc emO.0l em( eml2,92 8,53 l5, t 14 13,3 504,9 24 25,4 24 21,87,2 5l,B 32,5 3l 29,99,1 82,8 38,5 37 35,74,7 22,1 17,9 l5 12,4 90

ó,3 39,7 28,6 25 21,5I 64 34,5 33 31,ó

10,7 114 45 44 42

3,9 15,2 15,3 14 12,7 901

5,9 34,8 28 26 24,86,9 47,6 31,ó 30 29,1

9,5 90,3 38,9 3B 37,1

ó,1 37,2 29,2 26 22,9 90R5,8 33,ó 27 23 20,57,5 5ó,3 35,ó 34 32,39,5 90,3 40 39 37

ó,2 38,4 28,2 26 23,5 ll08,1 ó5,ó 34,6 32 29,49,1 82,8 3ó,5 35 33,8

11,4 130 4ó 45 43,7

4,9 24 24,4 22 19,6 130

7,1 50,4 30,2 26 23,1

9,2 84,6 37,9 37 35,óI 1,3 128 46,7 46 44,2 0,01 5,5 o,447ó,5 42,3 29,5 26 23,9 I 301 0,1 4,3 o,4897,6 57,8 35 3l 28,1 I 3,5 o,5247,7 59,3 35,5 33 31,2

10,8 117 47,1 46 45ó,8 46,2 3 r,B 28 24,8 150

7,6 57,8 36,2 33 29,8

9,1 82,8 40,5 39 37,6I t,ó 135 5l,l 48 45,9

Page 25: Justification of Fédération International de Beton, FIB ...

Appendix cdynogel22

Cdynogeì

Edyn - oronulofed silico fume Edyn - silico fume slunv D0.01 - oronuloted silico fume D0.0'l - sillco fume slurry

69 35, l JÓ,J

Bó 3ó,9 34,2Ãa 33,8 30,ó

9l aaa

t0ó 38,4 37,5

ill att 38, I

117 43,8

llB at6 40,7

ó8 3óó eÃÃ

aa 34,5B9aà a eô o69

l0l 40,5

40,3ltó 40,4

lló 40,7 41,4

46,9121 48,9

129 41,4 41,3

48

46

44

8429, 40U'

=?Q=83ó

32

30

E

g

¡ E -.-tLî ,-'! lFIr----r \

I -Æ5 r\'\-\\E f-Ea tj-"- a

) r ,.*-.2-.@-..¡--.' I I

I

r3050

E Edyn - gronuloted silicofume

E Edyn - silico fume slurry

r D0,01 - gronuloted silicofume

tr D0,01 - silico fume sluny

E¡ Estot - gronuloted silicofume

tr Estot - silico fume slurry

70 90 ll0Cube slrenglh (MPo)

o Extension of ModelCode90

Edvn, or Edvn, sl D0.01, sr D0,01, sl

I 35, I ea a

I 36,9 34,2

I 33,8 30,ó

I a'7 a

I 38,4 aaç

I 42,2 38, lI 43,8

40,7l 42,6cà ÃIB sóóeÁ Ft832,8t7 aà a

z4 40,5

l5 40,4 40,31Ò 40.7 41,4

46,9l9 48,9

l3 41,4 41,3

Page 26: Justification of Fédération International de Beton, FIB ...

Estol - oronuloied silico fume Estot - silico fume slurrv Exlension of Model Code 9034,2 50 s2.ll35,3 ó0

70 Dt Èõ

37,8 4 80 36,97

36,9 5 90 38,3

40,7 6 'ì00 cô Ãâ

43,8 7 ll0 40,68

4t,7 B 120 41,7 5atra 130 42,7736,7 2eôÃ

40,4 4s9,9 5

41,7 647 7

a1 2 I

Esfot, gr Estot, sl

34,2Òt ô

3237,8

36,940,7

43,8

41,7

35,2

32,540,4

39,941,7

4741,2

Appendix cdynogel23

Cdynogel

50

48

46

44

42

oo-o340alto

tr

f

Y=38.

Y=3øt

ó,tg3xo'0077

ETø

38

Eg

34

32

30

y = 35,728x0'0158

E;¡

øtET

Y = 40,3ó5xo'oslTøt

0

Y = 40,81lxo'0204

t0 20

Age (months)

30

E Edyn, gr E Edyn, sl

r D0,01, gr E D0,01, sl

øt Estot, gr tr Estot, sl

-Potens

(Estot, Sr) - - - Potens (D0,01, gr)

-Potens (D0.01, sl) - - - - Potens (Estot, sl)

Potens (Edyn, gr)

Page 27: Justification of Fédération International de Beton, FIB ...

Appendix bfrcem24

Bfrcem

fc fclfc2S o/fc 802 D02 807 D07 828 D28 890 D90 fc E-modul (förseolin< E-modul (ullorknin<

275 ó3 0,45 0,4 0,78 ó3 29,6ó3 0,51 0,4 0,95 27,7 27,7

ll0 o,78 0,3r 0.8r ll0 40,8

103 0,83 0,4 0,84 103 38,8 38,8141 I 0,1 8 0,62 141 45,5124 I o,2 0,62 124 43,9 43,9

158 1,12 0,19 o,29 158 47,4134 1,08 0,22 0,3ó 134 44,2 44,2

32N 3ó 0.85 0.ó8 1,7' 3ó 23,93ó 0,93 n7 3,7 3ó 22,1 zz, I

50 0,92 0,59 1,83 50 27,9Ã^ 0,97 0,55 3,45 50 ôÃ2 ôtc

59 0,53 1,23 59 28,254 0,ó5 3,25 54 óJ,O 33,ó

ól t,l 0,35 l,l3 ól 39,864 l,l 0,35 1,99 64 38,ó 38,ó

38N 45 0,98 0,79 1,47 45 19,3

46 0,83 0,78 2,82 46 19,9 19,9

46 0,78 1,84 46 25,65ó 0,93 0,62 3,26 5ó 24,5 24,5

42 I 0,7 1,73 42 27,354 I 0,7 3,09 54 27,6 27,6

43 l,l 0,35 0,93 43 28,3ó0 l,l 0,35 1,35 ó0 30 30

Jö5 ó5 0,76 o,4 t,l ó5 27,6AFUJ 0,76 0,4 1,79 ó5 28,6 28,6

76 0,88 0,41 l,l3 76 29,9

79 0,92 0,39 2,28 79 31,9 J t,v8ó I 0,2 1,05 8ó 38,88ó I o,2 1,71 8ó 37,7 37,798 1,14 0,21 o,57 98 4094 l,l 0,2 t,l I 94 36,6 3ó,ó

50N 23 0,77 0,ó9 2,12 23 14,7

23 o,óó 0,ó9 3,ó4 23 14,1 14,1

27 0,9 0,71 1,5ó 27 16,6

27 0,77 0,7 3,ó3 o-7 14.7 14,7

30 I o,7 1,42 30 16,4

35 I 0,ó 3,02 35 15,2 15,2

38 1,27 0,3s 1,27 ea 25,820 t,09 0,35 1 tc aa 21 2l

50s 43 0,7 0,4 1,29 43 23,443 0,66 o,4 2,28 43 22,8 22,8Ãô 0,85 0,41 1,17 52 2855 o,77 0,39 2,45 Etr 26,8 26,8

ói I 0,2 1,3 ól 35.3ó3 I 0,19 2,15 AA 32,9 32,967 I 0,2 1,04 67 35,867 I o,2 1,5 67 32,5 32,5

80N 14 0,5 0,7 I 14 I ó,8l4 0,47 0,7 3 14 I ó,3 I ó,3

24 0,85 0,47 1,02 24 21,524 0,8 0,47 2,15 24 22,2 22,228 I 0,39 0,89 28 25,830 I 0,3ó 1,67 30 23,9 23,9

32 1,14 0,5ó l,ó 32 22,226 l,l5 0,6 2,13 26 19,6 19,ó

80s l8 0,5ó 0,4 1,29 l8 I ó,3l8 0,5ó o,4 2,7 l8 14,8 14,8

27 0,84 o,4 1,33 27 21

27 0,8ó 0,3 3,13 27 18,9 18,9

JZ o,2 1,71 32 28,532 0,2 3,7 4 32 25,6 25,6

34 1,0ó 0,2 0,98 34 29,935 1.09 0. ì9 1,44 35 25,6 25.6