June 2015 review bhattacharya - Carnegie Mellon...

19
K. Bha’acharya Review 2015: #1 Compact representa=on of micromechanical fields Kaushik Bha’acharya Gal Shmuel Jin Yang ChunJen Hsueh Md. Zubaer Hossain Dingyi Sun Acknowledge: Mary Comer, Charles Bouman, G. Ravichandran

Transcript of June 2015 review bhattacharya - Carnegie Mellon...

Page 1: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #1  

Compact  representa=on  of    micromechanical  fields  

Kaushik  Bha'acharya  

Gal  Shmuel    Jin  Yang  

Chun-­‐Jen  Hsueh  Md.  Zubaer  Hossain  Dingyi  Sun  

Acknowledge:  Mary  Comer,  Charles  Bouman,  G.  Ravichandran  

Page 2: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #2  

Mul=scale  understanding  of  materials  

Brinson  et  al.  

James  and  Chu  

Schryvers  

Sun  

Rapid  growth  of  digital  experimental  techniques  and  computa=onal  power  has  given  unprecedented  level  of  data  about  materials  

How  can  we  harness  this  for  understanding  and  ul=mately  designing?  

How  do  we  represent  micro-­‐mechanical  fields?  

Mabe  

Page 3: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #3  

Topics  Mul=scale  Phase-­‐field  Simula=on   Digital  Image  Correla=on  

Fracture  of  heterogeneous  materials   Coarse-­‐grained  Density  Func=onal  Theory  

Axial strain using 10% of Symlet5 wavelet detail coefficients

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05Exact axial strain

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Page 4: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #4  

Phase  transforma=on  

Page 5: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #5  

Mul=scale  phase  field  method  

= min⌫,µ

Z

⌦1

✓Z

RW (�, x)d⌫

x

(�) +1

2

Z

RT (', x) · LT (', x)d⌫

x

(�)

�1

2

Z

S

2

A

�1pi

(↵)↵q

L

pqrs

b

L

ibcd

rscd

x

(↵)

◆dx.

lim⌘!0

min�,u

E

⌘(�, u) = inf�,u

Z

⌦1

✓W (', x) +

1

2(ru� T (', x)) · L(ru� T (', x))

◆dx

E

↵L

3=

Z

⌦1

✓1

2

↵L

2|r'|2 +W (', x) +

1

2(ru� T (', x)) · L(ru� T (', x))

◆dx

E =

Z

✓�

2|r'|2 +W (', x) +

1

2(ru� T (', x)) · L(ru� T (', x))

◆dx

Energy  

Scaling:  Length  scale  L,  Energy  scale  α x 7! 1

L

x, W 7! 1

W, L 7! 1

L

E⌘ ⌘2

Large  body  limit  

= E

Page 6: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #6  

Measures  and  elas=c  energy  

Young  measure  (Ball,  Tartar)  νx  describes  the  one-­‐point  sta=s=cs    near  the  point  x  

•  Local  volume  frac=on  •  Pole  figures  

H  measure  (Tartar)  µx  describes  the  part  of  the  two-­‐point  sta=s=cs  that  is  related  to  the  induced  elas=c  energy.    Closely  related  to  

•  Localiza=on  tensor  •  Eshelby  tensor  •  (Structure  factor)  

E = min⌫

✓minµ

. . .

⇡ minu

min�i

Z

0

@X

wi�i +X

i,j

�imij�j +1

2

e(u)�

X

i

�iTi(x)

!· L

e(u)�

X

i

�iTi(x)

!1

Adx

New  transla=on  bounds  

Postulate  

�̇ = K(��E)Phase  field  model  for  volume  frac=ons  

Page 7: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #7  

Superelasticity"

Initiation. Well oriented grains Stress concentrations

Progress.  Autocatalyic  strips  Some  reorienta=on  

Saturation. Incomplete transformation Reorientation

Reversal.  Last  on,  first  off  Slight  differences  from  (B)  

Richards  et  al.  (2013)  

Is  there  a  compact  representa=on  for  these  

transforma=on  strain  fields  that  retains  the  essen=al  physics  

Page 8: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #8  

Wavelets  Generate a nested sequence of subspaces {0} ⇢ ...Vj ⇢ Vj+1 ⇢ ... ⇢ L2

(R):

Define Vj = {�j,k (x) , k 2 Z},and note Vj ⇢ Vj+1 = Vj �Wj where Wj = { j,k (x) , k 2 Z}

Approximate a function at scale j0 as

f(x) =

X

k2Zak'j0,k(x) +

X

j>j0,k2Zdj,k j,k(x)

• Scaling function: '(x) satisfying

Z|'|dx = 1

• Mother wavelet: (x) satisfying

Z dx = 0

• (x) =X

n2Zbn'(2x� n)

Introduce

Space  

Freq

uency  

-1.0-0.5 0.5 1.0 1.5 2.0

-1.0-0.5

0.51.0

-1.0-0.5 0.5 1.0 1.5 2.0

-1.0-0.5

0.51.0

Haar  

-1.0-0.5 0.5 1.0 1.5 2.0-1.0-0.5

0.51.01.5

-1.0-0.5 0.5 1.0 1.5 2.0-1.0-0.5

0.51.01.5

Daubechies  

Consider their translations and dilations

j,k (x) := 2j/2 �2jx� k

'j,k (x) := 2j/2'�2jx� k

�j, k 2 Z

Compression Adaptively choose basis

Page 9: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #9  

Compressing  the  results  using  wavelets  

0 1 2 3 40

100

200

300

400

500

600

700

!̄x (%)

!̄x(M

Pa)

A B

C

ED

•  Simulate  using  FFT  •  At  each  =me  step,  take  a  (Symlet  5)  wavelet  transform  of  the  result  •  Keep  only  1  %  of  the  coefficients  •  Compute  the  macroscopic  stress-­‐strain  curve1  

Page 10: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #10  

Wavelets  also  provide  new  insight  

0 1 2 3 40

100

200

300

400

500

600

700

800

900

1000

!̄x(%)

!̄x(M

Pa)

•  Rela=ve  change  in  #  of  ac=ve  wavelets:  ~4%  •  Ac=ve  wavelets  are  predictors    of  stress  and  strain  

intensi=es    •  Dominant  wavelets  are  basis  for  model  reduc=on  •  Current  ac=ve  set  are  predictors  of  transforma=on  •  Ac=ve  wavelets  carry  informa=on  about  inter-­‐

granular  compa=bility  

Ac=ve  

Inac=ve  

Total  

Page 11: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #11  

Experiments  with  full-­‐field  strain  

Daly,  Ravichandran  and  Bha'acharya,  Acta  Mater.    (2007)  

Page 12: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #12  

Axial strain using 10% of Symlet5 wavelet detail coefficients

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05Exact axial strain

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05Exact axial strain

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05Axial strain using 10% of Symlet5 wavelet detail coefficients

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05Exact axial strain

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05Axial strain using 10% of Symlet5 wavelet detail coefficients

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Representa=on  of  Daly  et  al.  Experiments  

99.3%  99.9%  99.8%  ||"approxyy ||||"yy||

=

Compression  using  1%  coefficients  

1.93%   2.94%   1.34%  Total  strain  

Page 13: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #13  

Digital  image  correla=on  

Page 14: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #14  

Digital  image  correla=on  

Su'on  et  al.,  Image  Correla=on  …,  Springer  Hild  and  Roux,  in  Op#cal  Methods  for  Solid  Mechanics,  Wiley    

y x

y(x)

f(x) g(y) miny:⌦!Rn

Z

⌦|f(x)� g(y(x))|2 dx

() max

y:⌦!Rn

Z

⌦f(x)g(y(x))dx

Can  be  done  locally  •   Very  computa=onally  efficient  

But,  •  Need  high  frequency  random  pa'ern      …  large  data  sets  

•  Results  can  be  very  noisy  

Can  we  use  filtered/  compressed  images  for  DIC?  

Page 15: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #15  

DIC  with  compressed  images  

Original   20  %  DCT  min

y:⌦!Rn

Z

⌦|f(x)� g(y(x))|2 dx

() max

y:⌦!Rn

Z

⌦f(x)g(y(x))dx

Since  the  method  is  local,    •  we  need  high  frequency  random  images  •  filtered  and  lost  during  compression  

Generally  gives  significant  error  

Page 16: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #16  

Need  to  introduce  global  informa=on  

miny:⌦!Rn

Z

⇣|f(x)� g(y(x))|2 + ↵ |ry|2

⌘dx

•  Global  Method  and  Regulariza=on  (Hild  and  Roux)  

Reduces  noise,  but  expensive    

Use  finite  element  basis  for  y  

•  Local  method  with  global  constraints  

max

�,µmin

{yi},{Fi},y

Z

8<

:X

i

�i|f(x)� g(yi + Fix)|2 + �

�����y �X

i

�iyi

�����

2

+ µ

�����ry �X

i

�iFi

�����

29=

; dx

max

�,µmin

{yi},{Fi},y

Z

8<

:X

i

�i|f(x)� g(yi + Fix)|2 + �

�����y �X

i

�iyi

�����

2

+ µ

�����ry �X

i

�iFi

�����

29=

; dx

Par==on  of  unity   Related  interpola=on  

-  Computa=onally  efficient    (mul=scale  approach)  

-  Consistent  with  compression  

Page 17: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #17  

Results  with  global  +  compression  

100%  

20%  

Original  

Global   Local  

20%  compressed  

Avg  Eyy  =  1.89  %   Avg  Eyy  =  -­‐1.09  %  

Global   0.0071  %   0.044  %  

Local    0.49  %   4.61  %  

Page 18: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #18  

Use  of  priors:  Fracture  

Seek  the  stress  intensity,  but  the  displacements  are  extremely  small.  

minr,R,c,KI ,x0

Z

⌦r,R

|f(x)� g(KI

U(x� x0) + c)|2 dx

Page 19: June 2015 review bhattacharya - Carnegie Mellon Universitymuri.materials.cmu.edu/.../June_-2015-bhattacharya.pdf · K.Bhaacharya Review2015:#12 Axial strain using 10% of Symlet5 wavelet

K.  Bha'acharya    Review  2015:  #19  

Impact/Future  •  Personnel  

–  Gal  Shmuel,  Post-­‐doc  (currently  Asst.  Prof.  Technion,  Israel)  –  Md.  Zubaer  Hossain,  Post-­‐doc  (par=al,  soon  Asst.  Prof.  U  Delaware)  –  Jin  Yang,  Graduate  student  –  Chun-­‐Jen  Hsueh,  Graduate  student  (par=al)  –  Dingyi  Sun,  Graduate  student  (NDSEG)  

•  Publica=ons  –  G.  Shmuel,  A.T.  Thorgeirsson,  and  K.Bha'acharya.  2014.  “Wavelet  Analysis  of  

Microscale  Strains.”  Acta  Materialia  76:  118–126.  –  J.  Yang,  G.  Ravichandran  and  K.  Bha'acharya.  2015.  “Data  compression  for  digital  

image  correla=on”.    In  prepara=on  for  submission  to  Experimental  Mechanics  –  4  others  

•  Provisional  Patent  –  C-­‐J  Hsueh,  G.  Ravichandran,  K.  Bha'acharya.  2015.  “A  Novel  device  of  measuring  

the  fracture  toughness  of  heterogeneous  materials”  

•  Future  direc=ons  –  Digital  Image  Correla=on  with  compression  (Comer)  –  Scale-­‐dependent  Young  measure,  H-­‐measures  (James)  –  Mechanical  proper=es  of  Al-­‐Si  (Voorhees/Kalidinidi)