Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf ·...

46
Geometries from structurable algebras and inner ideals Jeroen Meulewaeter November 5, 2019 Malaga University

Transcript of Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf ·...

Page 1: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Geometries from structurablealgebras and inner ideals

Jeroen MeulewaeterNovember 5, 2019Malaga University

Page 2: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Content

1 Structurable algebras• Associated Lie algebra• Inner ideals• Structurable division algebras

2 Construction of some low-rank geometries• Moufang sets• Moufang hexagons• Moufang triangles

3 Extremal geometries• Original definition and results• Extended definition

•••• •••••••••••••••• •••••••••••••••••• •••••••• 2

Page 3: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Credits

◮ Most work is joint with Tom De Medts (Ghent University),my supervisor.

◮ Work on extremal geometries is joint with Hans Cuypers(Eindhoven University of Technology).

•••• •••••••••••••••• •••••••••••••••••• •••••••• 3

Page 4: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Overview/motivation

◮ Structurable algebras are a class of non-associative,non-commutative algebras.

◮ Boelaert, De Medts, Stavrova, ’19: Connection betweenstructurable division algebras and so-called Moufang sets(”geometries of rank 1”).

◮ Cohen, Ivanyos, ’06: 1-dimensional inner ideals in a Liealgebra are related to point-line geometries (”extremalgeometries”).

◮ Tits-Kantor-Koecher-procedure, ’78: We can associate aLie algebra to a structurable algebra.

◮ Question: Constructions for higher rank geometries?◮ Question: Relation with extremal geometries?◮ Ingredient: Inner ideals!

•••• •••••••••••••••• •••••••••••••••••• •••••••• 4

Page 5: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Structurable algebras: what are these?1

AssumptionAll algebras are finite-dimensional and defined over a field k ofcharacteristic different from 2 and 3! Moreover, we do notassume them to be associative nor commutative.

Definition.Consider an algebra A with involution. (I.e., xy = y .x)Set

Vx ,y z = (xy)z + (zy)x − (zx)y .

Then we call A structurable if

[Vx ,y , Va,b] = VVx,y a,b − Va,Vy,x b.

Hence 〈Vx ,y | x , y ∈ A〉 ≤ End(A) is a Lie subalgebra of gl(A).•••• •••••••••••••••• •••••••••••••••••• •••••••• 5

Page 6: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Jordan algebras1

◮ Assume that the involution is the identity.◮ Then xy = xy = y · x = yx . I.e., A is commutative.◮ Moreover, one can show that A is a Jordan algebra. (So

satisfying (xy)x2 = x(yx2))◮ Example: A associative, then A+ = (A, ◦) Jordan, with

a ◦ b = (ab + ba)/2.◮ Example: Jordan algebra associated to a quadratic form.◮ Exceptional example: 27-dimensional Albert algebra,

constructed from octonions.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 6

Page 7: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Classification1

Theorem.If A is a central simple structurable algebra, it is isomorphic to(at least) one of the following:◮ Central simple associative algebra with involution.◮ Central simple Jordan algebra.◮ Hermitian type.◮ Central simple structurable algebra of skew-dimension one.◮ Forms of tensor product of two composition algebras.◮ Smirnov algebra.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 7

Page 8: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Classification1

The skew-dimension is dim(S), with

S := {a ∈ A | a = −a}.

Classification due to:

◮ Characteristic 0: Allison, ’79.◮ Characteristic ∕= 2, 3, 5: Smirnov, ’91.◮ Characteristic = 5: Boelaert, De Medts, Stavrova, ’19,

together with separate article of Stavrova, ’19.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 8

Page 9: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Tensor product of composition algebras1

Definition.If Ci is a composition algebra over k with involution σi , fori = 1, 2, then the k-algebra C1 ⊗k C2, together with theinvolution

− = σ := σ1 ⊗ σ2

is a structurable algebra.

◮ One notes S = {s1 ⊗ 1 + 1 ⊗ s2 | si ∈ Si}, with Si the setof skew elements w.r.t. the involution σi . In particular, it isof dimension 7, 8, 10 or 14 if C1 is octonion.

◮ There only exist forms if dim(C1) = dim(C2).

•••• •••••••••••••••• •••••••••••••••••• •••••••• 9

Page 10: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Skew-dimension one1

Let J be a Jordan algebra, T : J × J → k be a symmetricbilinear form, × : J × J → J be a symmetric bilinear map, andN : J → k be a cubic form such that one of the following holds:

◮ J is a cubic Jordan algebra with a non-degenerateadmissible form N, with basepoint 1, trace form T , andFreudenthal cross product ×.

◮ J is a Jordan algebra of a non-degenerate quadratic form qwith basepoint 1, and T is the linearization of q. In thiscase, N and × are the zero maps.

◮ J = 0, and the maps N, T and × are the zero maps. Inthis case, J is not unital.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 10

Page 11: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Skew-dimension one1

LetA =

!"k1 j1j2 k2

#

| k1, k2 ∈ k, j1, j2 ∈ J$

,

and define the multiplication and the involution by"

k1 j1j2 k2

# "k ′

1 j ′1

j ′2 k ′

2

#

="

k1k ′1 + T (j1, j ′

2) k1j ′1 + k ′

2j1 + j2 × j ′2

k ′1j2 + k2j ′

2 + j1 × j ′1 k2k ′

2 + T (j2, j ′1)

#

,

"k1 j1j2 k2

#

="

k2 j1j2 k1

#

,

for all k1, k2, k ′1, k ′

2 ∈ k and j1, j2, j ′1, j ′

2 ∈ J .

•••• •••••••••••••••• •••••••••••••••••• •••••••• 11

Page 12: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Skew-dimension one1

◮ This is called a matrix structurable algebra, denoted byM(J , 1).

◮ Similar construction for M(J , η), η ∈ k×.◮ Assume A skew-dimension one.◮ Consider 0 ∕= s0 ∈ S, then s2

0 = µ · 1, for some µ ∈ k×.◮ Allison-Faulkner ’84: A ∼= M(J , 1) ⇐⇒ µ is a square.◮ In particular: There exists a quadratic field extension m/k

such that A ⊗m ∼= M(J , 1).◮ Example cubic Jordan algebra: Any Albert algebra.◮ Other example: Hermitian (3 × 3)-matrices over a

composition algebra. These have dimension 6, 9, 15 or 27.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 12

Page 13: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

TKK Lie algebras1

◮ Recall that Instrl(A) := 〈Vx ,y | x , y ∈ A〉 ≤ End(A) is a Liesubalgebra of gl(A).

◮ If A is a structurable algebra, then

K (A) = S− ⊕ A− ⊕ Instrl(A) ⊕ A+ ⊕ S+

is a 5-graded Lie algebra. Denote its i-th component by Li .◮ So [Li , Lj ] ≤ Li+j .◮ A+ and A− are two copies of A.◮ E.g.: [x+, y−] = Vx ,y .◮ E.g.: [s+, t−] = LsLt .◮ E.g.: [Vx ,y , z+] = (Vx ,y z)+.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 13

Page 14: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Exceptional Lie algebras1

Definition.A Lie algebra L is of (absolute) type Xn if L ⊗ k is of type Xn.

Some examples:

Example.We get the Freudenthal-Tits-magic square for the tensorproduct of two composition algebras:

dim(Ci) 1 2 4 81 A1 A2 C3 F42 A2 A2 × A2 A5 E64 C3 A5 D6 E78 F4 E6 E7 E8

•••• •••••••••••••••• •••••••••••••••••• •••••••• 14

Page 15: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Exceptional Lie algebras1

Example.If J is a cubic Jordan algebra, we get (at least if char(k) = 0):

dim(J) dim(M(J , 1)) type of K (M(J , 1))6 14 F49 20 E615 32 E727 56 E8

•••• •••••••••••••••• •••••••••••••••••• •••••••• 15

Page 16: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Inner ideals1

Definition.An inner ideal of a Lie algebra L is a subspace I such that[I, [I, L]] ≤ I. If I is 1-dimensional, any non-zero element of I iscalled extremal.

Any ideal is an inner ideal, 0 and L as well.

ExampleFor L = sl2 we have a basis {e, f , h} with [e, f ] = h, [h, e] = 2eand [h, f ] = −2f . Then e is extremal by[e, [e, h]] = 0 = [e, [e, e]] and [e, [e, f ]] = [e, h] = −2e.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 16

Page 17: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Canonical inner ideals1

◮ [Li , [Li , Lj ]] ≤ L2i+j .◮ S+ will always be an inner ideal!◮ If S = 0, then A+ will always be an inner ideal.◮ If A is central simple, any proper inner ideal I ≤ K (A)

satisfies [I, I] = 0.◮ A Lie algebra automorphism maps inner ideals on to inner

ideals.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 17

Page 18: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Some automorphisms1

◮ For any a ∈ A and s ∈ S we get ad(a+ + s+)5 = 0.◮ If A is central simple

e+(a, s) := exp(ad(a+ + s+)) =4%

i=0

1i! ad(a+ + s+)i

is a Lie algebra automorphism. (Quite delicate incharacteristic 5!)

◮ Set E+(A) = {e+(a, s) | s ∈ S, a ∈ A} and similarlyE−(A).

◮ E (A) is the subgroup of Aut(L) generated by E+(A) andE−(A).

•••• •••••••••••••••• •••••••••••••••••• •••••••• 18

Page 19: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Structurable division algebras1

We define the operator Ux by Ux (y) = Vx ,y x .

Definition.An element u ∈ A is called conjugate invertible if there existsu ∈ A such that Vu,u = Id. (This implies Uu invertible.)The structurable algebra A is called division if every non-zeroelement of A is conjugate invertible.

Some examples:

◮ Associative division algebra with involution. Then u = u−1.◮ Albert division algebra.◮ Jordan algebra associated with anisotropic quadratic form.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 19

Page 20: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Some more exceptional division examples1

◮ Octonion division algebra.◮ Consider a quartic field extension whose splitting field has

Galois group Alt(4) or Sym(4). Then one can apply ageneralized Cayley-Dickson process to this algebra to obtaina skew-dimension one structurable division algebra (ofdimension 8).

◮ Exceptional cases: quite hard to determine explicitly!

•••• •••••••••••••••• •••••••••••••••••• •••••••• 20

Page 21: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Inner ideals of K (A)2

Theorem (De Medts - M.).Let J be a central simple Jordan division algebra.Then any non-trivial proper inner ideal of K (J) distinct from J−equals e−(j)(J+) for a unique j ∈ J .

Note: sl2 = K (k).

Theorem (De Medts - M.).Let A be a central simple structurable division algebra withS ∕= 0.Then any non-trivial proper inner ideal of K (A) distinct fromS− equals e−(a, s)(S+) for unique a ∈ A and s ∈ S.

In particular: all inner ideals have the same dimension.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 21

Page 22: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Associated geometry2

DefinitionLet X be a set and {Ux | x ∈ X} a collection of subgroups ofSym(X ). The data (X , {Ux }x∈X ) is a Moufang set if:◮ For each x ∈ X , Ux fixes x and acts sharply transitively on

X\{x}.◮ For each g ∈ G := 〈Ux | x ∈ X 〉 ≤ Sym(X ) and each

y ∈ X we have g−1Uy g = Uy .g .

Corollary of previous result: If A is central simple division, theset of non-trivial proper inner ideals of K (A) is a Moufang set.

Note: US− = E−(A).

•••• •••••••••••••••• •••••••••••••••••• •••••••• 22

Page 23: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Skew-dimension one structurable algebras2

◮ Recall the skew-dimension one structurable algebraM(J) := M(J , 1) with as elements

"a ij b

#

,

with a, b ∈ k and i , j ∈ J .◮ Assumption: J is a cubic Jordan division algebra.

(N(j) = 0 implies j = 0)◮ Example of J : an Albert division algebra.◮ Other example: k with cubic form N(a) = a3.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 23

Page 24: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Reduction2

Lemma (De Medts - M.).Any non-trivial inner ideal of K (M(J)) is the image of an innerideal containing S+ under an element of E (A).

◮ S+ is 1-dimensional.◮ What are the inner ideals containing S+?◮ The inner ideals of a structurable algebra A are the

subspaces I satisfying UI(A) ≤ I.◮ In this case all non-trivial proper inner ideals of M(J) are

1-dimensional and form a Moufang set.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 24

Page 25: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

A tale of two types of inner ideals2

Lemma (De Medts - M.).The only non-trivial inner ideals properly containing S+ areS+ ⊕ 〈a+〉, with 〈a〉 an inner ideal.

◮ Each non-trivial proper inner ideal is 1 or 2-dimensional.◮ If its dimension is 2, all subspaces are inner ideals.◮ In particular: the Moufang set in M(J) embeds in the

lattice of inner ideals of K (M(J)).◮ What geometry does this lattice of inner ideals form?◮ First, we have to introduce some incidence-geometry

concepts!

•••• •••••••••••••••• •••••••••••••••••• •••••••• 25

Page 26: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Point-line geometries2

Definition.A point-line geometry is a tuple (P, L), with P a set, called theset of points, and L a subset of 2P , called the set of lines.

We say that a point p ∈ P is on a line l ∈ L if p ∈ l .

Definition.We say that (P, L) is a partial linear space if for any twodistinct p1, p2 ∈ P there exists at most one line containing bothp1 and p2 and similarly, for any two distinct lines, there is atmost one point on both lines.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 26

Page 27: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Ordinary polygons2

Example.An ordinary n-gon.Explicitly: P = {1, . . . , n}, L = {{1, 2}, {2, 3}, . . . , {n, 1}}.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 27

Page 28: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Generalized polygons2Let n ≥ 3. A generalized n-gon is a point-line geometry suchthat

◮ It is a partial linear space.◮ It does not have ordinary m-gons as subgeometries, for all

2 < m < n.◮ It does have an ordinary n-gon as subgeometry.◮ For any two points p1, p2, there exists an ordinary n-gon as

subgeometry, containing both points.◮ Similarly, for any two lines and any point and line, there

exists an ordinary n-gon as subgeometry, containing boththese elements.

We call a point-line geometry a generalized polygon if it is ageneralized n-gon, for some n ≥ 3.•••• •••••••••••••••• •••••••••••••••••• •••••••• 28

Page 29: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Generalized triangles2

Recall the (axiomatic) definition of a projective plane:

Definition.A point-line geometry is a projective plane if◮ Any two points are on a unique line.◮ Any two lines intersect in a unique point.◮ There are at least two lines.

Then one easily sees that a generalized 3-gon is precisely thesame as a projective plane!

•••• •••••••••••••••• •••••••••••••••••• •••••••• 29

Page 30: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Moufang polygons2

◮ Classifying projective planes is quite a tedious task! (Evenif the point set is finite.)

◮ Classification is completed if one assumes thickness andsome (transitivity) conditions on the automorphism groupof the generalized polygon.

◮ This condition is called the Moufang condition, and thegeneralized polygons satisfying it the Moufang polygons.

◮ Implies n = 3, 4, 6 or 8.◮ Classification due to Jacques Tits and Richard Weiss (’02).◮ Now: describe some embeddings into Lie algebras, using

inner ideals.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 30

Page 31: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Moufang hexagon2

◮ A generalized hexagon is a point-line geometry which doesnot contain triangles, quadrangles or pentagons and suchthat any two distinct points, any two distinct lines and anypoint and line lie in a hexagon.

◮ In particular: two points are at distance at most 3.

Theorem (De Medts - M.).The point-line geometry with as points the 1-dimensional innerideals of K (M(J)), as lines all proper inner ideals of dimension> 1 and inclusion as incidence is a Moufang hexagon.

◮ S+ and S− are at distance 3.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 31

Page 32: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

A hexagon2

The generic hexagon in K (M(J)) is:〈( 1 0

0 0 )−〉〈( 1 00 0 )+〉

S+

〈( 0 00 1 )+〉 〈( 0 0

0 1 )−〉

S−

•••• •••••••••••••••• •••••••••••••••••• •••••••• 32

Page 33: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Some remarks2

◮ In Groups with Steinberg Relations and Coordinatization ofPolygonal Geometries (’77) Faulkner constructs a Liealgebra starting from a cubic Jordan division algebra.He then constructs a generalized hexagon with as pointsand lines some specific inner ideals.

◮ Similar ideas can also be used to determine inner ideals ofsome other TKK Lie algebras that will correspond toprojective planes. We will describe this now.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 33

Page 34: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Alternative algebras2

◮ Let F be an alternative algebra (i.e., satisfying x2y = x(xy)and yx2 = (yx)x).

◮ Consider A := F ⊕ F , with multiplication(x , y)(a, b) = (xa, by) and involution (x , y) 0→ (y , x).

◮ Then A is a structurable algebra.◮ S = {(f , −f ) | f ∈ F} has the same dimension as F .◮ So, in general not a skew-dimension one structurable

algebra.◮ Assume from now on that F is division.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 34

Page 35: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Again a reduction2

Lemma (De Medts - M.).Any non-trivial inner ideal of K (A) is the image of an inner idealcontaining S+ under an element of E (A).

◮ What are the inner ideals containing S+?◮ There are precisely two of these: S+ ⊕ (F ⊕ 0)+ and

S+ ⊕ (0 ⊕ F )+.◮ Hence all non-trivial proper inner ideals have dimension

dim(F ) or 2 dim(F ).

•••• •••••••••••••••• •••••••••••••••••• •••••••• 35

Page 36: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Constructing a geometry2

◮ P = {I | I is a minimal non-trivial inner ideal}◮ L = {I | I is a proper non-trivial non-minimal inner ideal}.◮ Then (P, L) is a point-line geometry with containment as

incidence.◮ The situation is more involved, since the minimal inner

ideals are not 1-dimensional.

Lemma (De Medts-M.).Let I, J ∈ P be two distinct points at distance d in (P, L). Then

d = 1 ⇐⇒ [I, J ] = 0,

d = 2 ⇐⇒ [I, J ] ∕= 0 and [I, [I, J ]] = 0,

d = 3 ⇐⇒ [I, [I, J ]] ∕= 0.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 36

Page 37: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Thin generalized hexagon2

We call a geometry thin, if every point is on precisely two lines.

Theorem (De Medts-M.).The point-line geometry (P, L) is a thin generalized hexagon. Itis the so-called double of a Moufang triangle.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 37

Page 38: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Moufang quadrangles?2

◮ For some classical class of Moufang quadrangles we alsohave a description in terms of inner ideals. (Related toquadratic forms.)

◮ There are also Moufang quadrangles of type E6, E7 and E8.◮ It seems that one obtains this as inner ideal geometry if you

consider a suitable structurable algebra.◮ Hopefully, we can attack higher rank geometries with this

approach as well.◮ This will be related to extremal geometries.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 38

Page 39: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Extremal geometriesFrom now on: joint with Hans Cuypers (TU Eindhoven)

3

◮ Recall: 0 ∕= x ∈ L is extremal if [x , [x , L]] ≤ 〈x〉.◮ E = set of extremal elements.◮ x is a zero divisor if [x , [x , L]] = 0.◮ If L does not contain a non-zero zero divisor, it is called

non-degenerate.◮ Assume that L is a simple non-degenerate Lie algebra

generated by its extremal elements.◮ P = {〈x〉 | x ∈ E}.◮ L = {〈x , y〉 | [x , y ] = 0 and λx + µy ∈ E , ∀λ, µ ∈

k, (λ, µ) ∕= (0, 0)}.◮ Γ := (P, L) is a point-line geometry, called the extremal

geometry.◮ Introduced by Arjeh Cohen and Gabor Ivanyos. (’06)

•••• •••••••••••••••• •••••••••••••••••• •••••••• 39

Page 40: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Results Cohen and Ivanyos3Theorem.If L ∕= ∅, then Γ is isomorphic to a root shadow space of typeAn,{1,n} (n ≥ 2), BCn,2 (n ≥ 3), Dn,2 (n ≥ 4), E6,2, E7,1, E8,8,F4,1 or G2,2.

◮ Precise definition does not matter. What is important: theyare classified and more or less known.

◮ Example: An,{1,n} is associated with a projective space.◮ Example: G2,2 are precisely these generalized hexagons.◮ The extremal geometry in a split Lie algebra of type Xn has

the same type.◮ Moreover, their approach works in any characteristic.◮ However, there is one root shadow space missing, namely

the polar spaces (generalized quadrangles are of this type).•••• •••••••••••••••• •••••••••••••••••• •••••••• 40

Page 41: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Inner line ideal geometry3

◮ In order to fix this, we extended the line set.◮ We call I an inner line ideal if it is a proper inner ideal

containing two linearly independent extremal elements andis minimal with these properties.

◮ Set L′ := {I | I is an inner line ideal}.◮ We call Γ′ = (P, L′) the inner line ideal geometry of L.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 41

Page 42: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Result3

Theorem (Cuypers-M.).Suppose L is a simple non-degenerate Lie algebra generated byextremal elements over a field of characteristic not 2. Then wehave one of the following:(a) The extremal geometry of L contains lines and coincides

with the inner line ideal geometry.(b) The extremal geometry of L contains no lines, but L

contains two commuting, but linearly independent extremalelements; the inner line ideal geometry is a non-degeneratepolar space of rank at least 2.

(c) The Lie algebra L does not contain commuting, but linearlyindependent extremal elements, and the inner line idealgeometry has no lines.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 42

Page 43: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Connection with structurable algebras?3

Relying on results of Stavrova:

Theorem (Cuypers - M.).If L is a non-degenerate non-symplectic simple Lie algebragenerated by its extremal elements, then L = K (A) for someskew-dimension one structurable algebra A.

◮ Moreover, the inner line ideal geometry coincides with theextremal geometry if and only if A is isomorphic to amatrix structurable algebra.

◮ If the inner line ideal geometry has no lines, it is comingfrom a skew-dimension one structurable division algebra.Hence, it is a Moufang set!

•••• •••••••••••••••• •••••••••••••••••• •••••••• 43

Page 44: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Some remarks3

◮ In particular one sees that one does not recover all Moufangsets, using the extremal geometry/inner line ideal geometryapproach.

◮ A geometry of type A2,{1,2} is precisely the double of aprojective plane.

◮ So we only get the double of the projective plane over theground field as extremal geometry.

◮ For other projective planes, the minimal inner ideals need tohave dimension strictly bigger than 1.

•••• •••••••••••••••• •••••••••••••••••• •••••••• 44

Page 45: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

Some more questions3

◮ What happens in characteristic 2 (and 3)? Extremalelements in characteristic 2 are well-defined, what is “good”definition for inner ideals of Lie algebras?

◮ Inner ideals of a Jordan algebra correspond to inner idealsof its Lie algebra, what happens when structurable algebrais not Jordan?

◮ Good definition for structurable algebras in characteristic 2and/or 3?

◮ Explicit construction for forms of matrix structurablealgebras corresponding to quadrangles of type E6, E7, E8?

•••• •••••••••••••••• •••••••••••••••••• •••••••• 45

Page 46: Jeroen Meulewaeter November 5, 2019 Malaga Universityjbmeulew/MalagaPresentation.pdf · Overview/motivation Structurable algebras are a class of non-associative, non-commutative algebras.

End3

Thanks for your attention!

•••• •••••••••••••••• •••••••••••••••••• •••••••• 46