(JEE ADVANCED PATTERN) TARGET : JEE (MAIN+ADVANCED) … · 2019-11-13 · Website : | E-mail :...
Embed Size (px)
Transcript of (JEE ADVANCED PATTERN) TARGET : JEE (MAIN+ADVANCED) … · 2019-11-13 · Website : | E-mail :...

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-1
ALL INDIA OPEN TEST (AIOT)(JEE ADVANCED PATTERN)
TARGET : JEE (MAIN+ADVANCED) 2018DATE : 25-02-2018 COURSE:VVIIJJEETTAA ((0011JJPP,, 0022JJPP)),,
VVIISSHHWWAAAASS ((0011JJFF)),, VVIIJJAAYY ((0011JJRR,, 0077JJRR))
HINTS & SOLUTIONSPAPER-1
MATHEMATICS1. If a, b, c, d are .......................
Sol. Let b = a + p, c = a + 2p, d = a + 3p
2 2
2
1 11 1a a 3pa d
1 1 1 1
b c a p a 2p
(a p)(a 2p) a 3ap 2p1
a(a 3p) a 3ap
1 1 1 1
a d b c
1 1(a d)
b c
1 1(a a 3p)
a p a 2p
2
2 2
2
2 2
(2a 3p)
a 3ap 2p
p4 4.
a 3ap 2p
2. The value of the.......................
Sol.
1 x 1 xa x
2x1 a 1 x
sin e cos e eI dx
e 1tan e tan e
=
a x
2x1 a 1 x
1 edx
2 e 1tan e tan e
= ae
1 a
dt
2 t tan e
as tan–1 (ex) = t
= ln22
3. Let f(x) = sin(x) .......................
Sol. f(x) = sin(x) – 4x(1 – x)
f(x) = cosx – 4 + 8x, f(x) = –2 sin x + 8
3 1f '"(x) – cos x 0 x 0,
2
and1
f "'(x) 0 x , 12
Hence f(x) 0 x (0, 1)
4. Two parabola .......................
Sol. Given parabolas are confocal and their axes in opposite
direction hence they will cut each other orthogonally. Therefore
MPN 90 , also common focus is (5, 2).
5. Let f(x) = x3 + x + 1.......................
Sol. Let x = 2, a x , put in x3 + x + 1 = 0
We get p(x) = x3 + 2x2 + x – 1
6. Let two curves.......................
Sol. y – f(x) = f’(x) (y – x) and y – g(x) = g’(x) (y – x)
x/4 x/4
f '(x) g'(x) 1f(x) g(x)
f(x) g(x) 4
f(x) e ,g(x) 4e
1 2
x / 4–1
x 4 13I dx
124 4e
Area
1x/4 x/4 1/4
0
(4e – e )dx 12(e – 1)
7. Let –1–1
32 log (cos x)log (sin x)f(x) 2 3 .............
Sol. f(x) = sin–1x + cos–1x =2
x (0, 1) and f(x) is not define
for x < 0

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-2
8. L1 is a tangent .......................
Sol.2 2x y
116 4
1
Tangent A is 5x – 6y = 16
Tangent at B is 5x – 6y = –16
Normal at A is 6x + 5y =75
2
Normal at B is 6x + 5y =75
2
Radius of circumcircle of rectangle is
9 10925
4 2
9. Let A and B .......................
Sol. (ABAT)T = ABTAT which is not symmetric.
(AB – BA)T = (AB)T – (BA)T = BTAT – ATBT
adjAB | A | adjA
| A |
(adj AT – B)T = ((adj A)T – adj A)T = (adj A) – adj (AT)
B15 = A15, S is skew-symmetric.
10. The coordinates .......................
Sol. Let for required pointx 1 y 1
z2 3
1 2 , 1 3 ,
Now distance between this point with (1, –1,0) is 4 14
2 2 22 3 16.14
214 16.14
4.
(9, –13,4) and (–7,11, –4) Ans.
11. The volume of .......................
Sol.1 1 1
AD BC AC sin45 ,3 2 6
soAC
AD BC 1.2
apply AM GM
13. Let for .......................
Sol. apply lebnitz we get
2
2
xf '(x) – f(x) 2x
x x 1
On solving differential equation2f(x) x n(x 1)
14. Let the end .......................
Sol. Given circle will intersect major axis y = x at the foci of ellipse.
So foci of ellipse are (2 2 , 2 2 ) & (–2 2 , –2 2 )
length of major axis of ellipse is 10
15. Let the unit .......................
Sol. | a | | b | 1
a.b 0 ; (as a b)
c a b (a b) ......(i)
Taking dot product by a,
2a.c | a | (a.b) [aab]
| a | . | c | cos .1 0 0
1. | c | .cos
As | c | 1 ; cos
Taking dot product of (i) by b
2b.c b.a | b | [b a b]
| b | | c | cos 0 .1 0
1.1.cos cos
1|| 2c 2 2 2 1
2 2 2cos cos 1
2 21 2cos cos2
Hence,2cos , cos2

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-3
16. The figure shows .......................Sol. Let radius of circles with centres A, B, C are a, b and c
respectively then
XZ = 22 )c–a(–AC a – c = 9 ....... (1)
Area of quadrilateral ACZX =2
1(a+ c)(40) = 300
a + c = 15 ......... (2)hence a = 12 and c = 3Now for finding the radius of circle touching both circles withcentres A and CXZ = XY + YZ
40 =22 )12–b(–)12b( +
22 )3–b(–)3b(
40 = b48 + b12 b =27
400
Now area of ABC
x
A C
B
y zABC = Area of quadrilateral ABYX + Area of quadrilateralBCZY – Area of quadrilateral ACZX
D =2
1
27
40012
3
80+
2
1
27
4003
3
40– 300
D = 476 +27
8cm2 [] = 476 cm2
19. Angle between .......................Sol. Focus of parabola is (3, 5) and focal chord is
mx – y + 5 – 3m = 0
2
5 3m3
1 m
8
m15 or
8
tan15
2
1 18 15cot tan
15 8
20. Let2
1f(x)
6 x 2
.......................
Sol. f(x) is defined when26 x 2 > 0
2x 8 2x 9 3 x 3
PHYSICS21. A uniform solid ...................
Sol. AL
= 2
cm
R mRˆ ˆmV k k 02 2
2
B
mR ˆL k2
2C
3 ˆL mR k2
2D
3 ˆL mR k2
2
2O cm
R mR 3ˆ ˆ ˆL mV k k mR k2 2 2
22. Consider a ...................Sol.
0 5 10 15 20 25
0 4 8 12 16 20d
2d3d
d2d
3d
Main scale
Vernier scale
d = 0.25 mm
LC = 0.25 mm
zero error = – 0.75 mm
while taking the reading zero of vernier will be between 9th and
10th of main scale division.
Reading = 9mm + 0.50 mm + 0.75 m = 10.25 mm
23. Consider an ...................
Sol. Equivalent Circuit
1 2 2 3 3 4 4 5 5 6
C1 C2 C3 C4 C5
PQ
Q
R P S
V
S
C4
C5C2
R
C3
P
Q
C1
C1 = C2 = C3 = C4 = C5 = C= 0A
d
Balanced wheat stone bridge

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-4
C
CC
C
Q= CV
V
WB = CV2 = 20AV
d
Electric field between 3 & 4
=
0
33
0 0
A VQ Vd 2EA A 2d
Potential difference between 2 and 5 = VQ – VS =V
2
Potential difference between 1 and 4 = VP – VS =V
224. Consider the .........................Sol.
mg
F =2R cos sin a
C
T
F = 2 2R cos
1 rC
T =2R cos sin a
C
; mg =
2 2R cos1 r
C
1T a 13tan tan tan
2mg 1 r 513
mgtanT
5
25. Two blocks .........................Sol.
1 2 1 2 1 2max
1 2 1 2 1 2
k k k k m ma A, , T 2
m m m m k k
fmax + K2A = m21 2
1 2
K KA
m m
m2g = 1 22 2
1 2
K Km K A
m m
A = 2 1 2
1 2 2 1
m g(m m )
k m k m
26. Two cars A .........................
Sol. (180)2 + (255 – 15t)2 = (300t)2
32400 +65025 + 225 t2 – 7650 t = 90000 t2
89775 t2 + 7650 t – 97425 = 0
t = 1 sec
f =300 15cos37
300 10cos53
f0
=300 12
300 6
f0
=312
294× 2.94 khz
f = 3.12 khz
27. In the diagram.........................
Sol. In right ring emf induced in ABC part and CDA part will be same.
Simplified diagram may be
R2
R1
C
A
R1 R2
So there will be current in each ring and so magnetic force on
them will be non-zero.

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-5
28. Consider a .........................
Sol.
xo
y
P
V
Q
V
+B = 0
1B
r
B = 0B =0r
For a point inside pipe, pipe will act as solenoid
For a point outside pipe, it will act as infinite long wire
29. Current in .........................
Sol. 0t
i q2
0
0i
i t it
i0 =2q
t 0t
i i 1t
dH = i2 R dt =20i R
2t
1 dtt
s
H =20i R
T 2
20
t 2t1
tt
dt = 20
ti R
3
=
24 q R
3 t
30. A cone-shaped .........................
Sol.
Fc sin
Fc cos mg sin
mg cos
N
For equilibrium
N = mg sin + Fc cos
Fc sin = mg cos
m2r sin = mg cos
r =2
gcot
31. Consider .........................Sol. For inner sphere initially
P = 40T 4R2 = 4 4 2
0T RFor outer shell
P = T444R2
4 40T R2 = T44.4R2
40T = 4T4
T = 0T
2After covering for inner sphere temperature of inner surface willbe greater than T0
32. Consider the .........................
Sol.
XL = R
R
~
XC = 2R
E = E0 sin(t +4
)
3
2
1
1 =0E
Rsin(t +
4
)
2 =0E
Rsin(t +
4
–
2
)
3 =0E
2Rsin(t +
4
+
2
)
= 1+ 2+ 3
03
E
2R
01
E
R
(t +4
)
2 = 0E
R
0E
R
0E
2R
05E
2R
t4
tan =1
2
= 05Esin t
2R 4
z =12 2R x =
2R
5
212 2 4R
R x5
tan =1
x 1
2R R1 = 2x
2 × 12 + x2 = 5x2 =24R
5 x2 =
24R
25
2Rx
5

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-6
33. Three point .........................
Sol. Assuming cube with ABCD and CDEF as two adjacent
faces.
through CDEF = flux due to q at A only
=0
1 q
3 8
Also, VD > Vc since q at A is closer to D then C.
34. Choose the .........................
Sol. (A) eV0 =min.
hc
, min. =
12400
30000 = 0.4Å
(B) Energy of photon=12400
5000 = 2.48 eV
(C) In hydrogen atom speed V 1
nHere in ground state n = 1 and in second exided state
n = 3
(D) Since balmer series lie in visible region so only balmer
will be seen by observer.
35. Four point .........................
Sol. U = – 62 2Gm 3 2Gm
–aa 2
2
3
–GmF on A a i ak– a j ak a i– a j
(a 2)
|F| =2
2 2 2
3
Gm4a 4a 4a
a 2 2
=2
2
3 Gm
2 a
A (a, 0, a)Z
(0, a, a)
(a, a, 0)y
x
36. A particle is .........................
Sol. 2 = 7t +1
2(–6) t2 t =
1
3sec, 2 sec.
5t sec.
3
width d =5 35 7
7 3 m.3 3 3
37. An incompressible .........................Sol.
P0 +1
2V0
2 = P +1
2V2
P0 +1
2V0
2 = P +1
216V0
2 ; P = P0 –15
2V0
2
38. One mole of .........................
Sol. 3 1 2 31 2
1 2 3 eq
n (n n n )n n
1 1 1 1
1 2 35 7 8
1 1 13 5 6
=eq
6
r 1eq =
43
31
39. A soap bubble .........................Sol.
Atmosphere
A B
Pressure at A = P0 +4S
2R
Pressure at B = P0 +4S 4S
2R R = P0 +
6S
R40. A long string .........................Sol. 1 = 0.2 Kg/m = 0
10
TV
2 = 0.8 Kg/m = 40
12
0
VTV
4 2
At =
1
2i i
11 21
V22V 22A A A
VV V 3V2
Ei =1
202A2V1
Et =1
2(40) 2 2
t 2A V = 2 2 10
V1 44 A
2 9 2
2 20 1
1 16A V
2 18
=2 2
0 1 i i
8 1 8 KA V E E
9 2 9 9
K = 8

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-7
CHEMISTRY
41. The hexagonal unit cell of ...........
Sol. (A)
C3
(B) There are total 12 tetrahedral voids in 1 hexagonal unit
cell. Hence in each equal unit cell, tetrahedral voids
=12
43 .
(C) Packing fraction remains same, i.e. 74%.
(D) In original hcp also, no atom lie completely in unit cell.
So here also, it will be the same case.
43. At 25ºC, in one litre saturated ...........
Sol. Ag2C2O4 (s)
22 4
2s 0.1 M
2Ag aq C O aq
2 2 1sp 2 4K [Ag ] [C O ]
1.6×10–8 = (2s)2 (0.1)1
s = 2×10–4 M
So Ksolution = 22 4Ag C O Na
K K K
= 460 4 10 140 0.1 50 0.2
1000 1000 1000
–~ 24×10–3 S cm–1
Also M M MAgCl Ag Cl
44. Aqueous solution of boric ...........
Sol. B(OH)3 + H2O [B(OH)4]– + H+
OH2BO 22
+ 2BO +
+ 2H2O
Optically resolvable due to asymmetric structure
45. Identify the correct ...........
Sol. NaOH can co-exist with Na2HPO3 in aqueous solution as the
latter compound does not contains acidic H.
47. Amongs the following...........
Sol. Fe/Fe2+, Cr/Cr3+ shows positive value of standard electrode
potential.
48. What is/are true for hydrogen ...........
Sol. (A) In alkaline solution, its reducing character is more than in
acidic medium.
H2O2 O2 + 2H+ + 2e– ;
2OH– + H2O2 O2 + 2H2O + 2e–
(B) Correct statement.
(C) Due to polar nature, it has high dielectric constant.
(D) K2MnO4 + O3 + H2O KMnO4 + 2KOH + O2
49. Which property given in b...........
Sol. (A)23CO
Non polar,23SO
polar
(B*) CO2 and SO2 both are planar
(C*) COCl2 and SOCl2 both are polar
(D) CF4 and SF4 both are non planar
50. Which of the following ...........
Sol. [Pt(ox)3]2– is optically active due to 3 didentate ligands. [PdCl4]
2–
and [Pt(ox)3] 2– do not show G.I. as all ligands are same.
Hybridization of Ni2+ is dsp2 in [Ni(CN)4] 2– and that of Hg2+ is sp3
in [Hg(SCN)4] 2–
Both CN– and SCN– ligands are ambidentate. Hence both
[Ni(CN)4] 2– and [Hg(SCN)4]
2– show linkage isomerism.
K2[Ni(CN)4] is diamagnetic but Co[Hg(SCN)4] is not as Co2+ is d7
– paramagnetic.

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-8
51.X
(Hydrocarbon)
(i) O3
(ii) Zn/H2O O...........
Sol. (A)
Me
CH = CMe
Me
(i) O3
(ii) Zn/H2O
Me
H
OH
OO
OO2CH3 – C – CH3 +
(C)Me
Me
Me (i) O3
(ii) Zn/H2O
H
OH
OO
OOCH3 – CHO + CH3 – C – CH3 +
(D) (i) O3
(ii) Zn/H2O
Me Me
MeO
+
H
O
OH
OOO +
H
52. The possible products in ...........
Sol. CH3–CH=O + HCHO OH
OH
CH2–CH2–CH=O + CH3–CH–CH2–H=O
OH
OH)ii(
H/KCN)i(
3
OH
CH2–CH2–CH–COOH + CH3–CH–CH2–CH–COOH
OHOH OH
OH
CH2–CH2–CH–COOH + CH3–CH–CH2–CH–COOH
OHOH OH
53. Which of the following ...........
Sol. (A)CH3–C–Cl
O
H
)excess(MgBrCH3
CH3–C–OH
CH3
CH3
(3º R–OH)
(B) H
OH2
OH (3º R–OH)
(C)O 2S
LiAlH
N
4 H
OH
(3º R–OH)
(D) O
Cl Ether
MgO
MgCl
H
OH
54.
CONH2
...........
Sol. [Moderate]

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-9
55. In which of the following ...........
Sol. (A)
(B)
(C)
(D)(1) CO2
(3) CH3COCl
(2) H3O+
O – C – CH3
OHOOC
56. A magnesium ribbon...........
Sol. Mg + air MgO + Mg3N2
0.25 mol 0.1 0.05
MgO + 2HCl MgCl2 + H2O.
0.1 0.2mol
Mg3N2 + 8HCl 3MgCl2 + 2NH4Cl.
0.05 mol 0.4 mol 0.1 mol
NaOH
NH3 0.1 mol
57. For a first order reaction ...........
Sol. rate =t
dx 1tan K[A ] K 0.1
dt 3 ; K = 5.77 s–1
58. In He+, electron is initially ...........
Sol. Initially, electron is in an orbital with no radial nodes,
So n– – 1 = 0; and wavefunction changes sign once across a
plane i.e. there is one angular node so = 1
n = 2
Hence initially electron is in 2p.
Now this electron absorbs75
100× 13.6 eV or
3
4× 13.6 eV
energy to move to higher orbit (shell)
In He+, E1 = – 4 × 13.6 eV
E2 =–4 13.6
4
eV = – 13.6 eV
E3 = –4 13.6
9
eV
E4 = –4 13.6
16
eV = –
13.6
4eV
Hence we can see that E4–E2 =3
4× 13.6 eV.
Hence electron goes in 4th shell.
So, nintial + nfinal = 2 + 4 = 6
59. C4H8 (unsaturated hydrocarbons) ...........
Sol. CH2=CH–C2H5
Meso
CH3–CH=CH–CH3
trans
60. Total number of -Keto ...........
Sol. ,

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-10
PAPER-2MATHEMATICS
1. P(x) = 0 is a ........................
Sol. P(x) – 5 = (x – 2)Q(x)
P(x) – 3 = (x – 4)R(x)
Let P(x) has one integral root n such than P(n) = 0
P(n) – 5 = (n – 2)Q(n) .......... (1)
–2–n
5 = Q(n)
as Q(n) is also an integer
so n – 2 can be ±1 and ±5 only
n – 2 = 1 n = 3
n – 2 = – 1 n = 1
n – 2 = 5 n = 7
n – 2 = – 5 n = – 3
are possible values of n
P(n) – 3 = (n – 4)r(n)
–4–n
3 = r(n)
r(n) is also on integer
hence n – 4 can be ± 1 and ± 3
n – 4 = 1 n = 5
n – 4 = – 1 n = 3
n – 4 = 3 n = 7
n – 4 = – 3 n = 1
So possible value of n should satisfy both equation hence
possible values of n are 1, 3, 7
So, (C) is incorrect option
So, (C) is incorrect option
2. A is a 3 × 3 ........................
Sol. Let A =
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
u
=
x
y
z
A u
=
11 12 13
21 22 23
31 32 33
a x a y a y
a x a y a y
a x a y a z
A u
. u
= 0
a11x2 + a27y
2 + a33z2 + (a12 + a21)
xy + (a23 + a32) yz + (a31 + a13) zx = 0 x,y,z R
Hence a11 = a22 = a3 = 0 and aij + aji = 0 i j
3. Let f(x) ........................
Sol. R.H.D. =
2 h
0
h 0
(5 1 t )dt 11
f '(2 ) limh
1 2 h
0 1
h 0
(6 t)dt (4 t)dt 11
limh
0 2 h2 2
1 1
h 0
(6 t) (t 4)11
2 2lim
h
h 0
h(12 h)lim 6
2h
L.H.D. = 5 Continuous but non differentiable at x = 2
4. Letrn
r 0
(–1)X
r 1
........................
Sol.n n 1
2 3 n 1 (–1) x1– x x – x ..... (–x)
1 x
12 3 n
0
1 1 n 1n
0 0
(1– x x – x .... (–x) )dx
1 xdx (–1) dx
1 x 1 1
1 n 1
0
x| X – In2 | dx,
1 x
where
1 n 1
0
1 x 1dx .
2(n 2) 1 x 2(n 1)
5. The value of ........................
Sol. zn – 1 = (z – 1)(z – z2)(z – z3)……(z – zn)
n
2 3 n
z – 1(z – z )(z z )....(z z )
z – 1
n–1 n 22 3 nz z .... 1 (z z )(z z )....(z z )
Putting z = z1 = 1
|1 + 1 + …… + 1| = |(1 – z2)(1 – z3) ….(1 – zn)|
2 3 n| 1– z || 1– z | .... | 1– z | n.

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-11
6. The value of |A1A2|2 ........................
Sol.i2 / n i2 /n2
2 1 11
ze | z – z | | z || (e – 1) |
z
2 2 2 21 2 2 1| A A | | z – z | 2 sin
n
2 2 21 2 1 3 1 n
2 2 2
| A A | | A A | ...... | A A |
2 (n – 1)2 sin 2 .... sin
n n n
2 4 2(n – 1)2 (n – 1) – cos cos .... cos
n n n
= 2(n – 1 – (– 1)) = 2n.
7. The value ........................
8. The value of ........................
Sol. D =
1 1 1
2 1 3
1 2 p
= –p,
D1 =
4 1 1
6 1 3
q 2 p
= –2(p – q + 6)
D2 =
1 4 1
2 6 3
1 q p
= –2p – q + 6,
D3 =
1 1 4
2 1 6
1 2 q
= 6 – q
x = 1D
D =
2(p q 6)
p
,
y = 2D 2p q 6
D p
, z = 3D q 6
D p
New for unique solution p 0, q R
total no. of order pairs (p, q) = 20 × 21 = 420
L = 420
For no solution p = 0, q 6
total no. of ordered pairs of (p, q) = 1 × 20 = 20
M = 20
for infinite many solution p = 0, q = 6
total no. of ordered pairs (p, q) = 1 × 1 = 1N = 1
L M N 19 420 20 1 19
420 420
= 1
9. The length ........................
10. Area of the ........................
Sol. Let DC = x
BQ BP 2x – 2; CQ CR
x – 2 CB 3x – 4
2 2(3x – 4) 16 x x 3 AB 6
PBQ is isosceles and PB = BQ = 4. Since BC = 5,
4 1 4 32sinB area of PBQ 4 4
5 2 5 5
4sinB
5 1 4 32
PBQ 4 42 5 5
11. If the expansion ........................
Sol. Since (1 + x + x2)n = a0 + a1x + a2x2 + ….. + a2nx
2n ….. (1)
Substituting x = , 2 and 1 and then adding them together
a0 + a3 +a6 + …. = 3n–1
Again multiplying (1) by x and then substituting x = , 2 and 1
and then adding the three expansions thus obtained
a2 + a5 + a8 + …… = 3n–1
0 3 6 1 4 7
2 5 8
a a a ..... a a a .....
a a a ....
The required ratio isn–1
n–1
2.32.
3
12. If number of ........................
Sol. 2m – 2 = 10 m = 6
13. If solution of ........................
Sol. Dividing throughout by2 2sin y cos x , we get
2 2
2 2
3 tan x sec x dx 7sec x dx
7cot y cosec y dy 5cosec y dy
2 24(cot y sec x dx tan x cosec y) dy 0
Integrating,
2 2tan x cot y3 7 tanx 7 5 cot y 4 (cot y tanx) c
2 2 .

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-12
14. If sin , sin , ........................
Sol. From the given conditions we have
2 sin = sin + sin .....(i)
cos2 = cos cos .....(ii)
Squaring (i), 4 sin2 = sin2 + sin2 + 2 sin sin
Using (ii), 4(1 – cos cos )
= 1 – cos2 + 1 – cos2 + 2 sin sin
cos2 + cos2 – 4 cos cos = 2 (sin sin – 1)
sinsin1
coscos4coscos 22 = – 2
15. A given quantity........................
Sol. Let r be radius and h be height of the cylinder
volume (v) =1
2r2 h(given)
Total surface area
S =1
2 (2rh) + 2
21r
2
+ 2rh
= (+ 2)2v
rrh + r2
= (+ 2)+ r2
ds
dr =
2
–2v( 2)
r
+ 2r ....... (1)
2
2
d s
dr=
3
4v( 2)
r
+ 2 ....... (2)
For maximum or minimumds
dr= 0 r3 =
v( 2)
Hence S is minimum when – r2h (+ 2) + 22 r3 = 0
h
2r=
2
k = 2.
16. The distance ........................
Sol. 1 2 1 24 1 2 – 2 –3 ……. (1)
1 2 1 2– 3 – 4 –1– 3 4 – 3 –2 ……. (1)
From (1) and (2),
– 5 x 2 = – 10
2 12, 1
point of intersection (4 + 1, – 3 – 4, – 1 + 7)
i.e. (5, – 7, 6).
Distance of (5, – 7, 6) from (1, – 4, 7)
= 16 9 1 26 .
17. If point (a, b), ........................
Sol. a2 = 4 – b2 [0, 4]
f(–1) = 1 + 4 – a2 = 5 – a2 > 0
f(0) = –a2 < 0
f(5) = 5 – a2 > 0
f(4) = –a2 < 0
-1 0 4 5
two roots lie in (–1, 5)
18. If the equation ........................
Sol. 4
2
xcos3xsin
2
xsinxcos3
= a2 + 3 sin 2x – cos 2x
2cos 2x + 2 = a2
– 1 2
2–a2
1
0 a2 4
– 2 a 2
a can be (1) and (2)
20. Let f : R 0,2
........................
Sol. The equation 3x2 + 6x + a = 0 must have equal roots.
So D 0 a 3

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-13
PHYSICS21. A small ball .........................
Sol. By work energy theorem: MgR cos = 21Mv
2
T = mg
Mg
v = 2gRcos
Radial force equation : T = Mg cos +2Mv
Rv2/R = 2gcos
90° –
g sin
T = Mg cos +M
R2gR cos
Mg = 3Mg cos cos =1
3
tan =2gcos
2cotgsin
= tan–1 222. A bird in air .........................Sol.
x
y
z
For direct image:
happ = x +3
4y
appdh
dt =
dx
dt + 3
4
dy
dt
= – 5 + 2 +3
4 (–2 – 2) = – 6
After reflection from mirror happ = x + 3
4 (y + 2z)
appdh
dt =
dx
dt+
3
4
dy
dt
+3 dz
2 dt
= – 5 + 2 +3
4 (–2 – 2) +
3
2(2) = – 3
23. Figure shows .........................
Sol.
f T
F
T cos = f sin but T mgT cos = mg sin F = T sin + f cos
= mg
cos
sin sin + mg cos
= mg
cos
)cos(
For Fmax = < 45° Fmax = mg sec But tension in the string can not be more than mg
T =mg sin
cos
< mg should be less than 45°
Now if > 45° T = mg = 90° – F = mg sin + mg cos = 2mg sin
If < 45° then Fmax = mg sec If > 45° then Fmax = 2mg sin
24. Three balls .........................
Sol.m mm mv1
u v2
Just before collision Just after collision
applying conservation of linear momentummu = mv2 + mv1coefficient of restitutionv2 – v1 = eu
v2 =u
2 (1 + e)
v1 =u
2 (1 – e)
for collision between A and B for collision betweenB and C
vB =u 1
12 2
=3u
4
vC =1 3u 1 u
12 4 3 2
vA =u 1
12 2
=u
4
vB =1 3u 1 u
12 4 3 4
Total number of collisions = 2Total energy loss E
=
221 m 1 1 m 3u 1
u 1 12 2 4 2 2 4 9
=2 21 3 1 9 8
mu mu4 4 4 16 9
=2
23mu 1mu
16 8 = 25
mu16

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-14
25. Magnitude of .........................26. Maximum magnitude .........................Sol. Let z-coordinate of the loop at any time t is z and current
through the loop is .Magnetic flux associated with the loop t = (z + B0) a
2 + Lt = 0 = B0a
2
since t = t = 0 =2z
aL
due to the magnetic fieldsforce on the frame at any z.
F (d B)
R
Q
S P
y
x
Bz = z + B0
Bx = –x
FPQ = FRS = 0
QR xˆF aB ( k)
=2z a ˆa a k
L 2
=2 4a ˆzk2L
SP xˆF aB ( k)
=
2 4a ˆzk2L
2 4a z ˆF kL
equation of motion2
2
d zm
dt =
2 4az mg
L
2 2 4
2
d z az g
mLdt
z = A sin(t + 0) + z0
where =2a
mL
at z = z0
2
2
d z
dt = 0
z0 = 2 4
mgL
x a =
2
g
and amplitude A = –Z0 = 2 4
mgL
a =
2
g
z = z0 (1 – sin (t + 0)
at t = 0 ; z = 0 0 =2
z = z0 (1 – t) =2
g
(cost – 1)
z = 2
2
g t2sin
2
=2
2g
2 tsin
2
27. The instant .........................
28. The instant at .........................
Sol. Path difference
y
mean
S2
S1
0.25 mm
4m
x1 = d sin = 0.5 10–3 ×4
1025.0 3
=32
10 6
metre
x2 = d sin = 0.5 × 10–3 ×1
10y 3
=2
10y 6metre
For maximum intensity x1 + x2 = n
2
10y
32
10 66 = 4000 × 10–10
y =80
59
sin t =80
59
t =
80
59sin
1 1
For minimum intensity
2
10y
32
10 66 = 2000 × 10–10
y =80
27
t =
80
27sin
1 1
For central maxima path difference is zero
d sin = – d sin
1
y
4
y0
Position of central maximum is y0 = –4 sin t

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-15
29. The trajectory .........................
30. The radius .........................
Sol. B =2
)PCJ(
2
)POJ( 00
=2
0 )]PCPO(J[
=2
)COJ(0
=4
JR0
OP
C
00
JRB
4
(Uniform)
J
For positive charge r =0
0
qB
mV = 0
0
4mv
q RJ
31. The given figure .........................
Sol.
N
extreme position
mg
A
f
f = m2A ; N = mg
3a af N.
2 2
m2A 3 = mg A =2
g
3
32. A uniform .........................
Sol. Terminal speedmg
2 = 6rnv
de-broglie wavelength =h h
p mv =
h
mgm
12 r
=2
12 h r
m g
33. Two radio .........................
Sol. N = N0 e-t
At t =n2
; NA = 0N
2 , NB = 0N
4
CdN
dt = NA + 2NB = N0
34. Consider an .........................
Sol. If we connect positive terminal of a battery to A and negative to
infinity then the current through branches will be as shown. If we
connect negative to B and positive to infinity current will be in
opposite direction by super-position of two situation net current
in AB branch will be2
3
. Potential difference between A and B
will be2
R3
. Effective resistance between A and B will be
2R
3.
A
/3
/6/6
/3 /3/6/6
35. A uniform heavy .........................
Sol. compression in rod A =mg
3young modulus = YA
compression in another rod =2mg
3 young modulus = YB
Since compression in both rod is same
A B
mg 2mg
3S 3SY Y B
A
Y
Y 2
Given
YA A T = 3YB B T

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-16
36. A glass hemisphere .........................
Sol. The image of object O by refraction at plane surface is
formed at I such that
AI =4
3d
I acts as object for curved surface. The curved
surface makes image of I at I
1
v–
4
34
R d3
=
41
3R
or
1
v
=1
3R–
4
3R 4d
I acts as object for mirror. Mirror makes i ts image
at I distant v above B.
I acts as virtual object for the curved surface which makes
its image at infinity
4
3
–1 4
3R 3R 4d
=
1
3R
solving we get d =3
4 R =
3
4 × 4 = 3 cm Ans.
37. The chain of .........................
Sol. i = f
mgL
2sin + 0=m1g
(L x)
2
sin – m2g
x
2+
1
2mv2
mgL
2sin =
g
L (L2 + x2 – 2Lx)sin –
2x
L + v2
gL sin =g
L (L2 + x2 – 2Lx) sin –
2x
Lg + v2
v =5
g8
38. A vertical hollow .........................
Sol. Suppose the radius of the cylinder is R and length of rod is 2.
Consider the case when the end A has sliding tendency up.
Forces acting on the rod are shown in the figure.
N1
N1W
BG
N2
N2
A
Resolving forces horizontally and vertically, we have
N2 = N1 cos + N1 sin (i)
and N1 sin = N2 + N1 cos + W (ii)
Taking moment about A,
N1(2R cosec ) = W ( sin ) (iii)
From equations (i), (ii) and (iii), we get
2R = [(1 – 2) sin – 2 cos ] sin2 (iv)
Similarly, when the rod makes least angle , we get, A will have
sliding tendency downward.
2R = [(1 – 2) sin + 2 cos ] sin2 (v)
From equations (iv) and (v), we get
= tan
cossincossin
sinsintan
2
122
331
after substituting the values
= tan11 37
tan2 84

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-17
39. Two point masses .........................
Sol.2X0 X0
2a2mcomm
d
F =2 20
Gm(2m) GM(2m)
9X 4a
GM =2
20
4 Gma
9 X
T2 =
2 2 2 32 23 3 0 0
2
20
9 X a X4 4 9a a
GM Gm 2 Gm4 Gma
9 X
T =3 / 20
3X
2Gm
< V > =2 2
0 0 0 02 2 3 2
0 0
X 2X 4X 4X 8GmT T T X 9 X92 2 Gm
40. An ideal diatomic .........................
Sol. Equation of straight line AB P = 00
0
2PV 5P
V
Slope of the straight line AB = 0
0
2P
V
When process changes from endo to exo. slope should be
equal to adiabatic P-V curve slope =P 7 P
V 5 V
0
0
2P 7P
V 5V
P = 0
0
P10V
7 V
10
70
0
PV
V
= 00
0
2PV 5P
V
0
35V V
24
0
0
P10P
7 V
35
24 V0 = 0
25P
123P0V0 = nRT0
0
25P
12
0
35V
24
=825
288 P0 V0 = nRT
0
T 875
T 288(3) =
875
864
T =875
864 T0
CHEMISTRY
41. Select the correct ...........
Sol. (A) Van Arkel method
2 4(pure)high temperature(vapour) (vapour)
Ti 2 Ti Ti + 22
(B) Fools gold FeS2 Fe2+ S —S
(C)
42. Which of the following ...........
Sol. (A) Both on heating form an oxosalt (K2CrO4 & K2MnO4), a
metal oxide (Cr2O3 & MnO2) & oxygen gas.
(B) Both have their colour (orange and purple respectively)
because of charge transfer spectrum (since no unpaired
electrons).
(C) Only K2Cr2O7 behave as primary titrant while KMnO4
behave as self-indicator in redox titrations.
K2Cr2O7 requires diphenyl amine indicator for end point
detection while KMnO4 behave as secondary titrant.
(D) Both form a slightly coloured precipitate (S) with hydrogen
sulphide in acidic medium.
43. Which of the following ...........
Sol. Correct product for (C) option.
2H O
44. Which of the following ...........
Sol.
CH3
HCl
CH3
H Cl
is chiral (no POS and COS)

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-18
45. Select correct formula ...........
Sol.4 2 2 7 3 2 4(NH ) Cr O NaOH NH (g) Na CrO
(orange–red) [Y] (yellow)[X] [Z]
Na2CrO4 + BaCl2 4BaCrO NaCl
(yellow)
46. Coloured solution 'R' ...........
Sol. (NH4)2Cr2O7 (s) 2 2 3 2N (g) Cr O (s) 4H O(g)'P' 'Q'
Cr2O3 dil HCl3CrCl aq(green)R' '
2NaOH Br3 2 4CrCl (aq) Na CrO
(yellow)
3 3NH sol excess NH sol 33 3 3 6CrCl (aq) Cr(OH) [Cr(NH ) ]
pgreen ale pink( ) ( )
2 4dil H SO3 2 4 3CrCl (aq) Cr (SO )
.green sol
NaOH excess NaOH –3 3 4CrCl (aq) Cr(OH) [Cr(OH) ]
.green solgreen( ) ( )
47. pH of solution of cathode ...........
Sol. At Cathode:
Saturated with H2S, all CuSO4 is precipitate as CuS.
CuSO4 + H2S CuS + H2SO4
0.1 M – – 0.1 M
Finally cathode contain 0.1 M H2SO40.2 M H+ (aq.)
pH(cathode) Finally = –(log 2×10–1) = 1–log2 = 0.7 Ans.
48. Select the correct ...........
Sol. H2S 2H+ (aq.) + S2–(aq.) Kaq = K1.K2.
0.1 M 0.2 M
Kaq. =2 2–
2
[H ] [S ]
[H S]
= K1.K2
[S2–] = 1 2 22
K K [H S]
[H ]
=–21 –1
2
10 10
[0.2]
= 2.5 × 10–21
Again KSP(CuS) = [Cu2+][S2–] = 10–44
[Cu2+]2.5×10–21= 10–44
[Cu2+] = 4 × 10–24 M Ans.
At Anode :
Since KSPof ZnS is not very small
Again[Zn2+] = 0.1 M
H2S H+ + HS– K1
0.1 0 0
(0.1 – x) x + y (x – y)
~ 0.1 ~ x ~ x
HS– H+ + S2– K2
x – y (x + y) y
~ x ~ x
K2 = y = [S2–] = 10–14 Ans.
50. When X and W are ...........
Sol.(X)
O3
Zn/H2O/
O
O
OH
(Y)
O
(Z)
N2H4
OH/(W)
Pd/C/
(V)
H2/Pd

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-19
51. To 500 mL of xM NaOH, ...........Sol. 2NaOH + CuSO4 Cu(OH)2
+ Na2SO4.mmoles 500x 500 × 0.6
mmoles left 500x–600 300 Initial pOH = – log x
Final pOH = – log500x 600
1000
pOHf – pOHi = –log1000
600–x500 ×
x
1
1 500x 600
10 1000x
1000 x = 5000 x – 6000
4000 x = 6000
x =6 3
4 2
52. The graph of compressibility ...........
Sol. Z = 1 +Pb
RT (high pressure)
dZ
dP =
b
RT=
1
2.8
b =RT
2.8 =
22.4
2.8= 4(NA ×
4
3r3)
(NA ×4
3r3) =Volume of 1 mol gas molecules =
5.6
2.8= 2
53. How many of the following ...........
Sol. C60 &–2
72OCr
54. It is observed that ...........
Sol. C6H12O6(s) + 6O2(g) 6CO2(g) + 6H2O(g)
G = H – TS
(useful energy) = – 3000 – 300 × 0.18
= – 3054 KJ/mol
Energy required per hour =128
9× 60 × 60 J
Glucose needed per hour =
128 12860 60 60 60
9 9mol3054 1000 3054 1000
× 180 g 3 g Ans.
56. In how many of the following...........
Sol. (A) Gold sol is negatively charged.
(B) Sulphur sol is negatively charged.
(C) TiO2 sol is positively charged.
(D) Sb2S3 sol is negatively charged.
(E) Al(OH)3 sol is positively charged.
(F) Congo red is acidic dye. It is negatively charged.
(G) Methylene blue is basic dye. It is positively charged.
(H) Soap micelle is negatively charged.
57. Calculate of pI of glutamic ...........
Sol. pI =2.19 4.25
2
= 3.22
58. How many moles of ...........
Sol.O O O O O O O O OH
H3O
CH3–OH + 4CH3–CH=O + 4HCHO
1234
59. How many positional ...........
Sol.
Cl
Cl,
Cl
Cl
,
Cl
Cl
,
Cl
Cl
, Cl
Cl,
Cl
Cl
60. How many of the following...........
Sol. Only (iv), (vi) and (ix) are less basic than aniline. (iv) Pyrole is
least basic on lone pair is involved in aromaticity. (vi) has ortho
substituent thus reducing the solvation and basicity. (ix) has –I
group at meta position hence lesser basic than aniline.

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-20
ALL INDIA OPEN TEST (AIOT)(JEE ADVANCED PATTERN)
TARGET : JEE (MAIN+ADVANCED) 2018DATE : 25-02-2018 COURSE: VVIIJJEETTAA ((0011JJPP,, 0022JJPP)),,
VVIISSHHWWAAAASS ((0011JJFF)),, VVIIJJAAYY ((0011JJRR,, 0077JJRR))
ANSWER KEYCODE-0
PAPER-1
MATHEMATICS
1. (CD) 2. (AC) 3. (ABC) 4. (ACD) 5. (ABCD) 6. (BC) 7. (ABC)
8. (BD) 9. (CD) 10. (AC) 11. (ABCD) 12. (ABD) 13. (BD) 14. (ABD)
15. (AD) 16. (6) 17. (5) 18. (4) 19. (7) 20. (5)
PHYSICS
21. (ABD) 22. (AC) 23. (ABCD) 24. (AD) 25. (C) 26. (AC) 27. (AD)
28. (AD) 29. (AC) 30. (AD) 31. (AC) 32. (BD) 33. (BC) 34. (ACD)
35. (AD) 36. (5) 37. (5) 38. (6) 39. (6) 40. (8)
CHEMISTRY
41. (ABD) 42. (CD) 43. (BCD) 44. (ACD) 45. (ABD) 46. (ACD) 47. (AB)
48. (ABCD)49. (BCD) 50. (ACD) 51. (CD) 52. (BD) 53. (ABCD)54. (BCD)
55. (AC) 56. (6) 57. (6) 58. (6) 59. (6) 60. (6)
PAPER-2
MATHEMATICS
1. (ABD) 2. (AD) 3. (AD) 4. (BC) 5. (B) 6. (B) 7. (A)
8. (C) 9. (D) 10. (B) 11. (2) 12. (6) 13. (6) 14. (2)
15. (2) 16. (5) 17. (2) 18. (5) 19. (9) 20. (3)
PHYSICS
21. (ABC) 22. (AC) 23. (ABD) 24. (ABCD) 25. (A) 26. (B) 27. (C)
28. (B) 29. (C) 30. (B) 31. (3) 32. (6) 33. (1) 34. (5)
35. (6) 36. (3) 37. (1) 38. (6) 39. (1) 40. (5)
CHEMISTRY
41. (BC) 42. (ABD) 43. (ABD) 44. (ABC) 45. (C) 46. (C) 47. (D)
48. (D) 49. (C) 50. (B) 51. (3) 52. (2) 53. (2) 54. (3)
55. (2) 56. (5) 57. (3) 58. (4) 59. (6) 60. (3)

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-21
ALL INDIA OPEN TEST (AIOT)(JEE ADVANCED PATTERN)
TARGET : JEE (MAIN+ADVANCED) 2018DATE : 25-02-2018 COURSE: VVIIJJEETTAA ((0011JJPP,, 0022JJPP)),,
VVIISSHHWWAAAASS ((0011JJFF)),, VVIIJJAAYY ((0011JJRR,, 0077JJRR))
ANSWER KEYCODE-1
PAPER-1
MATHEMATICS
1. (BD) 2. (AD) 3. (ABD) 4. (BCD) 5. (ABCD) 6. (BD) 7. (ABD)
8. (AD) 9. (BD) 10. (BC) 11. (ABCD) 12. (ABC) 13. (BC) 14. (ACD)
15. (AB) 16. (6) 17. (5) 18. (4) 19. (7) 20. (5)
PHYSICS
21. (BCD) 22. (AC) 23. (ABCD) 24. (BC) 25. (A) 26. (AC) 27. (BC)
28. (BC) 29. (AC) 30. (BC) 31. (AC) 32. (BD) 33. (AD) 34. (ABC)
35. (BC) 36. (5) 37. (5) 38. (6) 39. (6) 40. (8)
CHEMISTRY
41. (ACD) 42. (BC) 43. (ABD) 44. (BCD) 45. (ABD) 46. (ACD) 47. (AB)
48. (ABCD)49. (ABC) 50. (ACD) 51. (BC) 52. (BC) 53. (ABCD)54. (BCD)
55. (AC) 56. (6) 57. (6) 58. (6) 59. (6) 60. (6)
PAPER-2
MATHEMATICS
1. (ACD) 2. (AB) 3. (AB) 4. (CD) 5. (C) 6. (C) 7. (B)
8. (D) 9. (C) 10. (D) 11. (2) 12. (6) 13. (6) 14. (2)
15. (2) 16. (5) 17. (2) 18. (5) 19. (9) 20. (3)
PHYSICS
21. (ACD) 22. (AC) 23. (BCD) 24. (ABCD) 25. (C) 26. (D) 27. (A)
28. (D) 29. (A) 30. (D) 31. (3) 32. (6) 33. (1) 34. (5)
35. (6) 36. (3) 37. (1) 38. (6) 39. (1) 40. (5)
CHEMISTRY
41. (AC) 42. (ABC) 43. (ABC) 44. (ABC) 45. (A) 46. (A) 47. (B)
48. (B) 49. (D) 50. (B) 51. (3) 52. (2) 53. (2) 54. (3)
55. (2) 56. (5) 57. (3) 58. (4) 59. (6) 60. (3)

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-22
ALL INDIA OPEN TEST (AIOT)(JEE ADVANCED PATTERN)
TARGET : JEE (MAIN+ADVANCED) 2018DATE : 25-02-2018 COURSE: VVIIJJEETTAA ((0011JJPP,, 0022JJPP)),,
VVIISSHHWWAAAASS ((0011JJFF)),, VVIIJJAAYY ((0011JJRR,, 0077JJRR))
ANSWER KEYCODE-2
PAPER-1
MATHEMATICS
1. (CD) 2. (AC) 3. (ABC) 4. (ACD) 5. (ABCD) 6. (BC) 7. (ABC)
8. (BD) 9. (CD) 10. (AC) 11. (ABCD) 12. (ABD) 13. (BD) 14. (ABD)
15. (AD) 16. (6) 17. (5) 18. (4) 19. (7) 20. (5)
PHYSICS
21. (ABD) 22. (AC) 23. (ABCD) 24. (AD) 25. (C) 26. (AC) 27. (AD)
28. (AD) 29. (AC) 30. (AD) 31. (AC) 32. (BD) 33. (BC) 34. (ACD)
35. (AD) 36. (5) 37. (5) 38. (6) 39. (6) 40. (8)
CHEMISTRY
41. (ABD) 42. (CD) 43. (BCD) 44. (ACD) 45. (ABD) 46. (ACD) 47. (AB)
48. (ABCD)49. (BCD) 50. (ACD) 51. (CD) 52. (BD) 53. (ABCD)54. (BCD)
55. (AC) 56. (6) 57. (6) 58. (6) 59. (6) 60. (6)
PAPER-2
MATHEMATICS
1. (ABD) 2. (AD) 3. (AD) 4. (BC) 5. (B) 6. (B) 7. (A)
8. (C) 9. (D) 10. (B) 11. (2) 12. (6) 13. (6) 14. (2)
15. (2) 16. (5) 17. (2) 18. (5) 19. (9) 20. (3)
PHYSICS
21. (ABC) 22. (AC) 23. (ABD) 24. (ABCD) 25. (A) 26. (B) 27. (C)
28. (B) 29. (C) 30. (B) 31. (3) 32. (6) 33. (1) 34. (5)
35. (6) 36. (3) 37. (1) 38. (6) 39. (1) 40. (5)
CHEMISTRY
41. (BC) 42. (ABD) 43. (ABD) 44. (ABC) 45. (C) 46. (C) 47. (D)
48. (D) 49. (C) 50. (B) 51. (3) 52. (2) 53. (2) 54. (3)
55. (2) 56. (5) 57. (3) 58. (4) 59. (6) 60. (3)

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : [email protected]
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029SOL02JPAIOT250218-23
ALL INDIA OPEN TEST (AIOT)(JEE ADVANCED PATTERN)
TARGET : JEE (MAIN+ADVANCED) 2018DATE : 25-02-2018 COURSE: VVIIJJEETTAA ((0011JJPP,, 0022JJPP)),,
VVIISSHHWWAAAASS ((0011JJFF)),, VVIIJJAAYY ((0011JJRR,, 0077JJRR))
ANSWER KEYCODE-3
PAPER-1
MATHEMATICS
1. (BD) 2. (AD) 3. (ABD) 4. (BCD) 5. (ABCD) 6. (BD) 7. (ABD)
8. (AD) 9. (BD) 10. (BC) 11. (ABCD) 12. (ABC) 13. (BC) 14. (ACD)
15. (AB) 16. (6) 17. (5) 18. (4) 19. (7) 20. (5)
PHYSICS
21. (BCD) 22. (AC) 23. (ABCD) 24. (BC) 25. (A) 26. (AC) 27. (BC)
28. (BC) 29. (AC) 30. (BC) 31. (AC) 32. (BD) 33. (AD) 34. (ABC)
35. (BC) 36. (5) 37. (5) 38. (6) 39. (6) 40. (8)
CHEMISTRY
41. (ACD) 42. (BC) 43. (ABD) 44. (BCD) 45. (ABD) 46. (ACD) 47. (AB)
48. (ABCD)49. (ABC) 50. (ACD) 51. (BC) 52. (BC) 53. (ABCD)54. (BCD)
55. (AC) 56. (6) 57. (6) 58. (6) 59. (6) 60. (6)
PAPER-2
MATHEMATICS
1. (ACD) 2. (AB) 3. (AB) 4. (CD) 5. (C) 6. (C) 7. (B)
8. (D) 9. (C) 10. (D) 11. (2) 12. (6) 13. (6) 14. (2)
15. (2) 16. (5) 17. (2) 18. (5) 19. (9) 20. (3)
PHYSICS
21. (ACD) 22. (AC) 23. (BCD) 24. (ABCD) 25. (C) 26. (D) 27. (A)
28. (D) 29. (A) 30. (D) 31. (3) 32. (6) 33. (1) 34. (5)
35. (6) 36. (3) 37. (1) 38. (6) 39. (1) 40. (5)
CHEMISTRY
41. (AC) 42. (ABC) 43. (ABC) 44. (ABC) 45. (A) 46. (A) 47. (B)
48. (B) 49. (D) 50. (B) 51. (3) 52. (2) 53. (2) 54. (3)
55. (2) 56. (5) 57. (3) 58. (4) 59. (6) 60. (3)