James Highfield 1 , Yook Si Loo 1 , Ziyi Zhong 1 , Ruijiang Li 1 & Benjamin Grushko 2

1
CARBON NANOFIBRE GROWTH FROM LOW TEMPERATURE METHANE DECOMPOSITION OVER SKELETAL TRANSITION METAL CATALYSTS James Highfield 1 , Yook Si Loo 1 , Ziyi Zhong 1 , Ruijiang Li 1 & Benjamin Grushko 2 1 Applied Catalysis Technology, Institute of Chemical & Engineering Sciences, 1 Pesek Road, Jurong Island, SINGAPORE S627833. 2 Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 GERMANY CH 4 C + 2 H 2 H 298 K = + 74.5 kJ mol -1 A. Direct eco-friendly route to “CO-free” H 2 and speciality carbons. B. Single-metal & multinary (alloy ?) skeletal catalysts from quasicrystals (QC) Route: Al 65-75 (TM/Cu) 35-25 arc melt/anneal XRD ideally single-phase QC P N2 T D ual-set point Tem perature C ontroller D ualLock G as valve To vacuum G as cylinder w ith pressure gauge T H eating Block G as D iffuser and Filter T o p lid Pre-calibrated volum e (100 m l) for calculation of gas consum ption Purge line G as cylinder w ith pressure gauge P N 2 O /He 5M NaOH C hem icalLiquid Feed pum p Knock-out pot D rain line P < 5 barg [Selective leach of Al 5 M NaOH under N 2 ] In-situ washed, dried, “passivated” catalyst custom leaching rig characteriza tion TEM XRD XRF BET catalytic testing [TG- FTIR/MS] TEM micrograph of fresh skeletal Co (ex Al 13 Co 4 ) Typical TG curve for CH4 decompositon (skeletal Co) 1. abrupt onset of weight gain (blue curve) above 350 C; 2. rapid establishment of fixed rate (10% per h @ 400 C) 250 C 300 C 350 C 400 C TEM micrographs of carbon nanofibres on skeletal cobalt deposited at 400 C (up to 50 wt. % as carbon) TG% 0.0 1.0 2.0 3. 0 Time/ h 1.0 2. 0 3.0 4.0 on carburization Co “needles” broken into fine “teardrops” metal dusting corrosion ? more proof of irreversible change new activity below 300 C ! 0.00160 0.00165 0.00170 0.00175 0.00180 0.00185 0.00190 0.00195 -4 -2 0 2 Ln rate Linear F itofD ata1_E ln ra te 1/T K M ethane C oking kinetics:250-330 C C o new 2:11/04/05 E app = 129 + /- 6 kJ.m ol -1 330 C 300 C 280 C 250 C Oven T e m p . (C) Rate of wt. gain (%) per hour in CH 4 /H 2 flow Ni ex A l 2 N i GF Ni 9 Cu ex Al 22 Ni 9 C u Ni/SA (65% Ni) Aldrich Fe 21 Cu 5 ex Al 74 Fe 21 C u 5 Fe ex Al 5 Fe 2 Co 20 Cu 14 ex Al 67 Co 20 Cu 1 4 Co ex Al 13 Co 4 Ru 22 Cu 7 ex Al 71 Ru 22 Cu 7 Ru ex Al 76 Ru 24 250 0.01 0.01 0.03 0.08 -- 0.003 0.0 5 0.005 0.001 280 0.2 8 300 0.06 0.017 0.080 0.35 0.004 0.02 0.8 2 330 1.4 2.5 0 350 0.15 0.030 0.065 zero 0 . 3 5 0.07 0.02 1.7 3.3 0 0.02 TG analysis of CH 4 decomposition: in-situ pre-reduced samples & controls CH 4 + 2 % H 2 [12 ml/min; 1:1 N 2 ] R ed: start at 400 C, then T [new low-T activity] B lue : as for Red, then switch to CH 4 /N 2 at 250 C & T [dramatic inhibition by H 2 !] Green : mean of increasing rate (Fe-containing samples) [long induction phase?] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 dTG (m g/min) H 2 vol. % Tim e (h) 450 C hold 300 C Stoichiometr y H 2 : C = 2.15 : 1 1.6 ml min -1 H 2 71 mol. min -1 0.40 mg min -1 C or 33 g at. min -1 E app = 129 +/- 6 kJ mol -1 Surface area = 30–160 m 2 g -1 Al = 5-10 wt.% Na < 1 wt.% Amorphous (except Ni) Proof of unimolecular decompn : CH 4 C + 2 H 2 Rate of C deposition vs. H 2 level [T = 450 C; cat. Fe 19 Ni 9 ; CH 4 : 80 ml min -1 ] Summary 1. Skeletal metals made from quasicrystalline precursors are “triggered” into CH 4 conversion at T > 350 C, yielding nanofibrous carbons & H 2 in the ratio C:H 2 = 1:2; 2. Pre-carburization leads to irreversible metal decrepitation, akin to “metal dusting corrosion”, creating particles in the range 20-50 nm well suited for filament growth; 3. 1st-row TMs Co, Ni, Fe, & their combinations most active, while Cu moderates activity; 4. Despite remarkable low-T activity, CH 4 conversion is still quite low (< 2% at 400 C);

description

James Highfield 1 , Yook Si Loo 1 , Ziyi Zhong 1 , Ruijiang Li 1 & Benjamin Grushko 2 - PowerPoint PPT Presentation

Transcript of James Highfield 1 , Yook Si Loo 1 , Ziyi Zhong 1 , Ruijiang Li 1 & Benjamin Grushko 2

Page 1: James Highfield 1 , Yook Si Loo 1 , Ziyi Zhong 1 , Ruijiang Li 1   &  Benjamin Grushko 2

CARBON NANOFIBRE GROWTH FROM LOW TEMPERATURE METHANE DECOMPOSITION

OVER SKELETAL TRANSITION METAL CATALYSTSJames Highfield1, Yook Si Loo1, Ziyi Zhong1, Ruijiang Li1 & Benjamin Grushko2

1 Applied Catalysis Technology, Institute of Chemical & Engineering Sciences, 1 Pesek Road, Jurong Island, SINGAPORE S627833. 2 Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 GERMANY

CH4 C + 2 H2 H298 K = + 74.5 kJ mol-1

A. Direct eco-friendly route to “CO-free” H2 and speciality carbons.

B. Single-metal & multinary (alloy ?) skeletal catalysts from quasicrystals (QC)

Route: Al65-75(TM/Cu)35-25 arc melt/anneal XRD ideally single-phase QC

P

N2

T

Dual-set pointTemperature

Controller

Dual Lock Gas valve

To vacuum

Gas cylinder with pressure gauge

T

Heating Block

Gas Diffuser and Filter

Top lid

Pre-calibrated volume (100 ml) for calculation of gas consumption

Purge line

Gas cylinder with pressure gauge

P

N2O

/He

5M NaOH Chemical Liquid Feed pump

Knock-out pot

Drain line

P

< 5 barg

[Selective leach of Al 5 M NaOH under N2]

In-situ washed, dried, “passivated” catalyst

custom leaching rig

characterization

TEMXRD

XRFBET

catalytic testing [TG-FTIR/MS]

TEM micrograph of fresh skeletal Co (ex Al13Co4) Typical TG curve for CH4 decompositon (skeletal Co)

1. abrupt onset of weight gain (blue curve) above 350 C;

2. rapid establishment of fixed rate (10% per h @ 400 C)

250 C

300 C

350 C

400 C

TEM micrographs of carbon nanofibres on skeletal cobalt deposited at 400 C (up to 50 wt. % as carbon)

TG%

0.0

1.0

2.0

3.0

Time/h 1.0 2.0 3.0 4.0

on carburization Co “needles” broken into fine “teardrops”

metal dusting corrosion?

more proof of irreversible change

new activity below 300 C !

0.00160 0.00165 0.00170 0.00175 0.00180 0.00185 0.00190 0.00195-4

-2

0

2 Ln rate Linear Fit of Data1_E

ln r

ate

1/T K

Methane Coking kinetics: 250-330 C Co new2: 11/04/05

Eapp

= 129 +/- 6 kJ.mol-1330 C

300 C

280 C

250 C

Oven Temp.

(C)

Rate of wt. gain (%) per hour in CH4/H2 flow‡

Ni ex Al2Ni

GF

Ni9Cu

ex

Al22Ni9Cu

Ni/SA(65% Ni)

Aldrich

Fe21Cu5

ex

Al74Fe21Cu5

Feex

Al5Fe2

Co20Cu14

ex

Al67Co20Cu14

Coex

Al13Co4

Ru22Cu7

ex

Al71Ru22Cu7

Ruex

Al76Ru24

250 0.01 0.01 0.03 0.08 -- 0.003 0.05 0.005 0.001

280 0.28

300 0.06 0.017 0.080 0.35 0.004 0.02 0.82

330 1.4 2.50

350 0.15 0.030 0.065 zero 0.35 0.07 0.02 1.7 3.30 0.02

360 2.6 -

380 5.3 -

400 8.80 2.20 0.001 1.5 4.4 0.57 8.1 10.6 11.25 0.80 0.07

TG analysis of CH4 decomposition: in-situ pre-reduced samples & controls

‡ CH4 + 2 % H2 [12 ml/min; 1:1 N2]

Red: start at 400 C, then T [new low-T activity]

Blue: as for Red, then switch to CH4/N2 at 250 C & T [dramatic inhibition by H2!]

Green: mean of increasing rate (Fe-containing samples) [long induction phase?]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.00.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

dTG

(m

g/m

in)

H2 v

ol.

%

Time (h)

450 C hold

300 C

StoichiometryH2 : C = 2.15 : 1

1.6 ml min-1 H2 71 mol. min-1

0.40 mg min-1 C or 33 g at. min-1

Eapp = 129 +/- 6 kJ mol-1

Surface area = 30–160 m2 g-1

Al = 5-10 wt.%Na < 1 wt.%

Amorphous (except Ni)

Proof of unimolecular decompn: CH4 C + 2 H2

Rate of C deposition vs. H2 level [T = 450 C; cat. Fe19Ni9; CH4: 80 ml min-1]

Summary

1. Skeletal metals made from quasicrystalline precursors are “triggered” into CH4 conversion at T > 350 C, yielding nanofibrous carbons & H2 in the ratio C:H2 = 1:2;

2. Pre-carburization leads to irreversible metal decrepitation, akin to “metal dusting corrosion”, creating particles in the range 20-50 nm well suited for filament growth;

3. 1st-row TMs Co, Ni, Fe, & their combinations most active, while Cu moderates activity;

4. Despite remarkable low-T activity, CH4 conversion is still quite low (< 2% at 400 C);

5. Process operation would need high recycle ratios and rapid (in-situ?) removal of product H2, a powerful inhibitor.