John P. Holdren

56
John P. Holdren Assistant to the President for Science and Technology and Director, Office of Science and Technology Policy Executive Office of the President of the United States Lectio Magistralis University of Meeting the Energy-Economy- Environment Challenge

description

Meeting the Energy-Economy-Environment Challenge. John P. Holdren Assistant to the President for Science and Technology and Director, Office of Science and Technology Policy Executive Office of the President of the United States - PowerPoint PPT Presentation

Transcript of John P. Holdren

Page 1: John P. Holdren

John P. HoldrenAssistant to the President for Science and Technology

and Director, Office of Science and Technology Policy Executive Office of the President of the

United States

Lectio Magistralis University of Rome “Tor Vergata” • 12 November 2010

Meeting the Energy-Economy-Environment Challenge

Page 2: John P. Holdren

Why is energy important?

Because…

• economic well-being is important,

• environment is important,

• politics are important, and…

Energy is closely tied to all of these.

Page 3: John P. Holdren

Economically…

• Affordable energy = crucial ingredient of sustained prosperity & sustainable development.

• Energy ~6-10% of GDP, 10% of world trade, and a large part of trade deficits in importing countries

• Costly energy → inflation, recession, frustration of economic aspirations of the poor.

• Investments in energy-supply systems ~$800 billion/yr worldwide; up to15% of gross domestic investment in developing countries.

Page 4: John P. Holdren

Environmentally…

• Energy supply = major contributor to dangerous & difficult environmental problems from local to global

• Specifically, energy supply is source of

– most indoor and outdoor air pollution

– much of the hydrocarbon and trace-metal pollution of soil and ground water

– essentially all of the oil added by humans to the seas

– most radioactive waste

– most of the society’s emissions of the greenhouse gases that are disrupting global climate.

Page 5: John P. Holdren

Politically…• Energy availability & cost influence distribution of industry &

population within & among countries, affecting distribution of influence and generating tensions from inequities.

• Oil & gas are so important to economies that suppliers can use cut-offs as a weapon, and importers may threaten or wage war to gain or maintain access.

• Spread of nuclear-energy technologies spreads access to nuclear-weapon capabilities

• Energy systems are “force-multiplier” targets for terrorists.

• Internal & international tensions & upheavals can result from energy-strategy inadequacies that threaten, create, or perpetuate economic or environmental impoverishment.

Page 6: John P. Holdren

The Challenge in Theory

Page 7: John P. Holdren

Energy strategy must meet multiple aims

ECONOMIC AIMS

• reliably deliver fuel & electricity for basic human needs, amenities, jobs, & economic growth

• limit costs of energy to firms & consumers

• limit cost & vulnerability from imported oil

• help provide energy basis for economic growth in other countries (for markets, stability)

Page 8: John P. Holdren

The multiple aims (continued)

ENVIRONMENTAL AIMS

• improve urban and regional air quality

• avoid nuclear-reactor accidents & waste-mgmt mishaps

• limit impacts of energy development on fragile ecosystems

• limit greenhouse-gas contribution to climate-change risks

Page 9: John P. Holdren

The multiple aims (concluded)

POLITICAL AIMS

• minimize dangers of conflict over oil & gas and vulnerability to foreign-policy blackmail

• avoid nuclear-weapons spread from nuclear energy

• avoid energy blunders that perpetuate or create deprivation in other countries

• avoid imposing disproportionate energy burdens on particular constituencies

• reduce vulnerability of energy systems to terrorist attack

Page 10: John P. Holdren

Why energy strategy is difficult

• The aims are often in tension with each other.

• It’s an initial-value problem, not an equilibrium problem

– This means hardest part is not describing a system that does better, but getting from here to there.

– And the “initial values” (and rates of change) now are unfavorable for desired outcomes, especially in relation to the problems of oil dependence and global climate disruption from fossil-fuel use.

• There’s no technological silver bullet.

Page 11: John P. Holdren

The Challenge in Practice

Where we’ve been and where we’re headed

Page 12: John P. Holdren

World Energy 1850-2000

050

100150200250300350400450500

1850 1875 1900 1925 1950 1975 2000

Year

EJ/

yea

r

Gas

Oil

Coal

Nuclear

Hydro +

Biomass

Growth of world population & prosperity over past 150 years brought 20-fold increase in energy use

Growth rate 1850-1950 was 1.45%/yr, driven mainly by coal. From 1950-2000 it was 3.15%/yr, driven mainly by oil & natural gas.

Page 13: John P. Holdren

Energy, economy, & CO2 in 2008

population ppp-GDP energy fossil E fossil CO2

(millions) (trillion $) (EJ) (percent) (MtC)

World 6692 69.7 545 82% 8390

China 1326 7.9 99 85% 1910

USA 304 14.2 105 86% 1670

Russia 142 2.3 30 91% 440

India 1140 3.4 29 64% 390

Brazil 192 2.0 10 58% 100

Page 14: John P. Holdren

WEO 2007

Where we’re headed: by 2030, energy +60% over 2005, electricity +75%, continued fossil dominance

Primary energy: recent history & business-as-usual forecast

Page 15: John P. Holdren

WEO 2007

Projected growth of oil use for road transport in Asia is particularly large

Page 16: John P. Holdren

WEO 2007

These oil demands are projected to be met mainly by imports

Page 17: John P. Holdren

Coal use for electric power is projected to grow rapidly Coal-fired capacity, GWe, 2005 & USEIA projection

USA China India World

2005 314 299 79 1214 2010 320 478 96 1451

2020 349 756 140 1849

2030 414 1034 173 2295

Source: US EIA, International Energy Outlook 2008

World coal-electric capacity goes up almost 1100 GWe by 2030, and over 800 GWe of the increase is in China and India.

Page 18: John P. Holdren

What’s problematic about this future?

Page 19: John P. Holdren

The problem is not “running out” of energySome mid-range estimates of world energy resources. Units are terawatt-years (TWy). Current world energy use is ~17 TWy/year.

OIL & GAS, CONVENTIONAL 1,000UNCONVENTIONAL OIL & GAS (excluding clathrates) 2,000COAL 5,000METHANE CLATHRATES 20,000OIL SHALE 30,000

URANIUM in conventional reactors 2,000 ...in breeder reactors 2,000,000

FUSION (if the technology succeeds) 250,000,000,000

RENEWABLE ENERGY (available energy per year)sunlight on land 30,000energy in the wind 2,000energy stored by photosynthesis (net) 120

Page 20: John P. Holdren

Nor is the problem running out of money

International Energy Agency, World Energy Outlook 2009

This is only ~1% of projected Gross World Product for the period, and only about 5% of projected world investment. Could reach 15% of investment in developing countries.

Page 21: John P. Holdren

Real problems: tensions among aims

• cost minimization vs. modernization, increased robustness & reliability, environmental improvements

• increased domestic fossil-fuel production (for security & economy) vs. protection of fragile ecosystems

• increased nuclear-energy production (for greenhouse-gas abatement) vs. reducing risks of accidents & terrorism

Page 22: John P. Holdren

Real problems: the economic, political, & security risks of fossil-fuel dependence

• Increasing dependence on imported oil & natural gas means

economic vulnerability, as well as international tensions and

potential for conflict over access & terms.

• Coal burning for electricity and industry and oil burning in

vehicles are main sources of severe urban and regional air

pollution – SOx, NOx, hydrocarbons, soot – with big impacts on

public health, acid precipitation.

• Emissions of CO2 from all fossil-fuel burning are largest driver

of global climate disruption, already associated with increasing

harm to human well-being and rapidly becoming more severe.

Page 23: John P. Holdren

Real problems: Alternatives to conventional fossil fuels all have liabilities & limitations• traditional biofuels (fuelwood, charcoal, crop wastes,

dung) create huge indoor air-pollution hazard• industrial biofuels (ethanol, biodiesel) can take land from

forests & food production, increase food prices• hydropower and wind are limited by availability of suitable

locations, conflicts over siting• solar energy is costly and intermittent• nuclear fission has large requirements for capital & highly

trained personnel, currently lacks agreed solutions for radioactive waste & links to nuclear weaponry

• nuclear fusion doesn’t work yet• coal-to-gas and coal-to-liquids to reduce oil & gas imports

doubles CO2 emissions per GJ of delivered fuel

• increasing end-use efficiency needs consumer education!

Page 24: John P. Holdren

The two biggest energy challenges

• Reducing urban & regional air pollution and the dangers of overdependence on oil despite growing global demand from the transportation system (which accounts for most oil use in USA & elsewhere)

• Providing the affordable energy needed to create & sustain prosperity everywhere without wrecking the global climate with carbon dioxide emitted by fossil-fuel burning

Page 25: John P. Holdren

The oil challenge: supply & security• USA in 2008 used 21 million barrels per day of oil,

importing 66% of it.

• Forecasts show US oil use rising to 28 Mb/d by 2030, with all of the increase coming from imports.

• World used 82 Mb/d in 2008, 63% of it traded internationally.

• Consumption forecasted to rise from 82 Mb/d in 2008 to 120 Mb/d in 2030.

• China’s imports by 2030 expected to pass 12 Mb/d.

• It remains true that most of the world’s known & suspected oil resources are in the Middle East.

Page 26: John P. Holdren

USA is biggest guzzler, but Asia is growing

The Asia-Pacific region accounted for 30% of world oil consumption in 2005

Page 27: John P. Holdren

The oil challenge: environment

• Most oil is used in transport vehicles, and these

are the largest sources of NOx and hydrocarbon

air pollution.

• The number of cars in the world is soaring,

producing increased congestion and even more

pollution.

• Combustion of petroleum fuels accounts for

about 40% of CO2 emissions from energy –

same as coal – and this is expected to continue.

Page 28: John P. Holdren

Wet and dry reactive nitrogen deposition from the atmosphere, early 1990s and projected for 2050

Acid precipitation under BAU energy growth

Page 29: John P. Holdren

The climate-change challenge

• Global climate is changing rapidly and humans are responsible for most of the change.

• CO2 emissions are the largest driver & 75-85% of these come from combustion of fossil fuels (the rest from deforestation).

• Fossil CO2 emissions are immense (~31 billion tons/yr in 2008) & difficult to capture & store.

• The world’s 80%-fossil-fuel-dependent energy system represents a $20+ trillion capital invest-ment that takes 30-40 years to turn over.

• Avoiding biggest risks requires sharply reducing CO2/energy ratio starting immediately.

Page 30: John P. Holdren

Green bars show 95% confidence intervals

2005 was the hottest year on record; 2007 tied with 1998 for 2nd hottest; 14 hottest all occurred since 1990

http://data.giss.nasa.gov/gistemp/graphs/

The Earth is getting hotter

Green bars show 95% confidence intervals

2005 was the hottest year on record; 2009 2nd; 2007 tied with 1998 for 3rd; 15 hottest all occurred since 1990

Page 31: John P. Holdren

Source: Hansen et al., Science 308, 1431, 2005.

We know why

Top panel shows best estimates of human & natural forcings 1880-2005.

Bottom panel shows that state-of-the-art climate model, fed these forcings, reproduces almost perfectly the last 125 years of observed temperatures.

Page 32: John P. Holdren

Harm is already occurring: US wildfires

Source: Westerling et al., SCIENCE, 2006

Western US area burned

Wildfires in the Western USA have increased 6-fold in the last 30 years. Similar trends are evident in other fire-prone regions.

Page 33: John P. Holdren

Harm is already occurring: pest outbreaks

USGCRP 2009

Pine bark beetles, with a longer breeding season courtesy of warming, devastate trees weakened by heat & drought in Colorado

Page 34: John P. Holdren

Harm is already occurring: Melting permafrost

Norwegian Polar Institute, 2009

Page 35: John P. Holdren

Harm is already occurring: coastal erosion

Page 36: John P. Holdren

Harm is already occurring widely

Worldwide we’re seeing, variously, increases in• floods• wildfires• droughts• heat waves• pest outbreaks• coral bleaching events• power of typhoons & hurricanes• geographic range of tropical pathogens

All plausibly linked to climate change by theory, models, and observed “fingerprints”

Page 37: John P. Holdren

Bigger impacts are in store under BAU

Last time T was 2ºC above 1900 level was 130,000 yr BP, with sea level 4-6 m higher than today.

Last time T was 3ºC above 1900 level was ~30 million yr BP, with sea level 20-30 m higher than today.

Note: Shaded bands denote 1 standard deviation from mean in ensembles of model runs

IPCC 2007

EU target ∆T ≤ 2ºC

IPCC Scenarios

Page 38: John P. Holdren

What’s expected: Heat waves Extreme heat waves in Europe, already 2X more frequent because of global heating, will be “normal” in mid-range scenario by 2050

Black lines are observed temps, smoothed & unsmoothed; red, blue, & green lines are Hadley Centre simulations w natural & anthropogenic forcing; yellow is natural only.

Asterisk and inset show 2003 heat wave that killed 35,000.

Stott et al., Nature 432: 610-613 (2004)

Page 39: John P. Holdren

What’s expected: declining crop yields

National Academies, Stabilization Targets, 2010

Page 40: John P. Holdren

More harm is coming: acidifying the oceans

Steffen et al., 2004

About 1/3 of CO2 added to atmosphere is quickly taken up by the surface layer of the oceans (top 80 meters).

This lowers pH as dissolution of CO2 forms weak carbonic acid (H2O + CO2 H2CO3).

Increased acidity lowers the availability of CaCO3 to organisms that use it for forming their shells & skeletons, including corals.

Page 41: John P. Holdren

Courtesy Jeffrey Bielicki, Kennedy School of Government

What would 1-70 m of sea-level rise do to your region?

What’s expected: Sea level could rise 1-2 meters by 2100, 3-12 m in the next few hundred years, up to 70 m eventually.

Page 42: John P. Holdren

What should we do?

Page 43: John P. Holdren

What to do: Oil

• Improve & promote rail & other public transporta-tion + land-use planning for shorter commutes.

• Strengthen vehicle fuel-economy standards

• Provide manufacturer & consumer incentives to promote production & increased use of advanced diesel & hybrid-electric vehicles.

• Accelerate development & deployment of non-petroleum transportation-fuel alternatives.

• Build international cooperation to promote alternatives to expanded oil use in all countries.

Page 44: John P. Holdren

What to do: Climate changeThere are only three options:

• Mitigation, meaning measures to reduce the pace & magnitude of the changes in global climate being caused by human activities.

• Adaptation, meaning measures to reduce the adverse impacts on human well-being resulting from the changes in climate that do occur.

• Suffering the adverse impacts that are not avoided by either mitigation or adaptation.

Page 45: John P. Holdren

Mitigation & adaptation are both essential

• No feasible amount of mitigation can stop climate change in its tracks.

• Adaptation efforts are already taking place and must be expanded.

• But adaptation becomes costlier & less effective as the magnitude of climate changes grows.

• We need enough mitigation to avoid unmanage-able climate change, enough adaptation to manage the degree of change that’s unavoidable.

Page 46: John P. Holdren

Adaptation possibilities include…• Changing cropping patterns

• Developing heat-, drought-, and salt-resistant crop varieties

• Strengthening public-health & environmental-engineering defenses against tropical diseases

• Building new water projects for flood control & drought management

• Building dikes and storm-surge barriers against sea-level rise

• Avoiding further development on flood plains & near sea level Some are “win-win”: They’d make sense in any case.

Page 47: John P. Holdren

Mitigation possibilitiesCERTAINLY

• Reduce emissions of greenhouse gases & soot from the energy sector

• Reduce deforestation; increase reforestation & afforestation

• Modify agricultural practices to reduce emissions of greenhouse gases & build up soil carbon

CONCEIVABLY

• “Geo-engineering” to create cooling effects offsetting greenhouse heating (white roofs...)

• “Scrub” greenhouse gases from the atmosphere technologically

Page 48: John P. Holdren

How much mitigation is enough?

• 550 ppmv CO2-e (50% chance of ΔTavg < 3 C) ⁰looks unlikely to avoid unmanageable change

• 450 ppmv CO2-e (50% chance of ΔTavg < 2 C) ⁰would be more prudent

• Achieving 450 ppmv requires that...

– global emissions level off by ~2020 and decline thereafter to ~50% below 2000 emissions by 2050.

– emissions in USA & other industrial countries level off by 2015 and decline thereafter to ~80% below 2000 emissions by 2050.

Page 49: John P. Holdren

Mitigation costs & quantities for a 450 ppm track as of 2030

Page 50: John P. Holdren

Costs and quantities: the fruit-tree metaphor

Need to remove barriers to picking this low-hanging fruit

Need C price to motivate reaching higher into the tree

Need RD&D to lower the fruit into reach

Page 51: John P. Holdren

Thus, a comprehensive policy would…

• Remove barriers to wider use of mitigation & adap-tation options that already make economic sense

• Use market-based mechanisms (preferred) & regu-lation (2nd-best) to value emissions reductions

• Fund & promote additional RD&D – especially thru public-private-academic partnerships -- to bring advanced, climate-friendly energy options into economic reach; also research on adaptation.

• Pursue additional international agreements – bilateral, multilateral, & global – on targets and cooperation for mitigation and adaptation

Page 52: John P. Holdren

What can energy RD&D bring?• Improved batteries & fuel cells

• Cleaner, more fuel-efficient motor vehicles

• More energy-efficient commercial & residential buildings and industrial processes

• Biofuels that don’t compete with food & forests

• Cheaper photovoltaic cells

• Improved coal technologies to make electricity & hydrogen with CO2 capture & storage

• Advanced nuclear reactors with increased safety and proliferation-resistant fuel cycles

Page 53: John P. Holdren

The Obama administration’s strategy

• Promote recognition that this isn’t “energy & climate policy versus the economy” but “energy & climate policy for the economy”.– costs of action to address climate will be far smaller

than costs of inaction– we can reduce costly and risky oil imports and

dangerous air pollution with the same measures we employ to reduce climate-disrupting emissions

– the surge of innovation we need in clean-energy technologies and energy efficiency will create new businesses & new jobs and help drive economic recovery, growth, and global competitiveness.

Page 54: John P. Holdren

The Administration’s strategy (continued)

ACTIONS TO DATE• $80 billion for clean & efficient energy in ARRA• creation of ARPA-E ($400M in 2009-10, $300M

proposed for 2011), energy-innovation hubs• first-ever fuel-economy/CO2 tailpipe standards • strengthened bilateral partnerships on energy &

climate change w China, India, Brazil, Russia…• US Global Change Research Program increased to

$2.56 billion for FY2011 (19.4% real increase).• Inter-agency task force led by OSTP, CEQ, NOAA on

coordination of government’s adaptation activities

Page 55: John P. Holdren

The Administration’s strategy (continued)

GOING FORWARD

• Work with Congress to get energy & climate legislation that will put the USA on the needed emissions trajectory with minimum economic & social cost and maximum co-benefits.

– After November 2011 elections, this became more difficult.

• Work with other major emitting countries – industrialized & developing – to build technology cooperation and individual & joint climate policies consistent with “avoiding the unmanageable”

• Develop adaptation strategies and capacities domestically and internationally to “manage the unavoidable”.

Page 56: John P. Holdren

For all these efforts, it helps to have a President with vision!

“Astronomy for Kids on the White House Lawn”, October 7, 2009