Julia's M.Sc. proposal corrected May 16 2013 -...

19
BAR-ILAN UNIVERSITY מבנה אנליזת- חלבוני של תפקודCdx ה עכבריים ו- Caudal הפירות מזבובStructure-function analysis of mouse Cdx and Drosophila melanogaster Caudal proteins Julia Sharabany January 2013

Transcript of Julia's M.Sc. proposal corrected May 16 2013 -...

  •  

                               

    BAR-ILAN UNIVERSITY

    עכבריים ה Cdxתפקוד של חלבוני -אנליזת מבנה

    מזבוב הפירות Caudal-ו

    Structure-function analysis of mouse

    Cdx and Drosophila melanogaster

    Caudal proteins

    Julia Sharabany

    January 2013

  •  

    Table  of  Contents  Introduction  ........................................................................................................................................................  1  

    The  role  of  the  core  promoter  in  the  regulation  of  gene  expression  .....................................................  2  

    Hox  genes  ......................................................................................................................................................  3  

    Caudal  ............................................................................................................................................................  3  

    CDX  ................................................................................................................................................................  3  

    The  importance  of  research  ............................................................................................................................  4  

    Results  ...............................................................................................................................................................  5  

    Construction  of  mouse  Cdx  (mCdx)  expression  vectors  .........................................................................  5  

    Transcriptional  activation  of  the  ftz  gene  by  Drosophila  melanogaster  Caudal  (Cad)  and  mouse  

    Cdx  family  proteins  .......................................................................................................................................  5  

    Structure-function  analysis  of  mCdx  proteins  ...........................................................................................  6  

    Effect  of  the  polyQ  and  polyPQ  deletions  on  Cdx2  transcriptional  activation  ......................................  8  

    Structure-function  analysis  of  Drosophila  Caudal  ....................................................................................  9  

    Future  plans  ....................................................................................................................................................  10  

    Materials  and  Methods  ..................................................................................................................................  12  

    References  ......................................................................................................................................................  14  

     

             

  •  

    1    

    Introduction  

    The  development,  growth  and  survival  of  eukaryotic  organisms  require  the  proper  regulation  of  tens  

    of   thousands   of   genes   [1].   Different  mechanisms   underlie   the   proper   expression   of   these   genes:  

    nucleosome   remodeling,   histone   modifications   and   the   binding   of   transcriptional   activators   and  

    coactivators  to  enhancers  and  promoters  [2].  However,  a  precise  recruitment  of  RNA  polymerase  II  

    (Pol  II)  to  the  initiation  site  plays  a  major  role  in  dictating  gene  expression.    

    In   eukaryotes,   transcription   initiation   requires   the   assembly   of   basal   transcription   factors   at   the  

    promoter  region.  These  transcription  factors  recruit  RNA  polymerase  II  to  the  transcription  start  site  

    (TSS)  and   together  with   the  promoter   form   the  preinitiation  complex   [3-5].  The   region   from   -40   to  

    +40  relative  to  the  TSS  is  required  for  accurate  initiation  of  transcription  by  RNA  polymerase  II  and  

    is  defined  as  the  core  promoter  [6,  7].  

    In  the  past,  it  was  expected  that  the  same  core  promoter  structure  would  be  found  in  every  cellular  

    gene.   It  was  believed  that   the  TATA  box  (the  first  core  promoter  element  discovered)   is  a  general  

    feature  of  core  promoters  [8].  Following  the  development  of  functional  assays,  it  has  become  clear  

    that   core   promoters   are   highly   diverse   in   structure   and   function.   It   appears   that   there   are   no  

    universal  core  promoter  elements  [7].    

    There  are  various  known  focused  core  promoter  elements  that  might  contribute  to  promoter  activity:  

    TATA   box,   BREu   (upstream   TFIIB   recognition   element),   BREd   (downstream   TFIIB   recognition  

    element),   Inr   (initiator),  MTE  (motif   ten  element),  DPE  (downstream  core  promoter  element),  DCE  

    (downstream   core   element)   and   XCPE1   (X   core   promoter   element   1).   The   major   core   promoter  

    elements  are  depicted  in  Fig.  1.  

     

     

     

     

     My  research  primarily  focuses  on  the  Inr,  DPE  and  TATA-box  motifs.  

     

     

     

     

    The  major  core  promoter  elements.  The  arrow  indicates  the    Fig.1:

    transcription  start  site.  

  •  

    2    

    The  Inr  (Initiator)  

    The  Inr  is  a  specific  core  promoter  element  that  is  located  around  the  TSS  [9].  The  Inr  is  considered  

    the  most  commonly  appearing  motif   in   focused  core  promoters  [10].  The  Inr  serves  as  recognition  

    site  for  subunits  of  the  general  transcription  factor  TFIID  [11].  

    The  TATA  box  

    The  TATA  box,  which   is  considered   the  most  ancient  core  promoter  motif   throughout  nature,  was  

    the   first   eukaryotic   core   promoter   element   to   be   identified.   It   represents   the   binding   site   for   the  

    TATA-binding  protein  (TBP)  subunit  of  the  TFIID  complex  [12].    As  noted  above,  early  studies  led  to  

    the  presumption  that  the  TATA  box  is  a  general  and  essential  component  for  transcription  initiation.  

    However,   recent  computational  analysis   revealed   that  TATA  box  are  present   in  a   fraction  of  RNA  

    polymerase  II  transcribed  genes:  about  30%  of  Drosophila  genes  [13]  and  10-15%  of  human  genes  

    [14].  

    The  DPE  (downstream  core  promoter  element)  

    The  DPE  was   identified   as   a   TFIID   recognition   site   that   is   downstream   of   the   Inr,   and   is  mainly  

    present   in   core   promoters   that   lack   a   TATA   box   motif   [15-17].   Although   the   DPE   was   originally  

    identified  in  Drosophila,  it  is  also  present  in  humans.  The  DPE  is  precisely  located  from  +28  to  +33  

    relative   to   the  A+1  nucleotide  of   the   Inr.  Moreover,   the   insertion  or  deletion  of  a  single  nucleotide  

    between  the  Inr  and  DPE  reduces  transcriptional  activity  and  TFIID  binding  [16].    

    The  role  of  the  core  promoter  in  the  regulation  of  gene  expression  

    Transcriptional  activation  often  involves  the  direct  binding  of  transcription  factors  to  distal  regulatory  

    regions  such  as  enhancers,  which  are  typically  located  hundreds  of  base  pairs  (bp)  away  from  the  

    TSS  but  can  be  located  many  kilo  bp  away  from  it  [18].  During  transcription  initiation,  enhancers  are  

    brought   into   proximity  with   promoters   by   a   chromatin   loop.   This   enhancer-promoter   interaction   is  

    necessary  for  the  recruitment  of  the  transcription  factors  and  coactivators  to  the  core  promoter  [19].  

    Early  studies  have  found  that  some  transcriptional  enhancers  exhibit  core  promoter  specificity  [20].  

    For   instance,   there   are   enhancers  with   activation   preference   for   core   promoters   containing  either  

    DPE  or  TATA  box  motifs.  

    A  typical  example  of  core  promoter  specificity  is  Drosophila  homeotic  (Hox)  genes  [21].  It  was  found  

    that   almost   all   of   the   Drosophila   Hox   gene   promoters,   which   lack   TATA   box   elements,   contain  

    functionally   important  DPE  motifs.   This   evidence   led   to   the   hypothesis   for   the   existence   of  DPE-  

    specific  activators   required   for  Hox   gene  expression.  Following   this  hypothesis,   it  was  discovered  

    that   Caudal,   a   sequence-specific   DNA-binding   transcription   factor   and   key   regulator   of   the  Hox  

    genes,   is  a  DPE-specific  activator.   In  addition,  Caudal  activates   transcription  of   the  Antennapedia  

  •  

    3    

    and  Sex  combs  reduced  Hox  genes  through  DPE  motifs   in   their  core  promoter  region  [21].  These  

    findings  indicate  an  important  role  for  the  DPE  motif  in  the  regulation  of  the  Hox  gene  expression.    

    Hox  genes  The  clustered  Hox  family  of  homeobox  genes  is  an  evolutionarily  highly  conserved  family  of  genes  

    that  encode  DNA-binding  transcription  factors  that  were  first  identified  as  key  regulators  of  positional  

    identity  along  the  anterior-posterior  [22]  body  axis  of  animal  embryos  [23].  The  core  of  this  system  

    consists   of   a   set   of   structurally   similar   genes   that   were   originally   discovered   in   Drosophila.  

    Homeobox   genes   encode   a   distinctive   DNA-binding   domain   of   60   amino   acids,   known   as  

    homeodomain  (HD),  which  characterizes  a  large  family  of  transcription  factors  [24].      

     

    In  mammals,  there  are  39  Hox  genes  that  are  organized  into  four  genomic  clusters  (A-D)  located  on  

    four  different  chromosomes  and,  based  on  homeobox  sequence  similarity,  consist  of  13  paralogous  

    groups.   Hox   genes   exhibit   a   high   degree   of   homology   to   the   clustered   homeotic   genes   of  

    Drosophila  melanogaster,  which  are  located  in  two  clusters:  the  Antennapedia  (Ant-C)  and  bithorax  

    complexes  (BX-C).  

    Caudal  Caudal  (cad),  a  paralog  of  the  Hox  genes  [25],  was  first  identified  in  Drosophila  melanogaster.  The  

    cad  gene  encodes  a  homeodomain   transcription   factor  expressed   in  a  gradient-like  manner  at   the  

    posterior   of   the   embryo   [26,   27].   Specification   of   the   posterior   axis   during   early   embryogenesis  

    requires  tight  regulation  of  gene  expression.  A  number  of  studies  have  revealed  that  Cad  is  a  crucial  

    regulator  of  important  developmental  genes:  fushi  tarazu  (ftz),  hairy  (h),  forkhead  (fkh)  and  giant  (g)  

    [28-31],   which   in   turn   regulate   the   homeotic   genes.   The   core   promoters   of   four   of   these   Caudal  

    target  genes  contain  functional  DPE  motifs  [21].  These  findings  indicated  that  Cad  might  be  a  DPE-

    specific  activator.  

    CDX  In   my   research   I   will   focus   on   vertebrate   Cdx   proteins.   Cdx   genes   encode   homeodomain  

    transcription   factors   related   to   the  Drosophila  caudal  gene.   In  vertebrates,  Cdx  proteins  appear   to  

    be   involved   in  specification  of   the  posterior  part  of   the  embryo  and  pattering   the  anterior-posterior  

    axis  in  a  manner  analogous  to  Cad  function  in  Drosophila  [32-34].  Vertebrate  Cdx  proteins  appear  

    to  act  upstream  of  Hox  genes   [35-37].  There  are   three  members  of  Cdx  gene   family:  Cdx1,  Cdx2  

    and  Cdx4,  which  are  expressed  at  different  time  point  during  embryogenesis  [33,38,39]  

    As   noted   above,   Cdx   transcription   factors   regulate   anterior-posterior   vertebral   pattering.   Studies  

    have  demonstrated  that  mutations   in  Cdx  genes  can  be   lethal  or  cause  posterior  body  truncations  

  •  

    4    

    [39-41].  In  addition,  over  the  past  several  years  it  has  become  evident  that  Cdx  family  members  are  

    critical  for  ordered  proliferation  and  differentiation  of  embryonic  hematopoietic  cells  [42].    

    The  importance  of  research  

    Cdx  family  members,  Cdx1,  Cdx2  and  Cdx4,  are  critical  regulators  of  antero-posterior  pattering  in  a  

    variety   of   vertebrate   and   invertebrate   embryos.   Furthermore,   Cdx2   and   Cdx4   have   also   been  

    implicated   in   pathological   conditions   such   as   colon   cancer   and   acute   myeloid   leukemia.   Hence,  

    understanding  the  mechanism  governing  the  function  of  Cdx  proteins  is  of  considerable  importance.  

     Research  aims  

    1.   Identification   and   characterization   of   core   promoter   elements   required   for   Cdx   transcriptional  

    activation.  

    2.   Structure-function  analysis  of  mouse  Cdx2.  

    3.   Structure-function  analysis  of  Drosophila  Caudal  

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

  •  

    5    

    Results  

    Construction  of  mouse  Cdx  (mCdx)  expression  vectors  mCdx1  and  mCdx2  were  kindly  provided  by  Prof.  David  Lohnes   (University  of  Ottawa).  The  DNA  

    sequence  was  verified  and  coding  sequences  of  both  mCdx1  and  mCdx2  were  subcloned  into  the  

    pAc   expression   vector   for   expression   in  Drosophila   cells.   For   construction   of   mCdx4   expression  

    plasmid,   I   have   employed   nested   PCR   analyses   using   cDNA   that   was   extracted   from   mouse  

    embryo  (E7.5).  

     Transcriptional  activation  of   the   ftz  gene  by  Drosophila  melanogaster  Caudal   (Cad)  and  mouse  Cdx  family  proteins  To  examine  and  characterize  transcriptional  activation  by  the  vertebrate  Caudal  homologues  I  have  

    analyzed   the  activation  of   the   fushi   tarazu   (ftz)   gene,  which  naturally   contains   Inr,  TATA  box  and  

    DPE   core   promoter   elements   and   has   been   shown  be   regulated   by  Drosophila  Caudal   in   a   core  

    promoter   preferential  manner   [21].   I   employed   two   types  of   ftz   firefly   luciferase   reporter   genes:   a  

    firefly  luciferase  reporter  gene  is  either  driven  by  a  ftz  promoter  containing  a  mutation  in  TATA  box  

    (ftz  mTATA)   or   a   ftz   promoter   containing   a  mutation   in   the  DPE  motif   (ftz  mDPE).  Cad   and  Cdx  

    expression  vectors  were  co-transfected  with  either  ftz  mDPE  or  ftz  mTATA  firefly  luciferase  reporter  

    vectors,   as   well   as   with   a   PolII-Renilla   luciferase   reporter   vector   (to   normalize   for   transfection  

    efficiency)   into  Drosophila   melanogaster   Schneider   (S2R+)   cells.   Cell   extracts   were   assayed   for  

    dual  luciferase  activities.    

     

     

     

     

     

     

     

     

     

    Fig.2:  Transcriptional  activation  by  full  length  FLAG-‐Caudal  and  Cdx  family  proteins.  Drosophila  S2R+  cells  

    were  transfected  with  ftz  reporter  plasmids  (containing  either  DPE  or  TATA  motif)  as  well  as  a  Drosophila  

    Caudal,  mCdx1,  mCdx2  and  mCdx4  expression  plasmids.  To  normalize  for  transfection  efficiency,  cells  were  

    co-‐transfected   with   PolIII-‐Renilla   luciferase   plasmid   and   assayed   for   dual   luciferase   activity.   Error   bars  

    represent  the  SEM.  

  •  

    6    

    Co-transfection  of  a  mCdx2  expression  vector  was  found  to  induce  a  30-fold  increase  in  ftz  mTATA  

    reporter  activity   (which   is  DPE-dependent)  as  compared   to  cells   transfected  with  an  empty  vector  

    control  (Fig.2).  Co-transfection  of  a  mCdx1  expression  plasmid  elicited  a  more  modest  response,  as  

    compared   to   that   of   mCdx2,   while   mCdx4   demonstrated   no   preference   for   activation   of   the   ftz  

    promoter   in   a   core   promoter   motif-specific   manner.   Hence,  Drosophila   Caudal   and  mouse   Cdx2  

    proteins  activate  the  ftz  promoter  with  a  similar  preference  for  the  DPE  motif.  

    The   analysis   of   core   promoter-specific   activation   by   Cdx   proteins   is   likely   to   contribute   to   the  

    structure-function   analysis   that   I   am   performing   on   Drosophila   Caudal   (i.e.   if   a   certain   Cdx  

    demonstrates  core  promoter  specificity,  based  on  its  homology  to  Drosophila  Caudal,  we  might  be  

    able  to  predict  the  domain/s  that  confer  this  specificity,  see  below).  

     

    Structure-function  analysis  of  mCdx  proteins    To   assess   whether   the   strong   activation   of   ftz   mTATA   promoter   by  mCdx2,   as   compared   to   the  

    other  Cdx   family  members,   could  be  explained  by   the  protein’s   composition,   I   have  analyzed   the  

    mCdx2   protein.   Surprisingly,   examination   of   the   primary   protein   sequence   of  mCdx2,   revealed   a  

    polyglutamine  (polyQ)  stretch  in  the  C-terminal  part  of  the  protein  (Fig.3,  aa  247-257).  Compared  to  

    mCdx2,  mCdx1  has  a   relatively  small  stretch  of  consecutive  Qs,  while  mCdx4  does  not  contain  a  

    polyQ  tract  at  all.  In  addition,  I  detected  a  polyproline  (polyP)  region  in  the  mCdx2  protein,  which  is  

    C-terminally  located  relative  to  the  polyQ  stretch.  

    PolyQ   stretches   are   often   associated   with   neurodegenerative   diseases   such   as   Huntington's  

    disease   [43].  However,  polyQ   tracts  are  normal   features  of  many  proteins.  Experimental  evidence  

    suggests  a   role   for  polyQ   tracts   in   the  activation  of  gene   transcription.  For   instance,   it  was   found  

    that  the  glutamine-rich  activation  domains  of  Sp1  transcription  factor  can  stimulate  transcription  by  

    binding   selectively   and   directly   to   the   TATA   box-binding   protein   (TBP)   [44].   Moreover,   polyP  

    stretches  located  C-terminally  to  polyQ  stretches  have  been  shown  to  stabilize  adjacent  polyQ  tract  

    structures  [45].  

  •  

    7    

     

     

     

                                       

     

     

     

     

     

     

     

     

     

     

     

     

    Fig.3:  Predicted  protein  structures  of  mCdx  protein  family  according  to  the  XtalPred  site.  The  mCdx1  and  the  mCdx2  

    polyglutamine  (polyQ)  regions  are  marked  by  green  rectangles.  The  polyproline  (polyP)  stretch  of  mCdx2  is  marked  by  

    orange   rectangle.   mCdx4   does   not   contain   either   polyQ   or   polyP   regions.   Protein   structure   was   predicted   using  

    http://ffas.burnham.org/XtalPred-‐cgi/xtal.pl.    

  •  

    8    

    Effect  of  the  polyQ  and  polyPQ  deletions  on  Cdx2  transcriptional  activation  To  assess  the  importance  of  the  polyQ  and  polyP  stretches  in  the  Cdx2  protein  activity,  I  decided  to  

    delete  these  sequences  by  site-directed  mutagenesis.  The  polyQ  stretch  (aa247-257)  was  deleted  

    independently   as   well   as   together   with   the   polyP   stretch   (aa247-270).   The   wild   type   and   the  

    mutated  Cdx2  expression  constructs  were  co-transfected  into  S2R+  cells  with  either  ftz  mDPE  or  ftz  

    mTATA  reporters.  

     

     

     

    Deletion   of   the   polyQ   region   resulted   in   decreased   levels   of   transcription   (Fig.4).Moreover,   ftz  

    reporter   construct   containing   a   functional   DPE   motif   showed   significantly   decreased   promoter  

    transcription   as   compared   to   reporters   containing   TATA   core   promoter   element,   suggesting   the  

    important  role  of  the  polyQ  region  of  Cdx2  in  DPE-dependent  transcriptional  activation.    

    Unexpectedly,  compared  to  deletion  of  the  polyQ  stretch,  deletion  of  the  polyPQ  stretch  just  slightly  

    reduced   transcriptional   activation   (Fig.4B).   Since   both   polyQ   and   polyP   regions   are   involved   in  

    protein-protein   interactions  I  expected  a  low  level  of  activation.  It   is  of  note  that  Fig.4B  depicts  the  

    results  of  a  single  experiment,  which  will  soon  be  repeated  to  validate  these  results.  

     

       

     

    Fig.4:    Transcriptional   activation  by  wild   type   and  mutant  Cdx2  protein.  Drosophila  S2R+  cells  were   transfected  with   ftz  

    reporter  plasmids  (containing  either  DPE  or  TATA  motif)  as  well  as  a  Drosophila  Caudal,  mCdx2,  mCdx2-‐ΔpolyQ  and  mCdx2-‐

    ΔpolyPQ  expression  plasmids.  To  normalize  for  transfection  efficiency,  cells  were  co-‐transfected  with  PolIII-‐Renilla  luciferase  

    plasmid  and  assayed  for  dual  luciferase  activity.  A)  Error  bars  represent  the  SEM.  N=3.  B)  N=1  

     

     

  •  

    9    

    Structure-function  analysis  of  Drosophila  Caudal  Another  aspect  of  my  research  addresses  the  structure-function  analysis  of  the  Drosophila  Caudal  

    protein.  My  approach  was  based  on  the  thesis  of  Matan  Filderman  from  our  lab.  The  aim  of  Matan's  

    work  was   to   identify   regions   in   the  Caudal   protein   that   are   essential   for   preferential   activation   of  

    DPE   transcription.   In  order   to  understand   the   role  of  different  domains  of  Caudal,  he  generated  6  

    deletion  mutants.  He  found  out  that  two  of  these  deletions,  aa399-420  and  aa363-427,  significantly  

    decreased   DPE   dependent   activation   by   Caudal.   Hence,   these   regions   are   necessary   for   DPE-

    preferential   activation.   To   examine   whether   these   regions   are   sufficient   for   the   preferential  

    transcriptional   activation,   I   performed  Gal4-based   luciferase  assays.  To   this   end,   I   used   the  pAc-

    Gal4Cad363-427   and   pAc-Gal4Cad270-427   constructs,   in   which   aa363-427   and   aa270-427  

    fragments   respectively,   were   fused   to   the   Gal4   DNA-binding   domain   (DBD).   pAc-Gal4VP16   was  

    used  as  a  positive  control.  As  a  negative  control   I  used  the  GAL4-DBD  followed  by  a  stop  codon.  

    These  constructs  were  co-transfected  into  S2R+  cells  with  a  ftz  reporter  construct  (either  ftz  mTATA  

    or  ftz  mDPE)  containing  Gal4-binding  sites  upstream  of  the  firefly  luciferase  gene.      

     

     

     

     

     

     

     

                                 

    As   can   be   seen   in   Fig.5   transcriptional   activation   by   Gal4-VP16   is   too   high   compare   to   other  

    constructs.   I   intend   to   examine   the   GAL4-full   Caudal   next,   as   a   positive   control.   As   expected,  

    Caudal  did  not  activate  the  reporter,  as  there  are  no  Caudal  binding  sites  in  the  luciferase  reporters  

    (in   these   experiments   the   untagged   Caudal   was   employed.   We   have   previously   compared   the  

    Fig.5:  Activation  of  transcription  by  aa363-‐427  and  aa270-‐427  of  Drosophila  Caudal  fused  in  frame  downstream  

    of  the  Gal4-‐DBD.  Drosophila  S2R+  cells  were  transfected  with  the  indicated  Gal4  fusion  and  reporter  plasmids  and  

    assayed  for  luciferase  activity.  Error  bar  represent  the  SEM.    

     

  •  

    10    

    activity  of  the  untagged  Caudal  to  FLAG-tagged  Caudal  and  observed  no  differences).  The  GAL4-

    Cad  aa363-427  did  not  activate  the  GAL4  reporters.  The  GAL4-Cad  270-427  activated  the  reporters  

    but  without  any  preference   for  a  particular  core  promoter  motif.  Hence,  although   these  C-terminal  

    regions  of  Caudal  were  necessary  for  core  promoter  motif  preferential  activation,  they  do  not  seem  

    to  be  sufficient  to  confer  this  property  to  the  GAL4  fusion  proteins.  

    Future  plans  

    1.   To  test  transcriptional  activation  by  mCdx  protein  family  members  

    To  further  characterize  transcriptional  activation  by  mCdx  proteins  I  will  analyze  the  activation  of  

    the  Drosophila  giant  gene.  giant  (gt)  is  an  important  developmental  gene  that,  similarly  to  the  ftz  

    gene,  naturally  contains  Inr,  TATA  box  and  DPE  core  promoter  elements.  I  will  employ  two  types  

    of  gt  firefly  luciferase  reporter  genes:  driven  by  either  a  gt  promoter  containing  a  mutation  in  the  

    TATA  box  or  a  gt  promoter  containing  a  mutation  in  the  DPE  motif.  

     

    2.   To  examine  the  effect  of  the  polyQ  and  polyP  deletions  on  mCdx2  transcriptional  activation  

    To  date,  I  have  obtained  preliminary  results  of  transcriptional  activation  by  mCdx2  lacking  polyQ  

    and  polyP  stretches.  In  the  future  I  will  repeat  these  experiments  to  confirm  the  data.  In  addition,  

    I   will   compare   transcriptional   activation   by   mCdx2   deletion   mutants   to   wild   type   mCdx1   and  

    mCdx4.    

     

    3.   To  perform  Structure-function  analysis  of  Caudal  

    a.   To   examine   whether   the   C-terminal   regions   of   Drosophila   Caudal   are   sufficient   for  

    preferential  transcriptional  activation,  I  constructed  pAc-Gal4-Cad  expression  vector  in  which  

    the  Gal4  DNA-binding  domain   is   fused   in   frame   to   full   length  Caudal.  This  plasmid  will   be  

    used   as   positive   control   to   allow   for   a   better   comparison   of   the   results   of   Gal4-based  

    luciferase  assay.  

    b.   As  noted  above,  Matan  has  observed  that  deletions  of  aa399-420  and  aa363-427  of  Caudal  

    significantly  reduced  transcriptional  activation.  Sequence  analysis  of  these  regions  revealed  

    the  presence  of  a  short  polyglutamine  stretch   (a   total  of  5  Q  residues  over  9  aa)   in   the  C-

    terminal   part   of   the   protein.   To   investigate   the   influence   of   these   glutamine   residues   on  

    transcriptional   activation   by   Caudal,   I   constructed   a   Caudal   expression   plasmid   in   which  

    each  one  of  these  five  glutamine  residues  was  replaced  by  alanine.  Alanine  is  a  small,  non  -

    polar  amino  acid,  which  doesn't  cause  a  major  change  in  the  protein  structure.  In   intend  to  

    perform   transfections   followed   by   dual   luciferase   assays   in   S2R+   cells   to   compare   the  

    transcriptional   activation   of   this   mutated   Caudal   protein   to   the   full   Caudal   and   the   C-

    terminally  truncated  Caudal  proteins.  

  •  

    11    

    c.   To  rule  out  the  possibility  that  preferential  activation  of  some  Caudal  deletion  constructs  (e.g.  

    the  C-terminal   deletions)   results   from   instability   of   the  proteins,   I  will   perform  western   blot  

    analysis  using  anti-FLAG  antibodies.  

     

    4.   To  test  whether  Caudal  interacts  with  dCBP  (nejire)  

    Since   Caudal-binding   sites   are   located   hundred   of   base   pairs   upstream   of   the   activated  

    promoters,   it   is  of   interest   to  find  co-factors,  which  might  contribute  to  the   interaction  between  

    Caudal  and  the  promoter  region.  One  such  candidate  is  the  nejire  gene,  which  is  the  Drosophila  

    homolog   of   CBP   (CREB   (cyclic   AMP   response   element   binding   protein)   binding   protein).  

    CBP/p300   is   a   coactivator   that   can  mediate   target   gene   activation   through   direct   association  

    with  specific  general  transcription  factors  [46].  Cdx  2  has  been  shown  to  interact  with  p300  [47].  

    We  therefore  wanted  to  test  whether  Caudal  interacts  with  CBP.  Bacterial  expression  plasmids  

    encoding  different  motifs  of  dCBP  protein  fused  to  Glutathione-S-  transferase  [48]  were  kindly  

    provided  by  Dr.  Mattias  Mannervik  (University  of  Stockholm).  Due  to  the  large  size  of  the  dCBP  

    protein,   I   have   purified   fusion   proteins   of   different   dCBP  motifs   using   glutathione-Sepharose  

    beads   following   the   induction   of   the   GST-fusion   proteins.   I   intend   to   perform   in   vitro  

    transcription-translation   of   Caudal   in   the   presence   of   [35S]   methionine   and   test   the   ability   of  

    Caudal  to  directly  interact  with  dCBP  by  in  vitro  interaction  assays.  

     

     

     

     

     

     

     

     

     

     

     

     

  •  

    12    

    Materials  and  Methods  

    RNA  isolation  and  nested  PCR  

    Mouse   embryo   E7.5   was   used   for   RNA   extraction   using   the   Trizol   reagent   (Invitrogen).  

    Complementary  DNA  (cDNA)  was  generated  using  oligo  dT  primers.  Since  Cdx4  PCR  amplification  

    was   problematic,   a   nested   PCR   approach   was   used   with   the   following   primers:   Outer   primers:  

    forward   5'   CTCAGGATGGCTTAAGGGGC   3'   and   reverse   5'   GCCCCCATATGACAGCATGG   3';;  

    Inner   primers:   forward   5'   GCGGAATTCATGTATGGAAGCTGCCTTTTAG   3'   and   reverse   5'  

    TCGCGGCCGCTCATTCAGAAACTATGACCTGCTG   3'.   The   identity   of   the   nested   PCR   product  

    was  confirmed  by  sequencing.  

     

    Site  directed  mutagenesis  

    Deletions  of  polyQ  and  polyPQ  stretches   in  mCdx2  were   introduced  by  site  directed  mutagenesis  

    using  Stratagene’s  QuickChange  protocol.  To  confirm  I  generated  the  correct  constructs,  plasmids  

    were  sequenced  (Hy  Labs)  

     

    Primers  for  site  directed  mutagenesis:  

    Delta  aa247-257  (polyQ)  

    Primer  1:    

    5’aggaaaatcaagaagaagcctccacagccgccgcca3’  

    Primer  2  (complementary  to  primer  1):  

    5'  tggcggcggctgtggaggcttcttcttgattttcct3’  

     

    Delta  aa247-270  (polyPQ)  

    Primer  1:    

    5’aggaaaatcaagaagaagggtgccctgcggagcgtg  3’  

    Primer  2  (complementary  to  primer  1):  

    5'cacgctccgcagggcacccttcttcttgattttcct  3'  

     Transfections  and  reporter  gene  assays    Drosophila   Schneider   S2R+   adherent   cells   were   cultured   in   Schneider’s   Drosophila   Media  

    (Biological   Industries)   that   was   supplemented   with   10%   heat-inactivated   FBS.   Cells   were  

    transfected   in   24-well   plates   by   using   the  Escort   IV   reagent   (Sigma).   For   dual   luciferase   assays,  

    cells  were  plated  at  0.6  x  106cells  per  each  well  of  a  24-well  plate  one  day  prior  to  transfection.  The  

    firefly   luciferase   reporter   constructs   (60   ng)   were   cotransfected   with   the   Pol   III-Renilla   luciferase  

  •  

    13    

    reporter   (10   ng).  Media  was   replaced   the   next  morning   and   cells  were   harvested   36-48   hrs   post  

    transfection  and  assayed  for  dual  luciferase  activities,  as  specified  by  the  manufacturer  (Promega).  

    To  correct  for  transfection  efficiency,  the  firefly  luciferase  activity  of  each  sample  was  normalized  to  

    the  corresponding  Renilla  luciferase  activity.  Each  transfection  was  performed  in  triplicate.  

                                                   

     

     

     

     

     

     

     

     

     

  •  

    14    

    References  

    1.   Butler,  J.E.  and  J.T.  Kadonaga,  The  RNA  polymerase  II  core  promoter:  a  key  component  in  

    the  regulation  of  gene  expression.  Genes  Dev,  2002.  16(20):  p.  2583-92.  2.   Smale,  S.T.  and  J.T.  Kadonaga,  The  RNA  polymerase  II  core  promoter.  Annu  Rev  Biochem,  

    2003.  72:  p.  449-79.  3.   Orphanides,   G.,   T.   Lagrange,   and   D.   Reinberg,   The   general   transcription   factors   of   RNA  

    polymerase  II.  Genes  Dev,  1996.  10(21):  p.  2657-83.  4.   Thomas,  M.C.  and  C.M.  Chiang,  The  general  transcription  machinery  and  general  cofactors.  

    Crit  Rev  Biochem  Mol  Biol,  2006.  41(3):  p.  105-78.  5.   Dikstein,  R.,  The  unexpected   traits  associated  with  core  promoter  elements.  Transcription,  

    2011.  2(5):  p.  201-6.  6.   Sandelin,  A.,  et  al.,  Mammalian  RNA  polymerase  II  core  promoters:   insights  from  genome-

    wide  studies.  Nat  Rev  Genet,  2007.  8(6):  p.  424-36.  7.   Juven-Gershon,  T.  and  J.T.  Kadonaga,  Regulation  of  gene  expression  via  the  core  promoter  

    and  the  basal  transcriptional  machinery.  Dev  Biol,  2010.  339(2):  p.  225-9.  8.   Lifton,   R.P.,   et   al.,   The   organization   of   the   histone   genes   in   Drosophila   melanogaster:  

    functional  and  evolutionary  implications.  Cold  Spring  Harb  Symp  Quant  Biol,  1978.  42  Pt  2:  p.  1047-51.  

    9.   Smale,  S.T.  and  D.  Baltimore,  The  "initiator"  as  a   transcription  control  element.  Cell,  1989.  

    57(1):  p.  103-13.  10.   Gershenzon,   N.I.,   E.N.   Trifonov,   and   I.P.   Ioshikhes,   The   features   of   Drosophila   core  

    promoters  revealed  by  statistical  analysis.  BMC  Genomics,  2006.  7:  p.  161.  11.   Kaufmann,  J.  and  S.T.  Smale,  Direct  recognition  of  initiator  elements  by  a  component  of  the  

    transcription  factor  IID  complex.  Genes  Dev,  1994.  8(7):  p.  821-9.  12.   Burley,  S.K.  and  R.G.  Roeder,  Biochemistry  and  structural  biology  of  transcription  factor  IID  

    (TFIID).  Annu  Rev  Biochem,  1996.  65:  p.  769-99.  13.   Ohler,   U.,   et   al.,   Computational   analysis   of   core   promoters   in   the   Drosophila   genome.  

    Genome  Biol,  2002.  3(12):  p.  RESEARCH0087.  14.   Yang,  C.,  et  al.,  Prevalence  of  the  initiator  over  the  TATA  box  in  human  and  yeast  genes  and  

    identification   of   DNA   motifs   enriched   in   human   TATA-less   core   promoters.   Gene,   2007.  

    389(1):  p.  52-65.  15.   Burke,   T.W.   and   J.T.   Kadonaga,   The   downstream   core   promoter   element,   DPE,   is  

    conserved   from  Drosophila   to  humans  and   is   recognized  by  TAFII60  of  Drosophila.  Genes  

    Dev,  1997.  11(22):  p.  3020-31.  

  •  

    15    

    16.   Kutach,  A.K.  and  J.T.  Kadonaga,  The  downstream  promoter  element  DPE  appears  to  be  as  

    widely  used  as  the  TATA  box  in  Drosophila  core  promoters.  Mol  Cell  Biol,  2000.  20(13):  p.  4754-64.  

    17.   Burke,  T.W.  and  J.T.  Kadonaga,  Drosophila  TFIID  binds  to  a  conserved  downstream  basal  

    promoter  element  that  is  present  in  many  TATA-box-deficient  promoters.  Genes  Dev,  1996.  

    10(6):  p.  711-24.  18.   Blackwood,  E.M.  and  J.T.  Kadonaga,  Going  the  distance:  a  current  view  of  enhancer  action.  

    Science,  1998.  281(5373):  p.  60-3.  19.   Marsman,   J.   and   J.A.   Horsfield,   Long   distance   relationships:   Enhancer-promoter  

    communication  and  dynamic  gene  transcription.  Biochim  Biophys  Acta,  2012.  1819(11-12):  p.  1217-27.  

    20.   Butler,   J.E.   and   J.T.   Kadonaga,  Enhancer-promoter   specificity  mediated   by  DPE  or   TATA  

    core  promoter  motifs.  Genes  Dev,  2001.  15(19):  p.  2515-9.  21.   Juven-Gershon,  T.,  J.Y.  Hsu,  and  J.T.  Kadonaga,  Caudal,  a  key  developmental  regulator,  is  

    a  DPE-specific  transcriptional  factor.  Genes  Dev,  2008.  22(20):  p.  2823-30.  22.   Lagrange,   T.,   et   al.,   New   core   promoter   element   in   RNA   polymerase   II-dependent  

    transcription:   sequence-specific  DNA  binding  by   transcription   factor   IIB.  Genes  Dev,  1998.  

    12(1):  p.  34-44.  23.   Krumlauf,  R.,  Hox  genes  in  vertebrate  development.  Cell,  1994.  78(2):  p.  191-201.  24.   Hayashi,   S.   and   M.P.   Scott,   What   determines   the   specificity   of   action   of   Drosophila  

    homeodomain  proteins?  Cell,  1990.  63(5):  p.  883-94.  25.   Brooke,   N.M.,   J.   Garcia-Fernandez,   and   P.W.   Holland,   The   ParaHox   gene   cluster   is   an  

    evolutionary  sister  of  the  Hox  gene  cluster.  Nature,  1998.  392(6679):  p.  920-2.  26.   Mlodzik,  M.  and  W.J.  Gehring,  Expression  of  the  caudal  gene  in  the  germ  line  of  Drosophila:  

    formation  of  an  RNA  and  protein  gradient  during  early  embryogenesis.  Cell,  1987.  48(3):  p.  465-78.  

    27.   Macdonald,  P.M.   and  G.  Struhl,  A  molecular   gradient   in   early  Drosophila   embryos  and   its  

    role  in  specifying  the  body  pattern.  Nature,  1986.  324(6097):  p.  537-45.  28.   Dearolf,  C.R.,   J.   Topol,   and  C.S.  Parker,  The   caudal   gene   product   is   a   direct   activator   of  

    fushi   tarazu   transcription   during   Drosophila   embryogenesis.   Nature,   1989.   341(6240):   p.  340-3.  

    29.   Rivera-Pomar,   R.,   et   al.,   Activation   of   posterior   gap   gene   expression   in   the   Drosophila  

    blastoderm.  Nature,  1995.  376(6537):  p.  253-6.  30.   Rivera-Pomar,   R.   and   H.   Jackle,  From   gradients   to   stripes   in   Drosophila   embryogenesis:  

    filling  in  the  gaps.  Trends  Genet,  1996.  12(11):  p.  478-83.  

  •  

    16    

    31.   Wu,  L.H.  and  J.A.  Lengyel,  Role  of  caudal  in  hindgut  specification  and  gastrulation  suggests  

    homology   between   Drosophila   amnioproctodeal   invagination   and   vertebrate   blastopore.  

    Development,  1998.  125(13):  p.  2433-42.  32.   Chawengsaksophak,   K.,   et   al.,   Homeosis   and   intestinal   tumours   in   Cdx2   mutant   mice.  

    Nature,  1997.  386(6620):  p.  84-7.  33.   Gamer,   L.W.   and   C.V.   Wright,  Murine   Cdx-4   bears   striking   similarities   to   the   Drosophila  

    caudal  gene  in   its  homeodomain  sequence  and  early  expression  pattern.  Mech  Dev,  1993.  

    43(1):  p.  71-81.  34.   Lohnes,   D.,   The   Cdx1   homeodomain   protein:   an   integrator   of   posterior   signaling   in   the  

    mouse.  Bioessays,  2003.  25(10):  p.  971-80.  35.   Shashikant,   C.S.,   et   al.,   Regulation   of   Hoxc-8   during   mouse   embryonic   development:  

    identification   and   characterization   of   critical   elements   involved   in   early   neural   tube  

    expression.  Development,  1995.  121(12):  p.  4339-47.  36.   Lafontaine,   C.A.,   et   al.,   Cdx1   Interacts   Physically   with   a   Subset   of   Hox   Proteins.  

    Biochemistry,  2012.  

    37.   Charite,  J.,  et  al.,  Transducing  positional  information  to  the  Hox  genes:  critical  interaction  of  

    cdx  gene  products  with  position-sensitive  regulatory  elements.  Development,  1998.  125(22):  p.  4349-58.  

    38.   Meyer,  B.I.  and  P.  Gruss,  Mouse  Cdx-1  expression  during  gastrulation.  Development,  1993.  

    117(1):  p.  191-203.  39.   Beck,   F.,   et   al.,  Expression   of  Cdx-2   in   the  mouse   embryo   and   placenta:   possible   role   in  

    patterning  of  the  extra-embryonic  membranes.  Dev  Dyn,  1995.  204(3):  p.  219-27.  40.   van  Nes,   J.,  et  al.,  The  Cdx4  mutation  affects  axial  development  and   reveals  an  essential  

    role  of  Cdx  genes  in  the  ontogenesis  of  the  placental  labyrinth  in  mice.  Development,  2006.  

    133(3):  p.  419-28.  41.   Subramanian,  V.,  B.I.  Meyer,  and  P.  Gruss,  Disruption  of  the  murine  homeobox  gene  Cdx1  

    affects   axial   skeletal   identities   by   altering   the   mesodermal   expression   domains   of   Hox  

    genes.  Cell,  1995.  83(4):  p.  641-53.  42.   McGinnis,  W.  and  R.  Krumlauf,  Homeobox  genes  and  axial  patterning.  Cell,  1992.  68(2):  p.  

    283-302.  

    43.   Gatchel,   J.R.   and   H.Y.   Zoghbi,  Diseases   of   unstable   repeat   expansion:   mechanisms   and  

    common  principles.  Nat  Rev  Genet,  2005.  6(10):  p.  743-55.  44.   Emili,   A.,   J.   Greenblatt,   and   C.J.   Ingles,  Species-specific   interaction   of   the   glutamine-rich  

    activation  domains  of  Sp1  with  the  TATA  box-binding  protein.  Mol  Cell  Biol,  1994.  14(3):  p.  1582-93.  

  •  

    17    

    45.   Schaefer,   M.H.,   E.E.   Wanker,   and   M.A.   Andrade-Navarro,   Evolution   and   function   of  

    CAG/polyglutamine  repeats  in  protein-protein  interaction  networks.  Nucleic  Acids  Res,  2012.  

    40(10):  p.  4273-87.  46.   Kwok,  R.P.,   et   al.,  Nuclear  protein  CBP   is  a   coactivator   for   the   transcription   factor  CREB.  

    Nature,  1994.  370(6486):  p.  223-6.  47.   Hussain,   M.A.   and   J.F.   Habener,   Glucagon   gene   transcription   activation   mediated   by  

    synergistic   interactions  of   pax-6  and   cdx-2  with   the  p300  co-activator.   J  Biol  Chem,  1999.  

    274(41):  p.  28950-7.  48.   Carninci,   P.,   et   al.,   Genome-wide   analysis   of   mammalian   promoter   architecture   and  

    evolution.  Nat  Genet,  2006.  38(6):  p.  626-35.