July 28, 2020 Silent Engineering - 東京工業大学 · 2020. 7. 26. · July 28, 2020 Silent...

41
July 28, 2020 Silent Engineering (Lecture 6) Structural Optimization to Reduce Sound Radiation Power - Noise reduction by adding ribs or hollows on the plate - Tokyo Institute of Technology Dept. of Mechanical Engineering School of Engineering Prof. Nobuyuki Iwatsuki

Transcript of July 28, 2020 Silent Engineering - 東京工業大学 · 2020. 7. 26. · July 28, 2020 Silent...

  • July 28, 2020

    Silent Engineering(Lecture 6)

    Structural Optimization to ReduceSound Radiation Power- Noise reduction by adding ribs or

    hollows on the plate -

    Tokyo Institute of TechnologyDept. of Mechanical EngineeringSchool of Engineering

    Prof. Nobuyuki Iwatsuki

  • 1. Various Optimization Methods

    Optimization method:Numerical calculation to obtain design variables to make an objectivefunction minimize or maximize

    .max.min)(    >−XΦ orObjective function

    Design variable

    Constraints:

    UL XXXXX

    =

    0)(0)(

    ΨΨ

    Inequality constraints

    Equation constraints

    Constraints on design variables

    1.1 Design variables, objective function and constraints

    X1

    X2

    Φ(X1,X2)

  • 1.2 Principles of various optimization methodsClassification of methods:(1) Linear optimization

    ・Linear programing (LP)Suitable for problems with objective function and constraintswhich are described as linear equations with respect to designvariables

    (2) Nonlinear optimization1)Conventional methods○Gradient method

    To Search minimum/maximum value in a direction calculatedas gradient of the objective function

    Suitable for Logistics planning, Production planning

    ・The steepest descent method“The most traditional method”

    ・Davidon-Fletcher-Powell method“Various improvements”

    ・Newton’s method“Partial derivative equation of objective function”

  • 2)New methods・Genetic algorithm (GA)

    “A method adapting natural selection of creature”・Simulated annealing (SA)

    “A method adapting behavior of metal molecular inannealing process”

    ・Particle Swarm Optimization (PSO)“A method adapting behavior of swarm of bird”

    ○Direct search methodTo directly search minimum function value

    ・Downhill simplex method“To search optimum value with a simplex composed ofa several combinations of design variables”

  • (1)The steepest descent methodThe descent direction vector of the objective function at a current Point, X, can be calculated as

    )(grad)(

    21

    XX

    Xd ΦΦΦΦΦ −=

    ∂∂

    −∂∂

    −∂∂

    −=∂

    ∂−=

    T

    nXXX (1)

    The minimal point in the descent direction is then searched with an one-dimensional search.

    X2

    X1

    |d|

    Φ

    Xi

    Xi+1di

    Search with the steepest descent method

    The recurrence formula ofthe design variable vector:

    iii XdX +=+ α1 (2)

  • One-dimensional search:

    For example, the quadratic function passing through 3 points which are currentvariable, di, and other 2 points, da and db, should be calculated and its minimal pointis assumed as the next point.

    Xi

    Φ

    |d|

    Xi+1 XbXa

    αi αbαi+1 αa

    Actual functionApproximatedquadratic function

    2210

    2210

    2210

    bbb

    aaa

    iii

    cccΦcccΦ

    cccΦ

    αα

    αα

    αα

    ++=

    ++=

    ++=

    =

    b

    a

    i

    bb

    aa

    ii

    ΦΦΦ

    ccc

    -1

    2

    2

    2

    2

    1

    0

    111

    αααααα

    (3)

  • iiii

    ii cccΦ

    cc

    ccc

    ccccccdΦ

    dXX 1112

    21

    012

    11

    2

    21

    0

    2

    2

    12

    2210

    4,

    2

    42)(

    +++

    ++

    +=

    −=−=∴

    −+

    +=++=

    α

    α

    ααα

     (4)

    Strong points:○Convergence is very quick.○High accuracy

    Primary difference can be used as approximate derivative.

    Weak points:▲Derivative of function required.

  • (2)Downhill simplex method

    A simplex which vertices are design variables with a small distances will be refreshed and directly search minimum value of the objectivefunction.

    X1

    X2

    (X1,i, X2,i) (X1,i+ε1,i , X2,i)

    (X1,i , X2,i+ε2,i)

    (X1,i+1, X2,i+1)

    Simplex=Polyhedron with n+1 vertices

    Simplex

  • Refresh of simplex:

    Xmax

    Xmax

    Xmax

    XG

    Xi+1

    Xi+1

    Xi+1

    XG

    XG

    α

    1+α

    1−β β

    γ1−γ XR

    Reflection

    Extension

    Contraction

    maxGR1 )1( XXXX α++==+ ai

    Gmax1 )1( XXX ββ −+=+i

    GR1 )1( XXX γγ −+=+i

    (5)

    (6)

    (7)

    where

    maxG

    max

    X XX : Vertex which takes maximum function

    : COG of vertices excluding

  • X1

    X2

    Iteration process of the downhill simplex method

    Initial simplexExtension

    ContractionReflection

    Initial

    Optimum

  • Weak points:▲Convergence is slow.

    Strong points:○Not divergent○Derivative is not required.○Simple principle

  • (3)Genetic Algorithm (GA)Many genes each of which is composed of serially connected binarydata of design variables are evaluated on adaptability and are selected.The generation of genes should then be refreshed and finally the optimum design variables can be obtained.

    X1 …. Xn

    1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1… …

    ×M genes in a generation

    Evolution process:・Crossover・Mutation

    Selected based on adaptabilitywhich is defined with objective function

  • Evolution process

  • Strong points:○Global minimum can be obtained.○Derivative is not required.

    Weak points:▲Because of length of binary data of design variables, the accuracy

    is not so high.▲Convergence is slow.

  • 1.3 Example of calculation

    Tested function:2

    12

    22

    121 )1()(2 XXXXX −+−=),(Φ

    The exact solution:

    )0.1,0.1(21 =),( XX

    The initial design variable (The steepest descent method and downhill simplex method):

    )0.3,0.8(21 =),( XX

    The iteration criterion(The steepest descent method and downhill simplex method):

    )10,10( 1212functionVariable−−=),( εε

    (8)

    Genetic algorithm:Population : 200 genes Generations : 4000

  • Φ=4

    000

    Φ=4

    000

    Φ=1

    000 Φ=1

    000

    Φ=100

    Φ=100

    Φ=10

    Φ=1

    Initial

    Final

    Optimization result obtained with the steepest descent method

  • Φ=4

    000

    Φ=4

    000

    Φ=1

    000 Φ=1

    000

    Φ=100

    Φ=100

    Φ=10

    Φ=1

    Initial

    Final

    Optimization result obtained with the downhill simplex method

  • Φ=4

    000

    Φ=4

    000

    Φ=1

    000

    Φ=1

    000

    Φ=100

    Φ=100

    Φ=10

    Φ=1

    Genes

    Initial individuals in the genetic algorithm

  • Genes

    Optimization results obtained with the genetic algorithm

    Φ=4

    000

    Φ=4

    000

    Φ=1

    000 Φ=1

    000

    Φ=100

    Φ=100

    Φ=10

    Φ=1

    Minimum

    4000thgeneration

  • Results:

    The steepest descent

    Downhill simplex Genetic algorithm

    Solution (0.99999,0.99999) (1.00000,1.00000) (0.99608,0.99243)Minimum function 4.747X10-12 0.000 1.555X10-4

    Iteration 77 134 4000 generationNumber of

    Function calls616 268 800000

    Performance of the optimization method

    ・The steepest descent method needs function calls to calculateprimary difference.

    ・The downhill simplex method is fairly effective.・Genetic algorithm needs computational time.

  • 2. Structural Optimization to Reduce Sound Radiation Power by Adding Ribs

    A cantilever plate

    2.1 Design object– Rectangular cantilever plate subjected to point excitation

    a

    b

    Thickness : h

    Excitation: P

    (x0,y0)

    x

    y

    O

  • 2.2 Estimation of sound power radiating from simple cantileverplate with the Rayleigh-Ritz method

    xa

    b

    O

    Thickness: hDensity: ρYoung’s modulus: EPoison’s ratio: ν

    Boundary conditions:

    0,0;,0,

    0,0;0

    ====

    =∂∂

    ==

    QMbyaxxwwx

     

     

    (9)Resultantly we obtain

    0,0;,0

    0,0;

    0,0;0

    3

    3

    2

    2

    3

    3

    2

    2

    =∂∂

    =∂∂

    =

    =∂∂

    =∂∂

    =

    =∂∂

    ==

    yW

    yWby

    xW

    xWax

    xWWx

     

     

     

    (10)

    y

  • −−−⋅

    −−−=

    ⋅=

    by

    by

    by

    by

    ax

    ax

    ax

    ax

    C

    yWxWCyxW

    jyjyjy

    jyjy

    ixixix

    ixix

    jiij

    jyji

    ixij

    ,,,

    ,,

    ,,,

    ,,

    ,

    ,,

    ,

    sinsinhcoscosh

    sinsinhcoscosh

    )()(),(

    λλα

    λλ

    λλα

    λλ

            

        

    Eigenfunction:

    i λx,i

    1 1.875

    2 4.694

    3 7.855

    4 10.996

    5 :

    i λy,i1 -

    (Rigid motion)2 -

    (Rigid motion)3 0.473

    4 7.853

    5 :

    x-direction: Eigenfunction of

    cantilever beam

    (11)

    y-direction: Eigenfunction ofboth ends free beam

  • Calculated natural frequencies and mode shapes (1)

    1st mode

    2nd mode

    3rd mode

    4th mode

    5th mode

    6th mode

  • Calculated natural frequencies and mode shapes (2)

    7th mode

    8th mode

    9th mode

    10th mode

    11th mode

    12th mode

  • One example of the estimated sound radiation power

    0.150.100.050.0010-1

    10-3

    10-5

    10-780

    60

    40

    20

    70

    50

    30

    10

    10-2

    10-4

    10-610-7

    FOR

    CE

    P RM

    SN

    DR

    IVIN

    G P

    OIN

    TM

    OBI

    LITY

    Re(

    Y)m

    /Ns2

    INPU

    T PO

    WER

    Win

    dB

    ref 1

    pW

    SOU

    ND

    PO

    WER

    Wra

    ddB

    ref 1

    pWLO

    SS F

    ACTO

    RS

    η dis,

    ηra

    d

  • 2.3 Estimation of sound power radiating from cantilever platereinforced with straight ribs

    Thickness : h

    Excitation: P

    (x0,y0)

    x

    y

    O

    A straight ribwith a rectangularcross-section

  • Rayleigh-Ritz method to calculate natural mode of vibrationof plate with straight ribs:

    −−−⋅

    −−−=

    ⋅=

    by

    by

    by

    by

    ax

    ax

    ax

    ax

    C

    yWxWCyxW

    jyjyjy

    jyjy

    ixixix

    ixix

    jiij

    jyji

    ixij

    ,,,

    ,,

    ,,,

    ,,

    ,

    ,,

    ,

    sinsinhcoscosh

    sinsinhcoscosh

    )()(),(

    λλα

    λλ

    λλα

    λλ

            

        

    Same eigenfunction for simple plate can be assumed as

    The kinetic energy and potential energy of added Euler beamsaccording to deformation of simple plate can be added to those of simple plate then Rayleigh-Ritz method can be executed.

    (12)

  • Validation of modal analysis with experimental modal analysis

    500 300

    5

    250

    2525

    (a) Simple plate

    (b) y-dir. ribbed plate

    (c)x-dir. ribbed plate

  • Mode No.

    Calculated[Hz]

    Measured [Hz]

    1 17.14 17

    2 62.64 63

    3 106.71 104

    4 208.91 208

    5 295.06 289

    6 333.37 341

    7 417.50 412

    8 483.86 485

    9 594.14 575

    10 709.31 699

    11 742.05 731

    Mode No.

    Calculated[Hz]

    Measured [Hz]

    1 17.08 --

    2 61.08 55

    3 106.62 100

    4 203.54 189

    5 308.27 281

    6 319.77 347

    7 414.20 389

    8 505.42 492

    9 581.55 566

    10 681.75 671

    11 779.42 725

    Mode No.

    Calculated[Hz]

    Measured [Hz]

    1 19.03 --

    2 63.48 55

    3 119.87 112

    4 216.70 198

    5 326.64 296

    6 338.44 347

    7 448.22 420

    8 484.57 471

    9 661.55 643

    10 740.45 721

    11 780.43 737

    (a) Simple plate (b) y-dir. ribbed plate (c)x-dir. ribbed plate

    The calculated natural frequencies almost agreewith the measured values.

  • 2.4 Structural optimization of cantilever plate with #-figured ribs

    Thickness : h

    Excitation: P

    xO

    y

    bX2/2

    a(1-X1)/2

    Symmetrical #-figures rib arrangement

    Design object and design variables

  • Objective function

    Summation of peak sound powers at lower 5 natural frequencies

    ∑=

    =Φ5

    1,21 ),(

    iiradWXX (13)

    Optimization method

    Downhill simplex method

  • Iteration process

    Initial value

    Optimum value

  • Variation of natural frequencies

  • Iteration of objective function

    Total

    Wrad,1

    Wrad,2

    Wrad,3

    Wrad,4

    Wrad,5

  • Initial value Optimum value

  • 2.5 Structural optimization of peripherally clamped rectangular plate by adding hollows

    Finite Element Model

    Automatic meshing of rectangular plate with a rectangular hollow

    Height of hollow is 3mm

    DrivingpointBecause it is difficult

    to analyze vibrationwith the R-R method,we thus use FEM.

  • Examples of calculation of sound radiation power

    4.4dB

    It was confirmed that a hollow reduce 4.4dB without weight increment.

    Flat plate

  • Initial arrangement

    0 100 200 300 400 500 60040

    60

    80

    100

    120

    11dB reduced

    Optimum arrangement

    Optimization of hollow arrangement by using the gradient method with FEM vibration analysis in order to reduce noise at the 2nd mode

    It is effective to arrange a nodal line on driving point at 2nd mode

  • 3. Concluding remarksStructural optimization to reduce sound power radiating from thin plate is introduced.(1)Several optimization methods are introduced

    and principles of the steepest descent method, downhill simplex method and genetic algorithmare explained.

    (2)Vibration of plate adding ribs can be analyzedby adding kinetic and strain energies in theRayleigh-Ritz method.

    (3)Examples of structural optimization of thin rectangular cantilever plate by adding #-figured ribs and peripherally clamped rectangular plate by adding a hollow are explained.

  • Subject of final report Calculate the frequency spectrum of sound power radiating froma thin/thick plate or shell under the following conditions.(1)You can arbitrarily choose vibrating plate or shell.(2)You are expected to execute modal analysis, forced vibration

    analysis and estimation of sound radiation power howeveryou can assume any mode shapes or natural frequencies if it will be difficult to calculate exact or approximated vibrationmodes.

    (3)You can select mechanical point excitation or sound excitationwith arbitrary frequency spectrum of excitation force.

    (4) You also assume modal total loss factors even if they areconstant.

    (5)Please illustrate mode shapes with natural frequencies andfrequency spectra of loss factors, input power and soundradiation power.

    The report will be summarized in A4 size PDF with less than 10pages and sent to Prof. Iwatsuki via OCW-i by August 17, 2020.

    スライド番号 1スライド番号 2スライド番号 3スライド番号 4スライド番号 5スライド番号 6スライド番号 7スライド番号 8スライド番号 9スライド番号 10スライド番号 11スライド番号 12スライド番号 13スライド番号 14スライド番号 15スライド番号 16スライド番号 17スライド番号 18スライド番号 19スライド番号 20スライド番号 21スライド番号 22スライド番号 23スライド番号 24スライド番号 25スライド番号 26スライド番号 27スライド番号 28スライド番号 29スライド番号 30スライド番号 31スライド番号 32スライド番号 33スライド番号 34スライド番号 35スライド番号 36スライド番号 37スライド番号 38スライド番号 39スライド番号 40スライド番号 41