Jacobi method

20
JACOBI METHOD

Transcript of Jacobi method

Page 1: Jacobi method

JACOBI METHOD

Page 2: Jacobi method

BASIC IDEA ON JACOBI METHOD

Convert the system: into the equivalent system:

dCxx

3333132131

2323122121

1313212111

bxaxaxabxaxaxabxaxaxa

33

32

33

321

33

313

22

23

22

231

22

212

11

13

11

132

11

121

abx

aax

aax

abx

aax

aax

abx

aax

aax

BAx

Page 3: Jacobi method

BASIC IDEA ON JACOBI METHOD

Generate a sequence of approximation:

,..., )2()1( xx dCxx kk )1()(

Page 4: Jacobi method

JACOBİ İTERATİON METHOD

nnnnnn

nn

nn

bxaxaxa

bxaxaxabxaxaxa

2211

22222121

11212111

0

02

01

0

nx

xx

x

)(1 01

02121

11

11 nn xaxab

ax

)(1 02

0323

01212

22

12 nn xaxaxab

ax

)(1 011

022

011

1 nnnnnn

nnn xaxaxab

ax

å å

1

1 1

1 1 i

j

n

ij

kjij

kjiji

ii

ki xaxab

ax

Page 5: Jacobi method

JACOBI METHOD WITH EXAMPLES

Consider the two-by-two system

Start with

Simultaneous updatingNew values of the variables are not used until a New iteration step is begun

4113

413

21

4113

413

21

)1()2(

)1()2(

xy

yx

6262

yxyx

321

321

xy

yx

)1(x

)1(y

)2(y

)2(x

Page 6: Jacobi method

JACOBI METHOD Con’t

8133

8113

21

8133

8113

21

)2()3(

)2()3(

xy

yx

Page 7: Jacobi method

JACOBI METHOD : EXAMPLE 1

The set of equations:

0 20i12i 5i- 2- 12i -20i 0i

10 5i -0i 9i

321

321

321

Let us write for i1, i2 and i3 as

)(.

)()(

3i60000i0.2500 /2012i i5i20.6000i0.1000- /2012i 2-i10.5556i1.1111 /95i 10i

21313

232

231

Let us make an initial guess as i1 = 0.0; i2 =0.0 and i3 = 0.0

First iteration results: i1 = 1.1111; i2 =-0.1000 and i3 = 0.0

Page 8: Jacobi method

JACOBI METHOD : EXAMPLE 1

First iteration results: i1 = 1.1111; i2 =-0.1000 and i3 = 0.0

Second iteration results: i1 = 1.1111; i2 =-0.1000 and i3 = 0.22

Third iteration results: i1 = 1.23; i2 = 0.03 and i3 = 0.22 Fourth iteration results: i1 = 1.23 ; i2 = 0.03 and i3 = 0.33

Fifth iteration results: i1 = 1.29; i2 = 0.1 and i3 = 0.33 Sixth iteration results: i1 = 1.29; i2 = 0.1 and i3 = 0.38

)(.

)()(

3i60000i0.2500 /2012i i5i20.6000i0.1000- /2012i 2-i10.5556i1.1111 /95i 10i

21313

232

231

Page 9: Jacobi method

JACOBI METHOD : EXAMPLE 2Consider the following set of equations.

1511

256

83102

311210

432

4321

4321

321

xxxxxxxxxxx

xxx

Convert the set Ax = b in the form of x = Tx + c.

815

81

83

1011

101

101

51

1125

113

111

111

53

51

101

324

4213

4312

321

xxx

xxxx

xxxx

xxx

Page 10: Jacobi method

JACOBI METHOD : EXAMPLE 2

815

81

83

1011

101

101

51

1125

113

111

111

53

51

101

)0(3

)0(2

)1(4

)0(4

)0(2

)0(1

)1(3

)0(4

)0(3

)0(1

)1(2

)0(3

)0(2

11

xxx

xxxx

xxxx

xxx )(

.0and0,0,0 )0(4

)0(3

)0(2

)0(1 xxxx

815(0)

81(0)

83

1011(0)

101(0)

101(0)

51

1125(0)

113(0)

111(0)

111

53(0)

51(0)

101

)1(4

)1(3

)1(2

11

x

x

x

x )(

8750.1

1000.1

,2727.2

,6000.0

)1(4

)1(3

)1(2

)1(1

x

x

x

x

Page 11: Jacobi method

JACOBI METHOD : EXAMPLE 2

815

81

83

1011

101

101

51

1125

113

111

111

53

51

101

)1(3

)1(2

)2(4

)1(4

)1(2

)1(1

)2(3

)1(4

)1(3

)1(1

)2(2

)1(3

)1(2

21

xxx

xxxx

xxxx

xxx )(

815

81

83

1011

101

101

51

1125

113

111

111

53

51

101

)1(3

)1(2

)(4

)1(4

)1(2

)1(1

)(3

)1(4

)1(3

)1(1

)(2

)1(3

)1(21

kkk

kkkk

kkkk

kk(k)

xxx

xxxx

xxxx

xxx

Page 12: Jacobi method

JACOBI METHOD : EXAMPLE 2Results:

iteration 0 1 2 3 0.0000 0.6000 1.0473 0.9326

0.0000 2.2727 1.7159 2.0530

0.0000 -1.1000 -0.8052 -1.0493

0.0000 1.8750 0.8852 1.1309

)( kx1

)( kx2)( kx3)( kx4

Page 13: Jacobi method

JACOBI METHOD : EXAMPLE 3Solve the linear system by Jacobi’s method

4x -y + z = 7

4x -8y+ z = -21

-2x + y + 5z = 15.

Solution

From the system of linear equation we get:

.5

yx215z

,8

zx421y

,4

zy7x

1n1nn

1)(n1)(nn

1)(n1)(nn

If we start with (x0, y0, z0) = (0, 0, 0),

.5

yx215z

,8

zx421y

,4

zy7x

Page 14: Jacobi method

.5

yx215z

,8

zx421y

,4

zy7x

1n1nn

1)(n1)(nn

1)(n1)(nn

zn yn xn n

0 0 0 0

3 2.625 1.75 1

3.175 3.875 1.656 2

2.887 3.85 1.925 3

3 3.948 1.99 4

2.997 3.995 1.99 5

2.997 3.995 1.9995 6

The iteration appears to converge to the solution (2, 4, 3)

JACOBI METHOD:EXAMPLE 3

Page 15: Jacobi method

JACOBI METHOD : EXAMPLE 4

5x – 2y + 3z = -1-3x + 9y + z =22x - y -7z = 3

Solve the linear system by Jacobi’s method

Continue the iterations until two successive approximations are identical when rounded tothree significant digits.To begin, write the system in the form

If we start with (x0, y0, z0) = (0, 0, 0),

.7

yx23z

,9

zx32y

,5

z3y21x

Page 16: Jacobi method

JACOBI METHOD : EXAMPLE 4

Page 17: Jacobi method

PROGRAM OF JACOBI METHOD#include<stdio.h>#include<conio.h>#include<math.h>#define ESP 0.0001#define X1(x2,x3) ((17 - 20*(x2) + 2*(x3))/20)#define X2(x1,x3) ((-18 - 3*(x1) + (x3))/20)#define X3(x1,x2) ((25 - 2*(x1) + 3*(x2))/20)

void main(){  double x1=0,x2=0,x3=0,y1,y2,y3;  int i=0;  clrscr();  printf("\n__________________________________________\n");  printf("\n   x1\t\t   x2\t\t   x3\n");  printf("\n__________________________________________\n");  printf("\n%f\t%f\t%f",x1,x2,x3);  do  {  

Page 18: Jacobi method

PROGRAM OF JACOBI METHOD y1=X1(x2,x3);   y2=X2(x1,x3);   y3=X3(x1,x2);    if(fabs(y1-x1)<ESP && fabs(y2-x2)<ESP && fabs(y3-x3)<ESP ) {     printf("\n__________________________________________\n");     printf("\n\nx1 = %.3lf",y1);     printf("\n\nx2 = %.3lf",y2);    

printf("\n\nx3 = %.3lf",y3);     i = 1;   }   else   {     x1 = y1;     x2 = y2;     x3 = y3;     printf("\n%f\t%f\t%f",x1,x2,x3);   }  }while(i != 1);getch();}

 

Page 19: Jacobi method

PROGRAM OF JACOBI METHOD

    

   x1              x2              x3

0.000000         0.000000       0.0000000.850000        -0.900000       1.2500001.875000        -0.965000       1.0300001.918000        -1.129750       0.9177502.071525        -1.141812       0.8887372.080686        -1.166292       0.8715762.103449        -1.168524       0.8669882.105223        -1.172168       0.8643762.108606        -1.172565       0.8636532.108930        -1.173108       0.8632552.109434        -1.173177       0.863141__________________________________________

x1 = 2.109

x2 = -1.173

x3 = 0.863

Output:

Page 20: Jacobi method

Thank you.

Presented by: Grishma Maravia