J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

33
Demand Response and Wind Power Ramp Limitation for Reducing Frequency Excursions in Power Systems with High Wind Penetration J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 , A. Molina García 2 , I. Muñoz Benavente 2 1 Renewable Energy Research Institute (IER), University of Castilla-La Mancha 2 Department of Electrical Engineering, Universidad Politécnica de Cartagena EWEA Conference. Brussels, 15 th of March, 2010

description

Demand Response and Wind Power Ramp Limitation for Reducing Frequency Excursions in Power Systems with High Wind Penetration. J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 , A. Molina García 2 , I. Muñoz Benavente 2 - PowerPoint PPT Presentation

Transcript of J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Page 1: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Demand Response and Wind Power Ramp Limitation for Reducing

Frequency Excursions in Power Systems with High Wind Penetration

J. E. Villena Lapaz1, A. Vigueras Rodríguez1, E. Gómez Lázaro1, A. Molina García2, I. Muñoz Benavente2

1Renewable Energy Research Institute (IER), University of Castilla-La Mancha2Department of Electrical Engineering, Universidad Politécnica de Cartagena

EWEA Conference. Brussels, 15th of March, 2010

Page 2: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Index Introduction

Power System model

Simulation and results

Conclusions

Page 3: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Index Introduction

Power System model

Simulation and results

Conclusions

Page 4: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Index Introduction

Power System model

Simulation and results

Conclusions

Page 5: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Index Introduction

Power System model

Simulation and Results

Conclusions

Page 6: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Index Introduction

Power System model

Simulation and results

Conclusions

Page 7: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Motivation Current and future rising of wind power

Stochastic nature of the wind:- Active power fluctuations of the wind farms

- Balance between produced and consumed power

- Grid frequency excursions High penetration of cooling and heating loads,

which cycle on and off

Grid Code requirements

Page 8: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Aim of the work Studying the contribution of the demand side to

the primary frequency control

Assessing the effect of positive ramp limitation

(PRL) applied to the active power generated

form wind, on both the frequency excursions and

the Demand Response

Page 9: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Index Introduction

Power System model

Simulation and results

Conclusions

Page 10: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Power System Model Conventional generation

Wind farm generation

Load

Power System model

Page 11: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Power System Model Conventional generation

Thermal Plant

Page 12: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Power System Model Conventional generation

Hydraulic Plant

Page 13: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Power System Model Wind power generation (500 MW

simulated offshore wind farm)

Page 14: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Power System Model Wind power generation (with PRL)

Page 15: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Power System Model Load- Constant demand (1 GW)- Controllable Load (0.1 pu)

Page 16: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Power System Model Power System- ΔPm , generated power variation

- ΔPD , demanded power variation

- Δf , frequency error

- Df , damping factor

- ωk , kinetic energy stored in the rotating masses

Page 17: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Power System Model

Thermal Plant

Wind Farm

Hydro Plant

Power System

Load+

+

-

+

ΔPT

ΔPH

ΔPWF

ΔPm-ΔPD

Δf

ΔPD

+

+

-

-

AGC

AGC

Gain

Gain

Page 18: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Index Introduction

Power System model

Simulation and results

Conclusions

Page 19: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Simulation and Results 2-hour simulation Wind farm power between 15 % and 40 %

during the simulation Two conventional plants involved in

frequency control 1 GW constant load 10 % controllable load (only negative

frequency excursions) PRL (1 % energy losses)

Page 20: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Simulation and Results Scenario 1: Uncontrolled customer-side

power demand (constant Load) Scenario 2: Demand Response facing

frequency excursions (variable Load) Scenario 3: Demand Response & PRL

(1 % energy loss)

Page 21: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Simulation and ResultsScenario 1 (uncontrollable

load)

Page 22: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Simulation and ResultsScenario 2 (controllable

load)

Page 23: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Simulation and ResultsScenario 2 (controllable

load) Example of Demand Response

Page 24: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Simulation and ResultsScenarios 1 & 2

Example of comparison of frequency excursions

Page 25: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Simulation and ResultsScenarios 1 & 2

Comparison of frequency excursions (reduction of 18.15 %)

Page 26: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Simulation and ResultsScenarios 1 & 2

Example of comparison of conventional generators behaviour

Page 27: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Simulation and ResultsScenario 3 (PRL)

Page 28: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Simulation and ResultsScenarios 2 & 3

Page 29: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Simulation and ResultsScenarios 2 & 3

Example of comparison of Demand Response and frequency excursions

Page 30: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Index Introduction

Power System model

Simulation and Results

Conclusions

Page 31: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Conclusions Demand-side must be considered as a

potencial contributor to the primary frequency control.

Simulations have shown a significant reduction of grid frequency excursions for a reasonable amount of controllable loads.

Only negative frequency errors have been considered for the Demand Response model.

Page 32: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Conclusions Regulation techniques such as PRL can be

usefull for improving the behaviour of big wind farms in the power system.

A 1% curtailment of the available wind power can reduce significantly the frequency fluctuations caused by wind farms.

Page 33: J. E. Villena Lapaz 1 , A. Vigueras Rodríguez 1 , E. Gómez Lázaro 1 ,

Thank you very much for your attention!