JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf ·...

72
Thermodynamic and Transport Proper2es of StronglyCoupled Degenerate Electron Ion Plasma by FirstPrinciple Approaches Levashov P.R. Joint Ins1tute for High Temperatures, Moscow, Russia Moscow Ins1tute of Physics and Technology, Dolgoprudny, Russia *[email protected] JIHT RAS In collabora1on with: Minakov D.V. Knyazev D.V. Chentsov A.V. Khishchenko K.V.

Transcript of JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf ·...

Page 1: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Thermodynamic  and  Transport  Proper2es  of  Strongly-­‐Coupled  Degenerate  Electron-­‐Ion  Plasma  by  First-­‐Principle  Approaches  

Levashov  P.R.    

Joint  Ins1tute  for  High  Temperatures,  Moscow,  Russia  Moscow  Ins1tute  of  Physics  and  Technology,  Dolgoprudny,  Russia  

 *[email protected]  

 

JIHT  RAS  

In  collabora1on  with:    Minakov  D.V.            Knyazev  D.V.            Chentsov  A.V.            Khishchenko  K.V.    

Page 2: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Outline  

•  Strongly  coupled  degenerate  plasma  •  Ab-­‐ini1o  calcula1ons  •  Quantum-­‐sta1s1cal  models  •  Density  func1onal  theory  •  Quantum  molecular  dynamics  •  Path-­‐Integral  Monte  Carlo  •  Wigner  dynamics  •  Conclusions  

JIHT  RAS  

Page 3: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Ab-­‐ini2o  calcula2ons  

•  Thermodynamic,  transport  and  op1cal  proper1es  

•  Use  the  following  informa1on:  –  fundamental  physical  constants  – charge  and  mass  of  nuclei  –  thermodynamic  state  

JIHT  RAS  

Page 4: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Extreme  States  of  MaCer  

•  Kirzhnits  D.A.,  Phys.  Usp.,  1971  •  Atomic  system  of  units:  

–             me  =  ħ  =  a0  =  1  •  Extreme  States  of  MaXer  (Kalitkin  N.N.)  

–     –         –     

•  Hypervelocity  impact,  laser,  electronic,  ionic  beams,  powerful  electric  current  pulse  etc.  

P = e2 a04 = 294.2 Mbar

E = e2 a0 = 27.2 eVV = a0

3 = 0.1482 A

JIHT  RAS  

Page 5: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Coupling  and  Degeneracy  in  Plasma  

•  Coupling  parameter:  

•  Degeneracy  parameter  

Γ =Upot

Ekin

= e2

kBT r(for  electronic  subsystem)  

neλe

3, λe2 = 2π2

mekBT

Γ1 -­‐    Strong  coupling  

neλe3 1 -­‐    Strong  degeneracy  

JIHT  RAS  

Γ1 neλe

3 1Strongly  coupled  degenerate  non-­‐rela1vis1c  plasma  (warm  dense  maXer)  -­‐  

Page 6: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

EOS:  Tradi2onal  Form  

F V,T( ) = Fc V( )+Fi V,T( )+Fe V,T( )Traditional form of semiempirical EOS. Free energy

Cold curve Thermal contribution of atoms and ions

Thermal contribution of electrons

Semiempirical  expressions  

DFT,  mean  atom  models    

Adiaba1c  (Born-­‐Oppenheimer)  approxima1on  (me  <<  mi)  

F V,T( ) = Fe V,T, Rt0{ }( )+Fn V,T, Rt0{ }( )Free  energy  of  electrons  in  the  field  of  fixed  ions  

Free  energy  of  ions  interac1ng  with  poten1al  depending  on  V  and  T  

JIHT  RAS  

Mean  atom  models  or  DFT  calcula1ons  might  help    to    decrease  the  number  of  fiang  parameters  

Page 7: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Electronic  Contribu2on  to  Thermodynamic  Func2ons:    

Hierarchy  of  Models    •  Exact  solu1on  of  the  3D  mul1-­‐par1cle  Schrödinger  equa1on  

•  Atom  in  a  spherical  cell  •  Hartree-­‐Fock  method  (1-­‐electron  wave  func1ons)  

•  Hartree-­‐Fock-­‐Slater  method  •  Hartree  method  (no  exchange)  •  Thomas-­‐Fermi  method  •  Ideal  Fermi-­‐gas  

r0  

Z  

43πr0

3 =1n

JIHT  RAS  

Page 8: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Finite-­‐Temperature  Thomas-­‐Fermi  Model  

( )00 rr <≤

( ) ZrrV r ==0 ( ) 00 =rV( ) 0

0==rrdr

rdV

( ) ( ) ( )⎟⎠⎞⎜

⎝⎛ ++−=

θµrVIθ

πrδZπVΔ

21

23224

r0  

Z  

Feynman  R.,  Metropolis  N.,  Teller  E.  //  Phys.  Rev.  1949.  V.75.  P.1561.  

Poisson equation

§   The  simplest  mean  atom  model  §   The  simplest  (and  fully-­‐determined)  DFT  model  §   Correct  asympto1c  behavior  at  low  T  and  V  (ideal  Fermi-­‐gas)                      and  at  high  T  and  V  (ideal  Boltzmann  gas)  

Thomas-­‐Fermi  model  is  realis1c  but  crude  at  rela1vely  low  temperatures  and  pressures.  Thermal  contribu1ons  to  thermodynamic  func1ons  is  a  good  approxima1on.      

Page 9: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

HARTREE-­‐FOCK-­‐SLATER  MODEL  AT  T>0  

Atom  with  mean  popula1ons  

( )( )θµε −+1

1+22=nl

nllN

exp

( ) ( ) ( )rVrVrV exc +=

( ) ( ) ( ) ⎥⎦⎤

⎢⎣⎡ +14−= ∫ ∫0

2 0r r

rc drrrdrrrrr

ZrV '''''' ρρπ

Poten1al:  

( ) ( ) ( ) ( ) 31−

3

24

23 ⎥⎦

⎤⎢⎣

⎡3

+75+1=θρπ

θρ

θπ rrrrrVex .

Exchange  poten1al:  

Poisson  equa1on  solu1on:  

εnl  –  energy  levels  in  V(r)  

Itera1ve  procedure  for  determina1on  of  ρ(r),  εnl  and  V(r)  

Nikiforov  A.F.,  Novikov  V.G.,  Uvarov  V.B.  Quantum-­‐sta1s1cal  models  of  high-­‐temperature  plasma.  M.:  Fizmatlit,  2000.  

From  the  radial  Schrödinger  equa1on  

Page 10: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

RADIAL ELECTRON DENSITY r2ρ (r) BY HARTREE-FOCK-SLATER MODEL

0.00 0.05 0.10 0.150

20

40

60

80

100

120

140

160

r2 ρ(r)

(r/r0)1/2

Au  ρ  =  10-­‐3  g/cm3  

4·∙102  K  4·∙105  K  

Thomas-­‐Fermi  

Hartree-­‐Fock-­‐Slater  

Page 11: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Density  Func2onal  Theory  

•  Thomas-­‐Fermi  theory  is  the  density  func1onal  theory:  

ETF n[ ] =C1 d3rn r( )5 3∫ + d3rVext r( )n r( )∫ +

C2 d3r∫ n r( )4 3 + 12d3rd3 "r

n r( )n "r( )r− "r

kine1c  energy   external  poten1al  

exchange  energy   Hartree  energy  

•  Is  it  a  general  property?  

JIHT  RAS  

Page 12: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Density  Func2onal  Theory  

H = −12

∇i2 + Vext ri( )

i∑

i∑ +

12

e2

ri − rji≠ j∑

For  systems  with  Hamiltonian  

Theorem  1.  For  any  system  of  interac1ng  par1cles  in  an  external  poten1al  Vext(r)  the  poten1al  Vext(r)  is  determined  uniquely,  except  for  a  constant,  by  the  ground  state  par1cle  density  of  electrons  n0(r).  Therefore,  all  proper4es  are  completely  determined  given  only  the  ground  state  electronic  density  n0(r).    Theorem  2.  A  universal  func1onal  for  the  energy  E[n]  in  terms  of  the  density  n(r)  can  be  defined,  valid  for  any  external  poten1al  Vext(r).  For  any  par1cular  Vext(r),  the  exact  ground  state  energy  of  the  system  is  the  global  minimum  value  of  this  func1onal,  and  the  density  n(r)  that  minimizes  the  func1onal  is  the  exact  ground  state  density  n0(r).  

the  following  theorems  are  valid:  

Hohenberg,  Kohn,  1964  

JIHT  RAS  

Page 13: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Kohn-­‐Sham  Func2onal  The  system  of  interac1ng  par1cles  is  replaced  by  the  system  of  non-­‐interac1ng  par1cles:  

EKS[n]= Ts[n]+ drVext r( )n r( )+EHartree n[ ]∫ +EII +EXC[n]

kine1c  energy   ion-­‐ion  interac1on  

exchange-­‐  correla1on  func1onal  

All  many-­‐body  effects  of  exchange  and  correla1on  are  included  into  EXC[n]  

EXC[n]= T −Ts[n]+ Vint −EHartree[n]

true  system  non-­‐interac1ng  system  

Kohn,  Sham,  1965  

JIHT  RAS  

The  minimiza1on  of  EKS  leads  to  the  system  of    Kohn-­‐Sham  equa1ons  

Page 14: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Minimiza2on  in  HFS  and  DFT  

•  In  Hartree-­‐Fock(-­‐Slater)  method  we  find  

•  In  DFT  we  find    

minΨi (r)

Ω Ψ i r( )#$ %&

minn(r)

Ω n r( )"# $%

JIHT  RAS  

Page 15: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Density  Func2onal  Theory:  All-­‐Electron    and  Pseudopoten2al  Approaches  

(S.  Yu.  Savrasov,  PRB  54  16470  (1996),  G.  V.  Sin'ko,  N.  A.  Smirnov,  PRB  74  134113  (2006)    

Full-­‐poten1al  approach:  all  electrons  are  taken  into  account  (FP-­‐LMTO)  

Pseudopoten1al  approach:  the  core  is  replaced  by  a  pseudopoten1al,  the  Kohn-­‐Sham  equa1ons  are  solved  only  for  valent  electrons  (VASP)  

G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); 49, 14251 (1994). G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

Calcula1ons  were  made  in  the  unit  cell  at  fixed  ions  and  heated  electrons  

EF EF

T = 0 T > 0 Core electrons

JIHT  RAS  

At  T  >  0:  occupancies  are   [ ]{ }( , , ) 1/ 1 exp ( ( , )) /f T T Tε ρ ε µ ρ= + −

Page 16: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Aluminum. Cold Curve

0 2 4 6 8 10 120

50

100

150

200 Al

Pre

ssur

e (M

bar)

ρ/ρ0

FP-LMTO

VASP

Al is more compressible in VASP calculations than in FP-LMTO

Compression  ra2o  

Pressure  (M

bar)  

Levashov  P.R.  et  al.,  JPCM  22  (2010)  505501  

JIHT  RAS  

Page 17: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Potassium. Cold Curve

0 5 10 150

5

10

15

20 K

Pre

ssur

e (M

bar)

ρ/ρ0

VASP

FP-LMTO

3p, 4s

3s, 3p, 4s K is less compressible in VASP calculations than in FP-LMTO Less number of valent electrons leads to bigger disagreement with FP-LMTO

Levashov  P.R.  et  al.,  JPCM  22  (2010)  505501  

JIHT  RAS  

Page 18: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

DFT-­‐calcula2ons  of  Fe(Te,  V)  

0 5 10 150

5

10

15

20W

Cve

Te (eV)

1

2

•  Cold  ions,  hot  electrons  •  Heat  capacity  is  very  close  for  fcc  and  bcc  structures  of  W  •  It  should  be  close  to  unordered  phase  at  the  same  density  

Heat  capacity  of  W,  V0  

JIHT  RAS  

Thomas-­‐Fermi  with  correc1ons  

Why  can  we  use  DFT  for  thermodynamic  proper1es  of  electrons?  

bcc  

fcc  

PTe = −ρ2

∂FTe (ρ,Te )∂ρ

Te

− Pc

( , )ee T eV

e V

E TCTρ⎡ ⎤∂= ⎢ ⎥∂⎣ ⎦

24x24x24  mesh  of  k-­‐points  Nbands  =  94  Ecut  =  1020  eV    

Page 19: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Tungsten, Ti = 0, V = V0. Electron Heat Capacity

0 2 4 6 8 10

4

8

12

0.0

0.4

0.8

Isoc

horic

hea

t cap

acity

Temperature, eV

W, bcc

Num

ber o

f ele

ctro

ns

IFG,  Z  =  1  

IFG,  Z  =  6  

Thomas-­‐Fermi  

VASP  

Levashov  P.R.  et  al.,  JPCM  22  (2010)  505501  

JIHT  RAS  

Core  electrons  become  excited  at  ~3  eV    

Page 20: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

0 2 4 6 8 10 120

1

2

3

4

5

Th

erm

al p

ress

ure,

Mba

r

Temperature, eV

W, bcc

Tungsten, Ti = 0, V = V0. Thermal Pressure

IFG,  Z  =  1  

Thomas-­‐Fermi  

IFG,  Z  =  6  

JIHT  RAS  

Levashov  P.R.  et  al.,  JPCM  22  (2010)  505501  

•  Pressure  is  determined    by  free  electrons  only  

•  Interac1on  of  electrons  should  be  taken  into  account  

Page 21: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Thermal  contribu2on  of  ions  

F V,T( ) = Fc V( )+Fi V,T( )+Fe V,T( )Ab-­‐ini1o  molecular  dynamics  (AIMD)  simula1ons  

FAIMD V,T( )−Fe V,T( )−Fc V( )+Fions,kin V,T( )From  AIMD   From  AIMD   From  DFT   Analy1c  

expression  

But  it’s  beXer  to  use  AIMD  to  calibrate  the  EOS  by  changing  fiang  parameters  

Desjarlais  M.,  MaXson  T.R.,  Bonev  S.A.,  Galli  G.,  Militzer  B.,  Holst  B.,  Redmer  R.,  Renaudin  P.,  Clerouin  J.  and  many  others  use  AIMD  to  compute  EOS  for  many  substances      

JIHT  RAS  

Page 22: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Details  of  the  AIMD  simula2ons  •  We  use  VASP  (Vienna  Ab  Ini1o  Simula1on  Package)  -­‐    package  for  

performing  ab-­‐ini1o  quantum-­‐mechanical  molecular  dynamics  (MD)  using  pseudopoten1als  and  a  plane  wave  basis  set.  

•  Generalized  Gradient  Approxima1on  (GGA)  for    Exchange  and  Correla1on  func1onal  

•   Ultrasox  Vanderbilt  pseudopoten1als  (US-­‐PP)  •  One  point  (Γ-­‐point)  in  the  Brillouin  zone  •  The  QMD  simula1ons  were  performed  for    

108  atoms  of  Al  •  The  dynamics  of  Al  atoms  was  simulated    

within  1  ps  with  2  fs  2me  step  •  The  electron  temperature  was  equal  to  the    

temperature  of  ions  through  the    Fermi–Dirac  distribu1on  

•  0.1  <  ρ  /  ρ0  <  3,  T  <  75000  K    

G.  Kresse  and  J.  Hafner,  Phys.  Rev.  B  47,  558  (1993);  49,  14251  (1994).  G.  Kresse  and  J.  Furthmuller,    Phys.  Rev.  B  54,  11169  (1996).    

JIHT  RAS  

Page 23: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Al, ionic configurations

Normal conditions, solid phase T=1550 K; ρ=2.23 g/cm3; liquid phase

108 atoms US pseudopotential; 1 k-point in the Brillouin zone; cut-off energy 100 eV; 1 step – 2 fs

Configurations for electrical conductivity calculations are taken after equilibration

Full energy during the simulations

JIHT  RAS  

Page 24: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Isotherm  T  =  293  K  for  Al  

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.000

1

2

3

4

5

6

7

8

 

 -­‐  VASP  -­‐  Wang  et  al.  (2000)  -­‐  Greene  et  al.  (1994)  -­‐  Akahama  et  al.  (2006),  fcc  -­‐  Akahama  et  al.  (2006),  hcp

Pressure,  M

bar

ρ/ρ0

A l

QMD  results  show  good  agreement  with  experiments  and  calcula1ons  for  fcc.  

Page 25: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Shock  Hugoniots  of  Al  Pressure  –  compression  ra1o    

Page 26: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Shock  Hugoniot  of  Al.  Mel2ng  

Higher  mel1ng  temperatures  by  QMD  calcula1ons  might  be  caused  by  a  small  number  of  par1cles  NB:  we  can  trace  phase  transi1ons  in  1-­‐phase  simula1on  

600 800 1000 1200 1400 1600 1800 2000 22003000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

 -­‐  VASP  Hugoniot  -­‐  MPTEOS  Hugoniot  -­‐  MPTEOS  melting  curve  -­‐  Exp.  melting  Boehler  &  Ross  1997

Pressure, kbar

Tem

pera

ture

, K

Al

Page 27: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Mel2ng  criterion  for  aluminum  Equilibrium configurations of Al ions at 5950 and 6000 K

Steinhardt P.J. et al, PRL 47, 1297 (1981)

Rotational invariants of 2nd (q6) and 3rd (w6) orders

Cumulative distribution functions C(q6) and C(w6) are extremely sensitive measure of the local orientation order

Klumov B.A., Phys. Usp. 53, 1045 (2010)

This criterion may be applied to other structural phase transitions

Page 28: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Mel2ng  curve  of  aluminum  

Boehler R., Ross M. Earth Plan. Sci. Lett. 153, 223 (1997)

QMD, 108 particles, equilibrium configurations analysis Size effect should be checked

QMD

Shock-wave Shaner et al., 1984

DAC

Page 29: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Release  Isentropes  of  Al  

0 1 2 3 4 5 6 7 80.01

0.1

1

10

100

1000

 

 -­‐  Zhernokletov  et  al.  (1995)  -­‐  VASP  -­‐  MPTEOS

Mas s  ve loc ity,  km/s

Press

ure,  kba

rA l

correspond  to  the  experiments  from    M.  V.  Zhernokletov  et  al.  //  Teplofiz.  Vys.  Temp.  33(1),  40-­‐43  (1995)  [in  Russian]  

JIHT  RAS  

Page 30: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Release  Isentropes  of  Al  

6 8 10 12 14 16 18 20 22 24 26

10

100

1000

10000

 

 

 -­‐  Knudson  et  al.  (2005)  -­‐  VASP  -­‐  MPTEOS

Mas s  ve loc ity,  km/s

Press

ure,  kba

rA l

correspond  to  the  experiments  from  Knudson  M.D.,  Asay  J.R.,  Deeney  C.  //  J.  Appl.  Phys.  V.  97.  P.  073514.  (2005)  

JIHT  RAS  

Page 31: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Sound  Velocity  in  Shocked  Al  

1 2 3 4 5 6 7

7

8

9

10

11

12

13

A l

 

 

 -­‐  A l'ts huler  et  a l.  (1960)  -­‐  McQ ueen  et  a l.  (1984)  -­‐  Nea l  e t  a l.  (1975)  -­‐  MP T E O S  -­‐  V A S P

Sou

nd  veloc

ity,  k

m/s

Mas s  ve loc ity,  km/s

Oscilla1ons  are  caused  by  errors  of  interpola1on  

JIHT  RAS  

Page 32: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

T0 = 7.6 kK (AIMD) T0 = 3.1 kK (EOS) T0 = 2.1 kK (SAHA-D) T0 = 1 kK (ReMC)

Deuterium

Compression  Isentrope    of  Deuterium  

Page 33: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Ab initio complex electrical conductivity

jω = σ1(ω)+ iσ 2 (ω)( )

σ1(ω) =2πe22

3m2ωΩf εi( )− f ε j( )#$

%&

α=1

3

∑j=1

N

∑i=1

N

∑ Ψ j ∇α Ψ i

2δ ε j −εi − ω( )

Complex electrical conductivity:

The real part of conductivity is responsible for energy absorption by electrons and is calculated by Kubo-Greenwood formula:

Kubo-Greenwood formula includes matrix elements of the velocity operator, energy levels and occupancies calculated by DFT

L.L.  Moseley,  T.  Lukes,  Am.J.Phys,  46,  676  (1978)  

The imaginary part of conductivity is calculated by the Kramers-Kronig relation:

σ 2 (ω) = −2πP σ1(ν )ω

(ν 2 −ω 2 )dν

0

JIHT  RAS  

occupancies  for  the    energy  level  ε  

broadening  is  required  

electrical  field    strength  current  

density  

Page 34: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

j = 1eL11E − L12∇T

T

#

$%

&

'(

jq =

1e2eL21E − L22∇T

T

#

$%

&

'(

Transport properties: Onsager coefficients

JIHT  RAS  

Defini1on  of  Onsager  coefficients  Lmn:  

current    density  

heat  flow    density  

electric  field  strength  

temperature  gradient  

L11  –  electrical  conduc1vity  

jq = −K∇T

K =1e2T

L22 −L12L21L11

"

#$$

%

&''

Using  the  Onsager  coefficients  the  thermal  conduc1vity  coefficient  becomes:  

2 2

2

( )( ) 3K T kLT T e

πσ

= =⋅

Wiedemann-­‐Frantz  law:  

Lorentz  number      

j = 0at  

thermoelectric  term  

Onsager  coefficients  are  symmetric:  

L12  =  L21  

Page 35: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Optical properties

2 11 2

0 0

( ) ( )( ) 1 ; ( ) ;σ ω σ ωε ω ε ωωε ωε

= − =

12 2 2

( )2( )( )

P dσ ν ωσ ω νπ ν ω

= −−∫

1 11 1( ) | ( ) | ( ); ( ) | ( ) | ( );2 2

n kω ε ω ε ω ω ε ω ε ω= + = −

Imaginary  part  of  electrical  conduc1vity  is  calculated  from  the  real  one  by  the  Kramers-­‐Kronig  rela1on:  

Real  and  imaginary  parts  of  complex  dielectric  func1on:    

Complex  index  of  refrac1on:  

Reflec1vity:  2 2

2 2

[1 ( )] ( )( )[1 ( )] ( )n krn kω ωωω ω

− +=+ +

Static electric conductivity is calculated by linear extrapolation (by 2 points) of dynamic electrical conductivity to zero frequency

Page 36: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Al, T=1550 K, ρ=2.23 g/cm3 Real part of electrical conductivity Real part of dielectric function

256 atoms; US pseudopotential; 1 k-point in the Brillouine zone; cut-off energy 200 eV; δ-function broadening 0.1 eV; 15 configurations; 1500 steps; 1 step – 2 fs

In  liquid  phase  the  dependence  of  electrical  conduc1vity  is  Drude-­‐like.    

The  agreement  with  reference  data  is  good  

Krishnan et al., Phys. Rev. B, 47, 11 780 (1993)

Page 37: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Al, 1000 K – 10000 K, ρ = 2.35 g/cm3

Sta1c  electrical  conduc1vity  

Thermoelectric  correc1on  is  not  more  than  2%  at  T  <  10  kK  

256  atmos;  US  pseudopoten1al;  1  k-­‐point  in  the  Brillouin  zone;  energy  cut-­‐off  200  eV;  δ-­‐func1on  broadening  0.07  eV  -­‐  0.1  eV  ;  15  configura1ons;  1500  steps;  1  step  –  2  fs  

Recoules  and  CrocombeXe,  Phys.  Rev.  B,  72,  104202  (2005)  Rhim  and  Ishikawa,  Rev.  Sci.  Instrum.,  69,  10,  3628-­‐3633  (1998)  

108  par1cles  

256  par1cles  

Thermal  conduc1vity  coefficient  

108  par1cles  

256  par1cles  

Page 38: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Al, 1000 K – 20000 K, 2.35-2.70 g/cm3

Dependence  of  Lorentz  number    on  temperature  

256  atoms;  US  pseudopoten1al;  1  k-­‐point  in  the  Brillouin  zone;  energy  cut-­‐off  200  eV;  δ-­‐func1on  broadening    0.07  eV  -­‐  0.1  eV;  15  configura1ons;  1500  steps;  1  step  –  2  fs  

Dis1nc1on  of  Lorentz  number  from  the  ideal  value  is  about  20%.    Thermoelectric  correc1on  is  substan1al  only  at    20  kK  (10%).  

 

Recoules  and  CrocombeXe,  Phys.  Rev.  B,  72,  104202  (2005)  

Al  ρ=2.35  г/см3  

Thermal  conduc1vity  and  Onsager    L22  coefficient,  temperature  dependence    

Al  ρ=2.70  г/см3  

Thermoelectric  Correc1on,  ~10%  

JIHT  RAS  

Page 39: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Beyond  DFT  and  Mean  Atom:  Path  Integral  Monte  Carlo    and  Wigner  Dynamics    

Page 40: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

PATH  INTEGRAL  MONTE-­‐CARLO  METHOD  for  degenerate  hydrogen  plasma  

(V.  M.  Zamalin,  G.  E.  Norman,  V.  S.  Filinov,  1973-­‐1977)  

•   Binary  mixture  of  Ne  quantum  electrons,                                                                  Ni  classical  protons  

( ) ( ) !!,,,,, ieieie NNNNQVNNZ ββ =

•   Par11on  func1on:  

Q Ne,Ni ,β( ) = dqdrρ q,r,σ ;β( )V∫

σ∑

•   Density  matrix:  

( ) ( ) ( )HHH expexpexp βββρ Δ−××Δ−=−= …n+1  

( )1+=Δ nββkT1=β

JIHT  RAS  

Page 41: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

PATH  INTEGRAL  MONTE-­‐CARLO  METHOD  

( ) ( ) ( ) ( )×−= ∑ ∫Δ P V

nΝN

idrdrrq P

ei…133 11 κ

λλβσρ ;,,

( )( ) ( ) ( )( ) ( ),;,,;,, 11 σσβρβρ ′,ΔΔ + PSrPrqrrq nn…

permuta1on  operator  

spin  matrix  

thermal  wavelengths  of  electron  and  ion  

parity  of  permuta1on  

Pa  

qa   proton  

ee mβπλ 22 = 2eb  electron  

rb  

λe  

r  

λΔ   emβπλ Δ= 22Δ 2

r(1)  =  r  +  λΔξ(1)  

r(2)  

r(n)  r(n+1)  =  r  σ’ =  σ  

JIHT  RAS  

Page 42: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

PATH  INTEGRAL  MONTE-­‐CARLO  METHOD  Path  integral  representa1on  of  density  matrix:    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∑ +−=V P

nknn PPSdRdRrq P 111 ˆ'ˆ,1;,, ρσσρρβσρ ……

( ) ( ) ( )( )iii rqR ,=spin    matrix  

permuta1on  operator  

( ) ( ) ∑∏∏∑===

−⎟⎟⎠

⎞⎜⎜⎝

⎛=e

e

el

N

ss

nab

sN

N

p

lpp

n

l

U Cerq0

1,

11det;,, ψφβσρ βΔβΔ

σ

( ) ( ) ( )iHii ReR ˆ1 βΔρ −−=

cUKH ˆˆˆ += epc

ec

pcc UUUU ˆˆˆˆ ++=,  

exchange  effects  

kine1c  part  of  density  matrix  

( ) ( ) ( )βΔβΔβΔ epl

el

pl UUU ++

JIHT  RAS  

Page 43: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

KELBG  PSEUDOPOTENTIAL  

abababx λr=

First  order  perturba1on  theory  solu1on  of  two-­‐par1cle  Bloch  equa1on    for  density  matrix  in  the  limit  of  weak  coupling  

( )( )

( )( )⎟⎠

⎞⎜⎝⎛

−= ∫ ααλ

αααβΔΦ

12erf,,

1

0

'

ab

ab

abbaabab

ab dddeerr

( ) ( ) '1 abababd rr ααα −+=

( ) ( )[ ]{ }ababx

abab

baab

ab xxexee

ab erf11, 2 −+−= − πλ

βΔΦ r

Diagonal  Kelbg  poten1al:    

ab

baeeλπ

0→abr

ab

ba

ree

abab λ>>r

abab µβλ 22=111 −−− += baab mmµ

Ebeling  et  al.,  Contr.  Plasma  Phys.,  1967    

JIHT  RAS  

Page 44: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

ACCURACY  OF  DIRECT  PIMC  

HHH eee ˆˆˆˆ βββρ Δ−Δ−− ××== …n+1  UKH ˆˆˆ +=TkB1=β

( )1+=Δ nββ( ) [ ]UKUKH eeee

ˆ,ˆ2ˆˆˆ2

ˆβ

ββββρ

Δ−Δ−Δ−Δ−Δ ==

1  at  n  -­‐>  ∞  Error  ~  (β  /  n)2  for  every  mul1plier  

Total  error  Δρ  ~  β2  /  n  -­‐>  0  at  n-­‐>∞  

( )βρρρ β Δ=Δ potfreeHigh-­‐temperature  pseudopoten1al  

JIHT  RAS  

Page 45: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

TREATMENT  OF  EXCHANGE  EFFECTS  

Inside  main  cell  –      exchange  matrix  

Outside  main  cell  –      by  perturba1on  theory  

Accuracy  control  –      comparison  with  ideal    degenerate  gas  

300~3een λ

Main  MC  cell  

e  e  

e  

Filinov  V.S.  //  J.  Phys.  A:  Math.  Gen.  34,  1665  (2001)  Filinov  V.S.  et  al.  //  J.  Phys.  A:  Math.  Gen.  36,  6069  (2003)  

JIHT  RAS  

Page 46: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

HYDROGEN,  PIMC-­‐SIMULATION,  n  =  1021  cm-­‐3  Ne  =  Ni  =  56,  n  =  20  

T  =  10  kK    

Γ  =  2.7  nλ3  =  0.41  

T  =  50  kK  ρ  =  1.67x10-­‐3  g/cm3  

Γ  =  0.54  nλ3  =  3.7  x10-­‐2  

-­‐  proton  

-­‐  electron  

-­‐  electron  

Page 47: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

104 105 1060.01

0.1

1

10 a)

- 1020 cm-3, DPIMC - 1021, DPIMC - 1020, SC - 1021, SC

P, G

Pa

T, K

104 105 106

1013

1014

- 1020 cm-3, DPIMC - 1021, DPIMC - 1020, SC - 1021, SC

rela

tive

num

ber c

once

ntra

tion

 

E, e

rg /

g

T, K0.0

0.2

0.4

0.6

0.8

1.0

b)

- 1020

- 1021

HYDROGEN,  PIMC-­‐SIMULATION  AND  CHEMICAL  PICTURE,  ne  =  1020,  1021  cm-­‐3  

Pressure   Energy  

D.  Saumon,  G.  Chabrier,  H.M.  Van  Horn,  Astrophys.  J.  Suppl.Ser.  1995.  V.99.  P.713  

Page 48: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

DEUTERIUM  SHOCK  HUGONIOTS  

0,4 0,6 0,8 1,0 3 4 6 8 10

20 40 60 80 100

200 400 600 800 1000

2000

- NOVA - NOVA - gas gun - Z-pinch - Mochalov - Mochalov - Trunin - REMC - DPIMC P , G

Pa

ρ , g/cm 3 0.1335 g/cm3 1550 bar

0.153 g/cm3 2000 bar

0.171 g/cm3 2720 bar

Grishechkin et al. Pis’ma v ZhETF. 2004. V.80. P.452 (hemishpere)

Page 49: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

HYDROGEN,  PIMC-­‐SIMULATION,  T  =  10000  K  Ne  =  Ni  =  56,  n  =  20  

n  =  1023  cm-­‐3  ρ  =  0.167  g/cm3  

Γ  =  12.5  nλ3  =  41  

n  =  3x1022  cm-­‐3  ρ  =  0.05  g/cm3  

Γ  =  8.  4  nλ3  =  12.4  

-­‐  proton  

-­‐  electron  

-­‐  electron  

Page 50: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

T  =  10000  K,    n  =  3x1025  cm-­‐3,    ρ  =  50.2  g/cm3  

Γ  =  84  nλ3  =  12400    

                                       PIMC  SIMULATION    Ne  =  Ni  =  56,  n  =  20  protons  ordering  

1  

2  

3  

4  

5  

0.1   0.2  0   r/aB  

gee  gii  

gei  

30r2gee  

JETP  LeXers  72,  245  (2000)  

-­‐  proton  

-­‐  electron  

-­‐  electron  

50  

Page 51: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

ELECTRON  DENSITY  DISTRIBUTION  IN  TWO-­‐COMPONENT  DEGENERATE  SYSTEM    

mh=  800  me=  2.1  <r>/aB  =  3  

top  view   side  view  

ρ  =  25  T  /  Eb  =  0.002  

-­‐  hole  

-­‐  electron  

-­‐  electron  

-­‐  hole  IN  COULOMB  CRYSTAL  

51  

Page 52: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

QUANTUM  DYNAMICS  IN  WIGNER  REPRESENTATION  

[ ]ρρ ,Ht

i =∂∂

( ) ( ) ∫ −⎟⎠⎞⎜

⎝⎛

2−

2+

21= ξξξρπ

ξdeqqpqW ipNd

L ,,

( ) ( )∫ ′′−′⎟⎠⎞⎜

⎝⎛

2′′+′=′′′ dpepqqWqq pqqiL ,,ρ

( ) ( )∫ −=∂∂+

∂∂ dsqstqspdsW

qW

mp

tW L

LL

,,, ω

( ) ( ) ( )∫ ⎥⎦⎤

⎢⎣⎡2′−′

22=

'sin, sqqqUqdqs Ndπ

ω

0=∂∂

∂∂−

∂∂+

∂∂

pW

qU

qW

mp

tW LLL

mpq =

qUp∂∂−=

Density matrix:

Wigner function:

Evolution equation:

Classical limit ħ -> 0: Characteristics (Hamilton equations):

Quasi-distribution function in phase space for the quantum case

( ) ( ) ( )qqqq ′′′=′′′ ψψρ *, C∈ψ

RWL ∈

Page 53: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

SOLUTION  OF  WIGNER    EQUATION  

( ) ( ) ( )

( ) ( ) ( )∫ ∫ ∫∫

∫∞

∞−0

0000000

−×Π

+×0Π=

''''''' ,',,',,;,,'

,,,;,,,,

τττττττ ωτττ qsqspdsWqptqpdqdpd

dqdpqpWqptqptqpW

Wt

W

( )( ) ( ) '''' ',,;', ττττ ττ qqpqtqFdtpd ==

( ) ( ) '''' ',,;', ττττ ττ pqppmtpdtqd ==

Dynamical trajectories:

',, '' τττ qp

pq

( ) ( )',,;()',,;()',,;,,( '''''' τδτδτ ττττττ qptqqqptppqptqp ttW −−=ΠPropagator:

Page 54: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

0 50 1000,1

1

10

100T = 2 104 K0 1rs = 43.2 2 3 4 5

10

5 Re{

σ / ω

p }

ω/ωp

Quantum dynamics in Wigner representation

λ

mtp

dtqd

tqFdtpd

)(

))((

=

= random + momentum jumps

))(),(( 00 qpWinitial quantum

distribution

( )>0< )()(~ ptpFTσ

Dynamic conductivity

Veysman et al. Tkachenko et al. Bornath et al

T = 2·104 K rs = 43.2

QD h = Ry

0 5 10 15 20

0

5

10

15

20

25

30

35

T=2 104 K0 rs=5 1 2 3

10

5 Re{

σ / ω

p }

ω/ωp ω / ωp

ω / ωp

T = 2·104 K rs = 5

hν = Ry

Bornath et al. Ternovoi et al.

QD

QD 5000-20000 configurations

Page 55: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Conclusions  •  Ab  ini1o  methods  are  useful  for  calcula1on  of  different  proper1es  of  maXer  at  high  energy  density  

•  The  main  goal  of  ab  ini1o  methods  is  to  replace  experiment;  in  some  cases  it’s  already  possible  

•  Growth  of  computa1onal  possibili1es  will  allow  to  apply  more  general  approaches  for  calcula1on  of  plasma  proper1es  (quantum  filed  theory)  

•  Currently,  however,  semiempirical  approaches  are  main  workhorses;  ab  ini1o  methods  are  used  for  calibra1on  of  such  models  

Page 56: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

( ) ( ) ( ) ( ) ( )υ φ ϕ ϕ φ ϕ ϕ ϕ φπ −

⎡ ⎤= − = + − − −⎣ ⎦∫1

' '' 2 5 3 ' 2 '3 2 1 2 1 22 3 2

0

3 2 5 3 2aT TT T TS F T u I u T T I u T I du

T

( ) ( )θ µ µ µ µµπ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

3 2' '' '

1 2 3 2 1 22 ,

2 52 3T VT T N V

P F I I IT T T T

( ) ( )θ µ µπ

⎛ ⎞= − = ⎜ ⎟⎝ ⎠

3 2' '' '

1 22 ,

22V VV V N T

P F IT

Second  deriva2ves  of  free  energy  

Thermodynamic  Func1ons    of  Thomas-­‐Fermi  Model  

( )υ µ φ φ φπ

⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∫ ∫

5 2 1 15 5

3 2 3 2 1 220 0

2 2( , ) 8 3 ( )aTF V T I u I du u I duT

 -­‐  dimensionless  atomic  poten1al,    =    /  (u2T),  a  –  cell  volume,  u  =  (r  /  r0)1/2  

Free  energy:  

Expressions  for  1st  deriva1ves  of  F  (P  and  S)  are  known.    

Shemyakin  O.P.  et  al.,  JPA  43,  335003  (2010)  

Page 57: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Second  Deriva2ves    of  the  Thomas-­‐Fermi  Model  

The  number  of  par1cles  and  poten1al  are  the  func1ons  of  the  grand  canonical  ensemble  variables,  which  are  in  turn  depend  on  the  variables  of  the  canonical  ensemble:  

From  the  expressions  for  (N’T)N,,  (’T)N,  и  (N’)T,N  one  can  obtain:  

( ) ( ) ( )[ ]TVNTTVNTVN ,,,,,,,, υµϕϕ =

( ) ( ) ( )[ ]TVNTTVNTVNNN ,,,,,,,, υµ=

( )( ) T

T

TN NN

V ,

,

, υ

µ

µυµ∂∂∂∂

−=⎟⎠⎞⎜

⎝⎛∂∂

( )( ) TNV N

TNT ,

,

, υ

µυ

µµ

∂∂∂∂

−=⎟⎠⎞⎜

⎝⎛∂∂

( )( ) TTN N

TNTT ,,

,

,, υυ

υµ

υµυ µϕ

µϕϕ

⎟⎠⎞⎜

⎝⎛∂∂

∂∂∂∂

−⎟⎠⎞⎜

⎝⎛∂∂=⎟

⎠⎞⎜

⎝⎛∂∂

We  need  6  deriva1ves  in  the  grand  canonical  ensemble  

( ) T,'

µυϕ ( ) υµϕ ,'T ( )

υµϕ ,'T

( )υµ ,

'T

N ( ) µυ ,'TN( ) µυ ,

'TN

Shemyakin  O.P.  et  al.,  JPA  43,  335003  (2010)  

Page 58: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

TF  Poten2al  and  its  Deriva2ves  on  ,    and  T  

ϕ µ

µ

= = =

⎧ = −⎪

=⎪⎪ ⎛ ⎞+⎨ = ⎜ ⎟⎪ ⎝ ⎠⎪⎪ = = =⎩

2

'

2' 3 3 2

1 2 2

'0 0 1 1

;2 ;

2 ;

, 0.

u

u

u u u u

W uW uV

W uV au T ITu

W Z r W W

Poisson  equa1on  

( )

( ) ( )

υ µϕ

φ φυ −

= =

⎧ =⎪⎪ =⎪⎨

= +⎪⎪⎪ = =⎩

'

,

'

3 3 2' 1 2

1 2 1 2

'1 1

;

2 ;

4 ;3

0.

T

u

u

u u u

L

L uM

au TM I auT I L

L L

Deriva1ve  of  the  Poisson  equa1on  on  :  

( )( ) ( )( ) ( )

µ υϕ

φ

φ−

= =

⎧Φ = −⎪⎪Φ = Φ +⎪⎨Ψ = Φ +⎪

⎪Φ = =⎪⎩

' 2

,

' 1 2 21 2

' 1 2 21 2

'1 1

;

;

;

0.

T

u

u

u u u

u

auT u I

auT u I

F

Deriva1ve  on  :  

( )

( ) ( ) ( )

µ υϕ

φ φ φ φ− −

= =

⎧ =⎪⎪ =⎪⎨

⎡ ⎤= − +⎪ ⎣ ⎦⎪

= =⎪⎩

'

,

'

' 3 1 2 1 21 2 1 2 1 2

'1 1

;

2 ;

3 ;

0.

T

u

u

u u u

Q

Q uR

R au T I I auT QI

Q Q

Deriva1ve  on  T:  

ϕ ( )υ µ'

,TN

( )µ υ'

,TN( )µ υ'

,TN

Page 59: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Adiaba2c  Sound  Velocity  by  Thomas-­‐Fermi  Model  

V  

V,  atomic  units  

Ideal  Fermi-­‐gas  

Isotherms  

Page 60: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

PROBLEMS  OF  TF  MODEL  

•  Thomas-­‐Fermi  method  is  quasiclassical;  if  one  calculates  energy  levels  in  VTF(r)  using  the  Shrödinger  equa1on  and  then  electron  density  quant(r),  it  will  differ  from  the  original  TF  electron  density  (r)  

•  Mean  ion  charge  is  roughly  determined    •  The  solu1on  is  to  make    (r)  self-­‐consistent  and  use  the  corrected  poten1al  and  electron  density    

Page 61: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

MEAN  ION  CHARGE  (HFS)  

105 106 1070

2

4

6

8

10

12

<Z>

T ,  K

 =  const  

Al    =  10-­‐3  g/cm3  

Hartree-­‐Fock-­‐Slater  

Chemical  plasma  model  

Thomas-­‐Fermi  

Page 62: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

TYPICAL  CONFIGURATION  OF  PARTICLES  H  +  He  mixture,  T  =  105  K,  ne  =  1023  cm-­‐3    

proton  

( ) 988.0HHeHe =+mmm

α-­‐par1cle  

electron,  é  

electron,  ê  

He+  

He  

40  α-­‐par1cles,  2  protons,  82  electrons  

Page 63: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

ENERGY  IN  H  +  He  MIXTURE  ON  ISOTHERMS  

200  kK  

100  kK  

50  kK  

40  kK  

Ideal,  100  kK  

1020 1022 1024

0 .0

0.5

1.0

1.5

2.0 E  /  NRy

ne,  cm -­‐3

 

234.0=+ HeH

He

mmm

D.  Saumon,  G.  Chabrier,  H.M.  Van  Horn,  Astrophys.  J.  Suppl.Ser.  1995.  V.99.  P.713  

Page 64: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

 ELECTRON-­‐HOLE  PLASMA.  PIMC  SNAPSHOT    crystal,  mh(eff)  =  800,  me(eff)  =  1  

-­‐  hole  

-­‐  electron  

-­‐  electron  

-­‐  hole  

<r>/aB  =  0.63  

T  =  0.064Eb  

64  

Page 65: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

ELECTRON-­‐HOLE  PLASMA.  PIMC  SNAPSHOT  s1ll  crystal,  mh(eff)  =  100,  me(eff)  =  1  

-­‐  hole  

-­‐  electron  

-­‐  electron  

-­‐  hole  

<r>/aB  =  0.63  

T  =  0.064Eb  

65  

Page 66: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

liquid,  mh(eff)  =  25,  me(eff)  =  1  

ELECTRON-­‐HOLE  PLASMA.  PIMC  SNAPSHOT  

-­‐  hole  

-­‐  electron  

-­‐  electron  

-­‐  hole  

<r>/aB  =  0.63  

T  =  0.064Eb  

66  

Page 67: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

unordered  plasma,  mh(eff)  =  1,  me(eff)  =  1  

                   ELECTRON-­‐HOLE  PLASMA.  PIMC  SNAPSHOT  

-­‐  hole  

-­‐  electron  

-­‐  electron  

-­‐  hole  

<r>/aB  =  0.63  

T  =  0.064Eb  

67  

Page 68: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

PAIR  DISTRIBUTION  FUNCTIONS.  QUANTUM  MELTING  

<r>/aB  =  0.63  

T  =  0.064Eb  

M  =  mh  /  me  

h-­‐h  e-­‐e  h-­‐h  

e-­‐e  

h-­‐h  

e-­‐e  

h-­‐h  e-­‐e  

68  

Page 69: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

PSEUDOPOTENTIALS  IN  DFT  

•  Diminish  the  number  of  plane  waves  necessary  for  the  good  representa1on  of  inner  electrons  wave  func1ons    

•  Part  of  electrons  are  considered  as  a  core,  part  as  valent  •  Pseudopoten1al  is  constructed  at  T  =  0  and  doesn’t  depend  on  

pressure  and  temperature  

Pseudopoten1al  approach  

Core  electrons  (pseudopoten1al)  

Valent  electrons  (plane  waves)  

Full-­‐poten1al  approach  muffin-­‐1n  orbitals  for  all  electrons  

Page 70: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

APPROXIMATIONS  IN  PSEUDOPOTENTIAL  APPROACH  Pseudopoten1al  describes  electrons  with  energies  less  than  the  Fermi  energy  –  errors  at  rela1vely  high  temperatures  

EF   EF  

T  =  0   T  >  0  

Spa1al  distribu1on  of  core  electrons  in  a  pseudopoten1al  is  unchanged  –  errors  at  rela1vely  high  pressures    

P  =  0   P  >  0  

Page 71: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

HOLE-­‐HOLE  DISTANCE  FLUCTUATIONS  

Lindemann  criterion  

71  

Page 72: JIHT RAS% ThermodynamicandTransportProperes of …theor.jinr.ru/~klopot/slides/Levashov.pdf · 2013. 1. 23. · ThermodynamicandTransportProperes of-StronglyCoupledDegenerate-Electron

Electron Heat Capacity for W at T = 11eV. Return of Free Electrons into 4f-state under

Compression W,  bcc  

JIHT  RAS  

Electrons return to 4f state under compression

1.0 1.2 1.4 1.6 1.80

2

4

6

8

92

94

96

98

100W

(%)

Cv e(ρ

0 )

N4f

ion (ρ

0) - N

4fio

n (ρ)

ρ/ρ0

Cv e(ρ)

N4f

ion (ρ

0)(%

)

W,  bcc,  T  =  11  eV  

CV  /  CV(ρ0)  Number  of  returned  electrons  (%)  Fr

ac2o

n  of  f-­‐electron

s  Compression  ra2o  

1.0 1.2 1.4 1.6 1.80

4

8

12

16W

12 eV

Cve

ρ/ρ0

1 eV

Electron

 heat  cap

acity

 

Compression  ra2o