John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational...

26
John Carroll 1

Transcript of John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational...

Page 1: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

John Carroll

1

Page 2: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

The Heisenberg uncertainty principle.Some quick particle physics.Beta decay example.

The Pauli exclusion principle.The existence of energy bands.

Classical conductance.Why it is inaccurate.

Quantum conductance.SuperconductorsEffects of quantum conductance. 

2

Page 3: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

The uncertainty principle state the position and momentum as well as energy and time cannot be measured with absolute certainty.It further states that as the probability distribution of one begins to narrow the other will in turn broaden.

Werner Heisenberg

3

Page 4: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

4

Δx Δp

ΔE Δt

ΔpΔx

ΔE Δt

Δx Δp

ΔE Δt

Δx Δp

ΔE Δt

Δx Δp

ΔE Δt

Δx Δp

ΔE Δt

Δx Δp

ΔE Δt

Δx Δp

ΔE Δt

Δx Δp

ΔE Δt

ħ ⁄2

ħ ⁄2

Where ħ = h/2π and Planck’s constant h=6.626 J∙s

Page 5: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

What particles make up protons and neutrons?Quarks

UpDown Top BottomCharmStrange

The universe is governed by what forces?Strong nuclearElectromagneticWeak nuclearGravitation 5

Page 6: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

The standard model successfully predicted the existence of several particles before they were observed.The model also predicts the existence of the graviton and the Higg’s boson.

6

Page 7: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

7

NeutronProtonMass = 938MeV/c2 Mass = 940MeV/c2

Mass of quarks = 9.6MeV/c2 Mass of quarks = 12MeV/c2

Page 8: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

8

940MeV/c2 80,400MeV/c2 938MeV/c2

A difference of 79,460MeV/c2

ħ/2 = 3.29 ∙ 10‐16 eV∙s

ΔE ∙ Δt ≥ 3.29 ∙ 10‐16 eV∙s 

80.4 ∙109 eV/c2∙ Δt ≥ 3.29 ∙ 10‐16 eV∙s 

The W‐ boson exists for 4.10 ∙ 10‐27s.  If the particle traveled at the speed of light it could travel 1.2 ∙ 10‐18m. That is 1/1000th the diameter of a proton.

Page 9: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

Quantum numbers are used to describe the state of a particle on the quantum level.They are most often used to describe the electrons in an atom or molecule.

9

Wolfgang Pauli

Quantum Number Description

•The energy shell is described by the value n.•The sub‐shell is denoted by ℓ.•Each particle has an angular momentum as denoted by mℓ.•The spin of the particle is described by the value of ms.

Page 10: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

The principle states that no two identical fermions in a quantum system can occupy the same quantum state at the exact same time.This means that two atoms within the same system (molecule, crystalline lattice, etc.) cannot have the electrons with identical energies.The electrons of identical atoms in the same system will take on slightly different energies to satisfy this principle.This is how energy bands are formed.

10

Page 11: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

11

ΔE

Page 12: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

Metals are good electrical conductors and must have free electrons.The free electrons act like a gas and move in all directions though the lattice.Their average velocity is zero but their speed is very high.The electrons collide with ions in the lattice.The motion of the electrons gives rise to Ohm’s law.

12

Page 13: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

The random motion of the electrons can be effected by an external electric field.The force is proportional to the product of e, the charge of an electron and ε, the electric field.Under this force the electrons accelerate forward in accordance with Newton’s second law.Electrons will proceed until they collide with lattice ions transferring kinetic energy to them creating heat.They will accelerate again. This cycle is called the drift velocity.

13

Page 14: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

The math developed from the classical assumptions does not match the experimental results.The classical model treats the electrons as particles only, where as they are shown the act as both a particle and wave.This model also predicts that particles at absolute zero will have zero velocity.It also does not take into account the principles of quantum mechanics that have been shown to be experimental true (Heisenberg, Pauli Principle).

14

Page 15: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

15

By definition the conductance is defined as:

G = IΔV

Current per potential difference

Page 16: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

16

Current is defined as:

I =nqΔt

Where n is the number of electrons and q is the charge of an electron

Potential difference is defined as:

ΔV =ΔUq

Where n is the number of electrons and U is the electrostatic charge

Page 17: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

17

G = IΔV

I =nqΔt

ΔV =ΔUq

ΔUq

nqΔt

ΔUΔtnq2 Uncertainty 

Principle

ΔU  is a measure of energy

G ≥ nq2

ħ2

G ≥ 2nq2

ħ

R =  1G

R ≥ 1027.3 Ω

R ≥ 12.9 kΩ when the equation ΔE∙Δt ≥ h is used for the uncertainty principle.

Page 18: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

In the quantum system electrons propagate as waves.The electrons get energy from collisions with ions. The ions have an energy of kT and only the electrons that are within kT of the Fermi level can be promoted to the conduction band.The exclusion principle dictates that there will only be a few electrons at that level.Thermal vibrations cause scattering of the electrons.

18

Page 19: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

19

What about superconductors?

Page 20: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

If there is a minimum resistance for a conductor than how do superconductors break the rule?BCS theory says that a pair of electrons condensate into a boson like state.The exclusion principle applies to the fermions.Bosons are not subject to the same rules as fermions.

20

Page 21: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

Consider a clock speed of 3GHz.This would require as many as 3∙109 electrons to pass though a single molecule transistor.The current required to support this clock speed would be focused onto a very small area which could exceed the energy of the molecular bonds.

21

What we need

1 amp = 6.242∙1018 e‐/s

1A = 1C/1s

V=IR

V=1J/1C

R=1027.3Ω

e‐ = 1.602∙10‐19 C

Page 22: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

22

3∙109 e‐ pass per second3∙109 e‐

6.242∙1018 e‐/A

4.8062∙10‐10 A

V = 1027.3Ω ∙ 4.8062∙10‐10 A 4.9374∙10‐7 V

1.602∙10‐19 C/e‐ ∙ 3 ∙109 e‐ 4.806∙10‐10C

V = JC

J = V∙C  4.9374 ∙10‐7 V ∙ 4.806∙10‐10C 2.3729∙10‐16J

Page 23: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

23

Carbon‐Carbon bond strength = 606.68 kJ/mol

606.68 kJ/mol6.022∙1023 bonds/mol

1.0074∙10‐18 J/bond

The electrons have enough energy at a 3 GHz switching speed to break the carbon‐carbon bond

Recall that the electrons have an energy of 2.3729∙10‐16 J

Page 24: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

24

Page 25: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

Metallic Nano‐Scale Conductors – Nebergall (2006)Charge Deficiency, Charge Transport and Comparison of Dimensions – Avron, Seiler, Simon (2009)International Technology Roadmap  for  Semi‐conductors 2007 EditionIntroduction to Quantum Mechanics 2nd Edition ‐ Griffiths (2005)Modern Physics 2nd Edition – Krane (1996)Physical Chemistry 7th Edition – Atkins, de Paula (2002)www.en.wikipedia.orgwww.images.google.com

25

Page 26: John Carroll - Rowan Universityusers.rowan.edu/~krchnavek/rowan_university...yInternational Technology Roadmap for Semi‐conductors 2007 Edition yIntroduction to Quantum Mechanics

26