James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers...

63
Hackenbush and the surreal numbers James A. Swenson University of Wisconsin–Platteville [email protected] September 28, 2017 Bi-State Math Colloquium James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 1 / 37

Transcript of James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers...

Page 1: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Hackenbush and the surreal numbers

James A. Swenson

University of Wisconsin–Platteville

[email protected]

September 28, 2017Bi-State Math Colloquium

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 1 / 37

Page 2: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Thanks for coming!

I hope you’ll enjoy the talk; please feel free to get involved!

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 2 / 37

Page 3: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Epigraph

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 3 / 37

Page 4: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Epigraph

Propositiones aliquot, que in Scholis Societatis non sunt docendæ. . .

25 Continuum successiuum & intensio qualitatum solis indiuisibilibusconstant.. . .

30 Infinitum in multitudine, & magnitudine potest claudi inter duasunitates, vel duo puncta.

Ordinatio pro studiis superioribus.. . . A[dmodum]R[everendus] P[ater] N[oster] Francisco Piccolomineoad Prouincias Missa Anno 1651.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 4 / 37

Page 5: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Epigraph

Some propositions which must not be taught in the Society’sschools. . .

25 The line of succession and of the intensity of qualities are made up ofindivisible points.. . .

30 Infinity in multitude and infinity in magnitude can be enclosedbetween two units or two points.

Ordinance for higher study. Sent by Our Most Rev-erend Holy Father Francisco Piccolomineo [SuperiorGeneral of the Jesuit Order], year 1651.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 5 / 37

Page 6: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Outline

1 Heroes

2 Games

3 Ordering of games

4 Surreal numbers

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37

Page 7: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

John H. Conway (1937- )

Conway is a world-famous, award-winning mathematician, who has been aprofessor at Cambridge and (currently) Princeton.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 7 / 37

Page 8: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

John H. Conway (1937– )

Conway is incredibly untidy. The tables in his room at theDepartment of Pure Mathematics and Mathematical Statisticsin Cambridge are heaped high with papers, books, unansweredletters, notes, models, charts, tables, diagrams, dead cups ofcoffee and an amazing assortment of bric-a-brac, which hasoverflowed most of the floor and all of the chairs, so that it ishard to take more than a pace or two into the room andimpossible to sit down. If you can reach the blackboard thereis a wide range of coloured chalk, but no space to write. Hisroom in College is in a similar state. In spite of his excellentmemory he often fails to find the piece of paper with theimportant result that he discovered some days before, andwhich is recorded nowhere else.

Richard Guy, quoted athttp://www-groups.dcs.st-and.ac.uk/∼history/Biographies/Conway.html

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 8 / 37

Page 9: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Donald K. Knuth (1938– )

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 9 / 37

Page 10: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Outline

1 Heroes

2 Games

3 Ordering of games

4 Surreal numbers

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 10 / 37

Page 11: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The rules of Hackenbush

Hackenbush is a game played by twoplayers, Blue and Red, on a rootedgraph with colored edges.

To move,delete an edge of your color, plus anyedges no longer connected to theground. Blue moves first. If it’s yourturn and you can’t move, you lose.

Red loses!

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 11 / 37

Page 12: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The rules of Hackenbush

Hackenbush is a game played by twoplayers, Blue and Red, on a rootedgraph with colored edges. To move,delete an edge of your color, plus anyedges no longer connected to theground.

Blue moves first. If it’s yourturn and you can’t move, you lose.

Red loses!

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 11 / 37

Page 13: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The rules of Hackenbush

Hackenbush is a game played by twoplayers, Blue and Red, on a rootedgraph with colored edges. To move,delete an edge of your color, plus anyedges no longer connected to theground. Blue moves first. If it’s yourturn and you can’t move, you lose.

Red loses!

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 11 / 37

Page 14: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The rules of Hackenbush

Hackenbush is a game played by twoplayers, Blue and Red, on a rootedgraph with colored edges. To move,delete an edge of your color, plus anyedges no longer connected to theground. Blue moves first. If it’s yourturn and you can’t move, you lose.

Red loses!

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 11 / 37

Page 15: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The rules of Hackenbush

Hackenbush is a game played by twoplayers, Blue and Red, on a rootedgraph with colored edges. To move,delete an edge of your color, plus anyedges no longer connected to theground. Blue moves first. If it’s yourturn and you can’t move, you lose.

Red loses!

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 11 / 37

Page 16: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The rules of Hackenbush

Hackenbush is a game played by twoplayers, Blue and Red, on a rootedgraph with colored edges. To move,delete an edge of your color, plus anyedges no longer connected to theground. Blue moves first. If it’s yourturn and you can’t move, you lose.

Red loses!

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 11 / 37

Page 17: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The rules of Hackenbush

Hackenbush is a game played by twoplayers, Blue and Red, on a rootedgraph with colored edges. To move,delete an edge of your color, plus anyedges no longer connected to theground. Blue moves first. If it’s yourturn and you can’t move, you lose.

Red loses!

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 11 / 37

Page 18: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The rules of Hackenbush

Hackenbush is a game played by twoplayers, Blue and Red, on a rootedgraph with colored edges. To move,delete an edge of your color, plus anyedges no longer connected to theground. Blue moves first. If it’s yourturn and you can’t move, you lose.

Red loses!

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 11 / 37

Page 19: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The rules of Hackenbush

Hackenbush is a game played by twoplayers, Blue and Red, on a rootedgraph with colored edges. To move,delete an edge of your color, plus anyedges no longer connected to theground. Blue moves first. If it’s yourturn and you can’t move, you lose.

Red loses!

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 11 / 37

Page 20: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Game notation

To play well, you need to know your options!

=

,

∣∣∣∣∣∣∣ ,

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 12 / 37

Page 21: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The simplest game

=

∣∣∣∣∣∣∣

Let’s improve our lives by giving this game a name: • = {|}.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 13 / 37

Page 22: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The simplest game

=

∣∣∣∣∣∣∣

Let’s improve our lives by giving this game a name: • = {|}.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 13 / 37

Page 23: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The next simplest games

=

∣∣∣∣∣∣∣

In symbols, this game is {•|}. Let’s name it: • = {•|}.

=

∣∣∣∣∣∣∣

In symbols, this game is {| •}. Let’s name it: • = {| •}.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 14 / 37

Page 24: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The next simplest games

=

∣∣∣∣∣∣∣

In symbols, this game is {•|}. Let’s name it: • = {•|}.

=

∣∣∣∣∣∣∣

In symbols, this game is {| •}. Let’s name it: • = {| •}.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 14 / 37

Page 25: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The next simplest games

=

∣∣∣∣∣∣∣

In symbols, this game is {•|}. Let’s name it: • = {•|}.

=

∣∣∣∣∣∣∣

In symbols, this game is {| •}. Let’s name it: • = {| •}.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 14 / 37

Page 26: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Games with up to two edges

• = {|} • = {•|} • = {•|} ! = {•, •|} ∧• = {•| •}

• = {•| •} • = {| •} • = {| •} ¡ = {| •, •} •∨

= {•| •}

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 15 / 37

Page 27: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Outline

1 Heroes

2 Games

3 Ordering of games

4 Surreal numbers

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 16 / 37

Page 28: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Comparing games

Idea

If G and H are games, we want:“G ≤ H” when H is at least as good as G for Blue.

≤ ≤ ≤ ≤

(• ≤ • ≤ • ≤ • ≤ •

)

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 17 / 37

Page 29: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Order relation on games

Definition

Let G = {GL|GR} and H = {HL|HR} be games.

This means that GL and GR are sets of games smaller than G , etc.,so the following definition is recursive, not circular:

We say G ≤ H provided that:

1 there is no X ∈ GL with H ≤ X ; and

2 there is no Y ∈ HR with Y ≤ G .

(“Blue can’t make G into something as good as H,and Red can’t make H into something as bad as G .”)

Example

Recall • = {|}. Since •L = ∅ = •R , it is vacuously true that • ≤ •.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 18 / 37

Page 30: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Order relation on games

Definition

Let G = {GL|GR} and H = {HL|HR} be games.

This means that GL and GR are sets of games smaller than G , etc.,so the following definition is recursive, not circular:

We say G ≤ H provided that:

1 there is no X ∈ GL with H ≤ X ; and

2 there is no Y ∈ HR with Y ≤ G .

(“Blue can’t make G into something as good as H,and Red can’t make H into something as bad as G .”)

Example

Recall • = {|}. Since •L = ∅ = •R , it is vacuously true that • ≤ •.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 18 / 37

Page 31: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Comparison: adding a single edge

Theorem

Adding a blue edge makes a game better for Blue; adding a red edgemakes it worse.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 19 / 37

Page 32: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Comparison: adding a single edge

Theorem

Adding a blue edge makes a game better for Blue; adding a red edgemakes it worse.

Corollary

≤ ≤ ≤ ≤

· · · ≤ • ≤ • ≤ • ≤ • ≤ • ≤ · · ·

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 19 / 37

Page 33: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Comparison: adding a single edge

Theorem

Adding a blue edge makes a game better for Blue; adding a red edgemakes it worse.

Corollary

≤ and ≤

• ≤ •∨

and∧• ≤ •

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 19 / 37

Page 34: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Comparison: adding a single edge

Theorem

Adding a blue edge makes a game better for Blue; adding a red edgemakes it worse.

Proposition

≤ ≤

•∨≤ • ≤ ∧•

Corollary

• ≤ • ≤ •∨≤ • ≤ ∧• ≤ • ≤ •.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 19 / 37

Page 35: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Good news: ≤ is reflexive

Theorem

If G is a game, then G ≤ G .

Proof (Induction on number of edges).

We know • ≤ •. Now let G be a game with at least one edge. Suppose for(transfinite) induction that H ≤ H whenever H has fewer edges than G .

Sftsoc: G 6≤ G .

Then either there is some X ∈ GL with G ≤ X or thereis some Y ∈ GR with Y ≤ G .

In the first case, since G ≤ X , there is no Z ∈ GL with X ≤ Z . . . butX ∈ GL and X ≤ X (by induction). �

In the second case, since Y ≤ G , there is no Z ∈ GR with Z ≤ Y . . . butY ∈ GR and Y ≤ Y (by induction). �

In either case,

we reach a contradiction.

Hence G ≤ G .

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 20 / 37

Page 36: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Good news: ≤ is reflexive

Theorem

If G is a game, then G ≤ G .

Proof (Induction on number of edges).

We know • ≤ •. Now let G be a game with at least one edge. Suppose for(transfinite) induction that H ≤ H whenever H has fewer edges than G .Sftsoc: G 6≤ G .

Then either there is some X ∈ GL with G ≤ X or thereis some Y ∈ GR with Y ≤ G .

In the first case, since G ≤ X , there is no Z ∈ GL with X ≤ Z . . . butX ∈ GL and X ≤ X (by induction). �

In the second case, since Y ≤ G , there is no Z ∈ GR with Z ≤ Y . . . butY ∈ GR and Y ≤ Y (by induction). �

In either case,

we reach a contradiction. Hence G ≤ G .

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 20 / 37

Page 37: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Good news: ≤ is reflexive

Theorem

If G is a game, then G ≤ G .

Proof (Induction on number of edges).

We know • ≤ •. Now let G be a game with at least one edge. Suppose for(transfinite) induction that H ≤ H whenever H has fewer edges than G .Sftsoc: G 6≤ G . Then either there is some X ∈ GL with G ≤ X or thereis some Y ∈ GR with Y ≤ G .

In the first case, since G ≤ X , there is no Z ∈ GL with X ≤ Z . . . butX ∈ GL and X ≤ X (by induction). �

In the second case, since Y ≤ G , there is no Z ∈ GR with Z ≤ Y . . . butY ∈ GR and Y ≤ Y (by induction). �

In either case, we reach a contradiction. Hence G ≤ G .

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 20 / 37

Page 38: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Good news: ≤ is reflexive

Theorem

If G is a game, then G ≤ G .

Proof (Induction on number of edges).

We know • ≤ •. Now let G be a game with at least one edge. Suppose for(transfinite) induction that H ≤ H whenever H has fewer edges than G .Sftsoc: G 6≤ G . Then either there is some X ∈ GL with G ≤ X or thereis some Y ∈ GR with Y ≤ G .In the first case, since G ≤ X , there is no Z ∈ GL with X ≤ Z . . . butX ∈ GL and X ≤ X (by induction). �

In the second case, since Y ≤ G , there is no Z ∈ GR with Z ≤ Y . . . butY ∈ GR and Y ≤ Y (by induction). �

In either case, we reach a contradiction. Hence G ≤ G .

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 20 / 37

Page 39: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Good news: ≤ is reflexive

Theorem

If G is a game, then G ≤ G .

Proof (Induction on number of edges).

We know • ≤ •. Now let G be a game with at least one edge. Suppose for(transfinite) induction that H ≤ H whenever H has fewer edges than G .Sftsoc: G 6≤ G . Then either there is some X ∈ GL with G ≤ X or thereis some Y ∈ GR with Y ≤ G .In the first case, since G ≤ X , there is no Z ∈ GL with X ≤ Z . . . butX ∈ GL and X ≤ X (by induction). �In the second case, since Y ≤ G , there is no Z ∈ GR with Z ≤ Y . . . butY ∈ GR and Y ≤ Y (by induction). �In either case, we reach a contradiction. Hence G ≤ G .

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 20 / 37

Page 40: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

More good news: ≤ is transitive

Fact

If G ≤ H and H ≤ K , then G ≤ K .

Proof (Induction on total number of edges in G t H t K ).

Base case: (• ≤ • ≤ •)⇒ (• ≤ •).

Let G ≤ H ≤ K .

1 Sftsoc: X ∈ GL and K ≤ X , so H ≤ K ≤ X .By induction, H ≤ X , so G 6≤ H. �

2 Sftsoc: Y ∈ KR and Y ≤ G , so Y ≤ G ≤ H.By induction, Y ≤ H, so H 6≤ K . �

Hence G ≤ K .

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 21 / 37

Page 41: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Bad news: ≤ is not antisymmetric

Proposition

1 • ≤ •.2 • ≤ •. • = {|} • = {•|•}

Proof.1 ∗ Let X ∈ •L. Then X = • = {|•}. Now • ∈ XR and • ≤ •, so • 6≤ X .

∗ •R = ∅.

So • ≤ •.2 ∗ •L = ∅.

∗ Let Y ∈ •R . Then Y = • = {•|}. Now • ∈ YL and • ≤ •, so Y 6≤ •.So • ≤ •.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 22 / 37

Page 42: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Bad news: ≤ is not antisymmetric

Proposition

1 • ≤ •.2 • ≤ •. • = {|} • = {•|•}

Proof.1 ∗ Let X ∈ •L. Then X = • = {|•}. Now • ∈ XR and • ≤ •, so • 6≤ X .

∗ •R = ∅.

So • ≤ •.2 ∗ •L = ∅.

∗ Let Y ∈ •R . Then Y = • = {•|}. Now • ∈ YL and • ≤ •, so Y 6≤ •.So • ≤ •.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 22 / 37

Page 43: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Games with up to two edges

≤ ≤ ≤

≤ ≤ ≤

(•, ¡)≤ • ≤ •

∨≤ (•, •) ≤ ∧• ≤ • ≤

(•, !)

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 23 / 37

Page 44: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Outline

1 Heroes

2 Games

3 Ordering of games

4 Surreal numbers

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 24 / 37

Page 45: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Forcing antisymmetry

Definition

Let G and H be games. We say G ∼ H provided that G ≤ H and H ≤ G .

Definition∼ is an equivalence relation; a ∼-equivalence class is called a surreal number.We denote the equivalence class of a game G = {GL|GR} by [G ] = [GL|GR ].

Definition

∗ The number zero is 0 =

[ ]= [•] = [|].

∗ The number one is 1 =

[ ]= [•] = [•|] = [0|] = [[|]|].

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 25 / 37

Page 46: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Forcing antisymmetry

Definition

Let G and H be games. We say G ∼ H provided that G ≤ H and H ≤ G .

Definition∼ is an equivalence relation; a ∼-equivalence class is called a surreal number.We denote the equivalence class of a game G = {GL|GR} by [G ] = [GL|GR ].

Definition

∗ The number zero is 0 =

[ ]= [•] = [|].

∗ The number one is 1 =

[ ]= [•] = [•|] = [0|] = [[|]|].

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 25 / 37

Page 47: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Forcing antisymmetry

Definition

Let G and H be games. We say G ∼ H provided that G ≤ H and H ≤ G .

Definition∼ is an equivalence relation; a ∼-equivalence class is called a surreal number.We denote the equivalence class of a game G = {GL|GR} by [G ] = [GL|GR ].

Definition

∗ The number zero is 0 =

[ ]= [•] = [|].

∗ The number one is 1 =

[ ]= [•] = [•|] = [0|] = [[|]|].

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 25 / 37

Page 48: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Ordering and strategy

Fact

∗ [G ] < 0 ⇐⇒ Red can always win the game G .

∗ [G ] = 0 ⇐⇒ the second player can always win the game G .

∗ 0 < [G ] ⇐⇒ Blue can always win the game G .

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 26 / 37

Page 49: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Adding games

Definition

If G and H are games, G + H is the game you get by putting G and Hnext to each other.

+ = ∼

1 + [•] = [•] = [•] = 0

Definition

The number negative one is −1 =

[ ]= [•] = [|•] = [|[|]].

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 27 / 37

Page 50: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Adding games

Definition

If G and H are games, G + H is the game you get by putting G and Hnext to each other.

+ = ∼

1 + [•] = [•] = [•] = 0

Definition

The number negative one is −1 =

[ ]= [•] = [|•] = [|[|]].

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 27 / 37

Page 51: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The opposite of a game

Definition

∗ −G is the game you get by flipping the color of each edge in G .

∗ G − H is shorthand for G + (−H).

=

Proposition

∗ −(−G ) = G .

∗ If G ≤ H, then −H ≤ −G .

∗ G + (−G ) ∼ 0.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 28 / 37

Page 52: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The opposite of a game

Definition

∗ −G is the game you get by flipping the color of each edge in G .

∗ G − H is shorthand for G + (−H).

=

Proposition

∗ −(−G ) = G .

∗ If G ≤ H, then −H ≤ −G .

∗ G + (−G ) ∼ 0.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 28 / 37

Page 53: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Ordering and strategy

Fact

∗ If G ≤ H, then G + K ≤ H + K .

∗ If G1 ∼ G2 and H1 ∼ H2, then G1 ≤ H1 ⇐⇒ G2 ≤ H2.

Definition

We say [G ] ≤ [H] provided that G ≤ H.

Corollary

∗ [G ] < [H] ⇐⇒ Red can always win the game G − H.

∗ [G ] = [H] ⇐⇒ the second player can always win the game G − H.

∗ [H] < [G ] ⇐⇒ Blue can always win the game G − H.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 29 / 37

Page 54: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

G is between GL and GR

Theorem

Let G be a game.

1 If X ∈ GL, then X ≤ G .

2 If Y ∈ GR , then G ≤ Y .

(“It would always be better to pass.”)

Proof.1 Suppose X ∈ GL is the result when Blue deletes the blue edge e from G .

Now consider the game G − X , and suppose it’s Red’s move. If Red deletesan edge from G that has a mirror image in −X , or an edge from −X thathas a mirror image in G , then Blue responds by deleting that mirror image.Otherwise, Red deletes an edge from G with no mirror image in −X , andBlue responds by deleting e. On Red’s first turn after the deletion of e, theposition has the form H − H ∼ •, so Blue can win (by mirroring Red).This shows that Blue can win G − X , so [G − X ] 6< 0. Thus X ≤ G .

2 (Similar.)

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 30 / 37

Page 55: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

All games are comparable

Theorem

If G 6≤ H, then H ≤ G .

Proof.

Suppose G 6≤ H. We consider two cases.

1 Suppose X ∈ GL and H ≤ X . We know X ≤ G . By transitivity,H ≤ G .

2 Suppose Y ∈ HR and Y ≤ G . We know H ≤ Y . By transitivity,H ≤ G .

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 31 / 37

Page 56: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

What is[∧•]?

Example

The game shown below is∧•+

∧•+ •:

The second player can always win, so[∧•]+

[∧•]+ (−1) = 0.

Definition

The number one half is 12 =

[∧•].

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 32 / 37

Page 57: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

What is[∧•]?

Example

The game shown below is∧•+

∧•+ •:

The second player can always win, so[∧•]+

[∧•]+ (−1) = 0.

Definition

The number one half is 12 =

[∧•].James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 32 / 37

Page 58: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Games with up to two edges

0 1 2 2 12

0 −1 −2 −2 −12

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 33 / 37

Page 59: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

Games with more edges

......

14

18

116

23 π

......

......

......

ε −ω ω ω + 1 2ω

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 34 / 37

Page 60: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

More game arithmetic

Definition

Suppose G and H are games with XG ∈ GL, YG ∈ GR , XH ∈ HL,YH ∈ HR . Then:

∗ {XGH + GXH − XGXH ,YGH + GYH − YGYH} ⊆ (GH)L.

∗ {XGH + GYH − XGYH ,YGH + GXH − YGXH} ⊆ (GH)R .

Definition

Let G and H be games with [G ] > 0 and [H] > 0.1If, for every XG ∈ GL, YG ∈ GR , XH ∈ HL, and YH ∈ HR , we have

∗{

1YG

(1 + (YG − G )XH), 1XG

(1 + (XG − G )YH)}⊆ HL and

∗{

1XG

(1 + (XG − G )XH), 1YG

(1 + (YG − G )YH)}⊆ HR ,

then [G ][H] = 1.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 35 / 37

Page 61: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

More game arithmetic

Definition

Suppose G and H are games with XG ∈ GL, YG ∈ GR , XH ∈ HL,YH ∈ HR . Then:

∗ {XGH + GXH − XGXH ,YGH + GYH − YGYH} ⊆ (GH)L.

∗ {XGH + GYH − XGYH ,YGH + GXH − YGXH} ⊆ (GH)R .

Definition

Let G and H be games with [G ] > 0 and [H] > 0.1If, for every XG ∈ GL, YG ∈ GR , XH ∈ HL, and YH ∈ HR , we have

∗{

1YG

(1 + (YG − G )XH), 1XG

(1 + (XG − G )YH)}⊆ HL and

∗{

1XG

(1 + (XG − G )XH), 1YG

(1 + (YG − G )YH)}⊆ HR ,

then [G ][H] = 1.

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 35 / 37

Page 62: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

The surreal numbers are universal

Theorem

Every ordered field is isomorphic to a subfield of the surreal numbers.∗

∗The proof requires the axiom of global choice and applies only to sets. . . .James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 36 / 37

Page 63: James A. Swenson - UW-Plattevillepeople.uwplatt.edu/~swensonj/Surreals.pdf · 4 Surreal numbers James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 6 / 37. John H. Conway

References[1] Amir Alexander, Infinitesimal: How a dangerous mathematical theory shaped the modern world, Scientific American/Farrar,

Strauss, and Giroux, New York, 2014.

[2] John H. Conway, On numbers and games, 2nd ed., A K Peters, Ltd., Natick, MA, 2001.

[3] John H. Conway and Richard K. Guy, The book of numbers, Copernicus, New York, 1996.

[4] Tom Davis, Hackenbush (December 15, 2011), http://www.geometer.org/mathcircles/hackenbush.pdf.

[5] Philip Ehrlich, All numbers great and small, Real numbers, generalizations of the reals, and theories of continua, SyntheseLib., vol. 242, Kluwer Acad. Publ., Dordrecht, 1994, pp. 239–258.

[6] Gretchen Grimm, An introduction to surreal numbers (May 8, 2012),https://www.whitman.edu/Documents/Academics/Mathematics/Grimm.pdf.

[7] D. E. Knuth, Surreal numbers: how two ex-students turned on to pure mathematics and found total happiness,Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1974.

[8] Jonas Sjostrand, Combinatorial game theory (March 2015),https://www.math.kth.se/matstat/gru/sf2972/2015/gametheory.pdf.

[9] Wikipedia contributors, Surreal number (July 6, 2017), https://en.wikipedia.org/w/index.php?oldid=789209825.

Image sourcesBook cover: https://www.amazon.com/Surreal-Numbers-Donald-E-Knuth/dp/0201038129/

Conway photo: https://commons.wikimedia.org/wiki/File:John H Conway 2005.jpg

Conway sketch: Fraser, Simon J. https://www.ias.edu/ideas/2015/roberts-john-horton-conway

Knuth photo: Appelbaum, Jacob. https://commons.wikimedia.org/wiki/File:KnuthAtOpenContentAlliance.jpg

Ordinatio: https://books.google.com/books?id=w1O8SZfAioIC

“TikZ Diagrams in Math Mode.” https://tex.stackexchange.com/questions/11105/tikz-diagrams-in-math-mode

James A. Swenson (UWP) Hackenbush and the surreal numbers 9/14/17 37 / 37