IV Therapy

26
Indications of Venipuncture and IV Infusion Therapy When no other route of administration is available. Pt. cannot take in oral substances To restores & maintains fluid & electrolyte balances To provides medication & chemotherapeutic agents To transfuse blood & blood products To delivers parenteral nutrients & nutritional supplements When administration of continuous or intermittent medication is required When administration of bolus medication Indications for Venipuncture & IV Infusion Therapy When administration of intravenous anesthetics is required for the surgical pt. For the administration of diagnostic reagents: radiopaque dyes used for radiographic images For monitoring & maintaining hemodynamic functions (homeostasis) Benefits & Uses for IV Therapy Benefits : allows for more accurate dosing, it’s a fast method of delivery which works immediately Drug administration Provides rapid & effective administration of medications *Antibiotics, thrombolytics, cardiovascular drugs, anticonvulsive drugs, histamine- receptor antagonist, antineoplastic, analgegics - Immediate & accurate administration of medication Allows for IVP, a direct single dose For the use of long-term continuous infusion (short- term during hospital stay)

description

IV Therapy IV Therapy IV Therapy IV Therapy IV Therapy

Transcript of IV Therapy

Page 1: IV Therapy

Indications of Venipunctureand IV Infusion Therapy

• When no other route of administration is available. Pt. cannot take in oral substances• To restores & maintains fluid & electrolyte balances• To provides medication & chemotherapeutic agents• To transfuse blood & blood products• To delivers parenteral nutrients & nutritional supplements• When administration of continuous or intermittent medication is required

• When administration of bolus medication

Indications for Venipuncture & IV Infusion Therapy• When administration of intravenous anesthetics is required for the surgical pt.• For the administration of diagnostic reagents: radiopaque dyes used for radiographic images

• For monitoring & maintaining hemodynamic functions (homeostasis)

Benefits & Uses for IV Therapy

Benefits: allows for more accurate dosing, it’s a fast method of delivery which works immediately

• Drug administration– Provides rapid & effective administration of medications

*Antibiotics, thrombolytics, cardiovascular drugs, anticonvulsive drugs, histamine- receptor antagonist, antineoplastic, analgegics

- Immediate & accurate administration of medication– Allows for IVP, a direct single dose – For the use of long-term continuous infusion (short-term during hospital stay)– PPN (peripheral parenteral nutrition) when limited nutritional therapy rather than total pareteral nutrition is needed.

• Total parenteral nutrition (TPN) – given through a central line- Provides essential nutrients to blood organs & cells by IV route- TPN is usually customized for ea. Pt. in order to meet their energy & nutrient

Requirements- Contains proteins, carbohydrates, fats, vitamins, traces of elements and water.- TPN should only be used when the gut is unable to absorb nutrients.- Can be used indefinitely, however, TPN may cause liver damage.- (PPN) peripheral parenteral nutrition – is a limited nutritional therapy; it:

o contains fewer non-protein calories, lower amino acid concentration than TPN

o may be used for approx. 3 wks.• Blood administration

- restores & maintains adequiate circulatory volumes - maintains homeostasis - prevents cardiogenic shock- increases the blood’s oxygen-carrying capacity

Page 2: IV Therapy

IV Delivery Methods• By peripheral veins - usually the distal arms & hands

Lower extremities are avoided, may be used in children– Primary Lines– Secondary Lines (IVPB)– Intravenous Push (IVP)– Heparin Lock Flush (HL), Saline Lock – Intravenous Pump Use

Cannulas - Cannula selection

Cannula size Clinical Application____________________________ • 14, 16, 18 ga. - trauma, suregery, blood transfusion• 20 ga. - continuous or intermittent infusion, also blood adm.• 22 ga. - use in children and elderly, or for general use (GI lab)• 24 ga. - Fragile veins, children

IV Delivery Methods• Central line veins - a flexible catheter inserted into large central vein

– Inserted by by a physician in the : Jugular vein; Subclavian vein; or Femoral vein• Procedure performed by a MD – requires a consent

PICC lines & Midline Catheters• PICC – (Peripherally inserted central catheters) – performed by a trained nurse. The tip of the catheter reaches the subclavian and terminates at the superior vena cava. Post x-ray required for determining placement.• Midline catheters - are long catheters (> 3 inches in length). they are peripherally inserted with the

tip located at the level with the axilla, and distal to the shoulder.

Peripheral IV VS. Central LinesIn for short periods of time Can be left in for longer periods of timeRelatively easy to put in Required skilled person for placement (MD)Is accomplished by nursing staff PICC line (RN with special training)Less complications May infuse chemotherapySome drugs & fluids may be irritable to vein May infuse parenteral nutrition formulaeDo not infuse fluids with a pH < 5 or >9 May exceed 10% dextrose and 5% proteinCannot give anything > 500mOsm/L

Delivery PumpsNO Free Flow

• Safety mechanism that prevents free flow

Page 3: IV Therapy

• If not sure how to operate, ask!!!!• Always keep alarms on.

Venipunture Sites

REMEMBER: 5 Rights of Medication Administration

• Right drug

• Right dose

• Right client/patient

• Right route

• Right time

Starting an I.V.1. Assembles equipment

IV. Bag, IV tubing, IV start kit, tape, op-stie dressing, IV cathlon needle, syringe, gloves IV pump, medication, Medication administration record (MAR); 2. Positions clients and adjusts lighting

Explain to the patient, make them feel comfortable, present self-confident3. Washes hands and applies gloves

Allow pt to see you wash hands4. Prepares equipment

clean bedside table, use aseptic technique - uses body fluid precautions5. Selects and prepares venipuncture site

ETOH swabs/pads70%, apply in a circular motion 2-3 inch diameter, moving from the center towards the outside. Allow area to dry. No fanning, blotting, or blowing!

THEN Apply povidone-iodine (betadine swab) = also in a circular motion. Center to outwards.

Allow to dry for 30 seconds Caution : If patient is allergic to Iodine then use alcohol swab with friction until final

application is visually clean. Dry for 30 seconds6. Applies tourniquet - do not tie a knot, tourniquet must be easily removed.7. Enters skin with needle either next to or directly over vein

Keep the bevel of the needle up. Enter at a 10-30 degree angle8. Observes for “pop” and flashback of blood; advance the needle a little bit more (2 cm)

Cephalic vein

Cephalic vein

Cephalic vein

Accessory cephalic vein

Median cubital vein

Median vein

Median cubitalvein

Dorsal metacarpals

Dorsal digital vein

Dorsal venous network

Basilic vein

Page 4: IV Therapy

separate the cathlon and needle stylate

9. Carefully advances needle (cathlon) - the stylate further separates from the cathlon as it is advanced.

10. Releases tourniquetApply pressure over the vein, above the venipucture to prevent blood leaking before removing stylate. Remove the stylate and attach the IV tubing

11. Opens clamp on I.V. tubingIf giving an IVP medication or heplock flush, be sure to push fluid slowly

12. Observes for swelling at I.V. site13. Applies appropriate dressing – chevron or H method14. Tapes the needle and tubing - use opsite dressing15. Sets flow rate16. Labels I.V. site17. Documents18. States the difference between catheter and heparin lock set-up

Discontinue I.V.• Practice standard precautions. • Clamp tubing – stop fluid infusion. • Gently peel the tape back • Withdraw catheter. Place gauze over site and gently slide the plastic catheter out of the patient's arm. • Use direct pressure for a 2-3 minutes to control any bleeding. • Place a band aide over the site

Documentation

• Date• Time• Site description• Attempts• Gauge

Types of IV Solutions

IV solutions are based on the patient’s medical history and diagnosis, the type of fluid volume deficit being treated (overload or dehydration). The IV solution is also selected on the type of electrolyte content and osmolarity (tonicity)

• Isotonic – a solution with the same osmalility as body fluids, such as plasma.– total electrolyte content approx. 310 mOsm/L

• Hypertonic – is a solution with greater concentration of solutes than body plasma – total electrolyte content > 375 mOsm/L

• Hypotonic – is a solution with lower concentration of solutes than body plasma – total electrolyte content < 250 mOsm/L

IV fluids or HL Name of solution Rate of flow Patient toleration Complications

Page 5: IV Therapy

Colloids - Colloid osmotic pressure (or oncotic pressure) = is the osmotic (pulling) force of albumin (proteins) in capillary reabsorption. It draws water into the vascular space. These would be hypotonic solutions like: Albumin (a component of blood); Dextran; Hetastarch

Crystalloids - electrolyte solutions that move freely between the Intravascular and Interstitial spaces. These are isotonic solutions like: D5W and Normal Saline 0.9%

IV solutions can be used to correct fluid imbalances. They are usually dependent upon the solution’s osmolarity (concentration) as compared to the serum osmolarity.

Osmolarity concentrations of solutions are expressed in mOsm/L (milliosmol per liter of solution)

Normal serum is approximately – 300 mOsm/L, and it is the same osmolarity as other body fluids

A < low serum osmolarity suggests fluid overload A > high serum osmolarity suggests hemoconcentration , dehydration

NOTE : Normal serum = 300 mOsm/L; it’s the same osmolarity as other body fluids

Isotonic• Osmolarity (tonicity) of the solution is the same solute concentration as serum and other body fluids• Infusing solution doesn’t alter concentration of serum; therefore, osmosis doesn’t occur.• Isotonic solutions stay where they are infused, inside blood vessel• Intravascular/ECF volume expanders

• Examples: D5W, 0.9%NS , L.R. , Electrolytes are considered isotonic

Isotonic Solutions: Examples & Considerations

0.9% NS Monitor for CHF & HTN2.5%Dext/.45NS Ringers SolutionD5W D 2.5% / ½ LRD5/ 0.11% NS No D5W with> ICPPlasmalyte Don’t give LR in liver disease. Unable to metabolize lactate

Lactated Ringers No LR if pH>7.5; converts Lactate HCO3

Hypotonic• Osmolarity (tonicity) of the solution is < than serum osmolarity. It has a lower solute concentration.• Fluids shift out of intravascular fluid into the interstitial & intracellular fluid; because fluid is pulled towards the area of higher osmolarity. In this case, the intracellular fluid has higher osmolaritiy.• Hydrates cells, reduces circulatory fluid.

• The purpose for hypotonic sol. is to replace cellular fluids; or treat hypernatremia or other hyperosmolar conditions,

• Isotonic solutions: half strength NS (½ N.S), 0.33% NaCl; D2.5W

Page 6: IV Therapy

• Too much will deplete intravascular fluids, decrease BP, cause cellular edema and cell damage. (rupture)

Hypertonic• Osmolarity (tonicity) of the solution is > than the serum osmolarity. Solute concentration is higher than the solute concentration of serum as well as the extracellular fluid• Fluids shift out of the intracellular & interstitial fluid into the intravascular fluid

- This effect is temporary since dextrose is metabolized quickly• May be ordered in post-op pts to reduce edema, stabilize BP and regulate urine output (see handout)

Examples of Hypertonic Solution:

• D5 ½ NS; D50W D5LR Mannitol• D5 NS; D10NS ½ N.S D2.5W• D5 0.2% NS D10W 0.33%NaCl D10 ½ NS

Considerations • May cause cells to shrink; and may cause damage to endothelial cells• If used in increased intracranial pressure (ICP), it will draw fluids out of cells and lower the ICP.

Hypotonic solutions may be necessary for children since their daily turnover of water exceeds that of adults. Children are subject to rapid fluid shifts. Most common pediatric maintenance solutions:

D5% or D10%NS 0.22%, NS 0.3%

Anything less (or less than 0.2% of sodium chloride) may cause cerebral edema.

Quick Guide to IV Solutions:

A solution is isotonic if its osmolarity falls within (or near) the normal range of serum of 240 – 340 mOsm/L. A hypotonic solution has a lower osmolarity: a hypertonic solution has a higher osmolarity. This chart lists common examples of the tree types of IV solutions and provides key considerations for administering them.

Solution Examples Nursing considerations Isotonic • Lactated

Ringer’s • Ringer’s

• Normal saline

• Dextrose 5% in water (D5W)• 5% Albumin

• Hetastarch

• Normosol

• Because isotonic solutions expand the intravascular compartment, closely monitor the patient for signs of fluid overload, especially if he has hypertension of heart failure.• Because the liver converts lactate to bicarbonate, don’t give lactated Ringer’s solution if the patient’s blood pH exceeds 7.5• Avoid giving D5W to a patient at risk for increased intracranial pressure (ICP) because it acts like a hypotonic solution. (Although usually considered isotonic, D5W is actually isotonic only in the container. After administration, dextrose is quickly metabolized, leaving only water – a hypotonic fluid.)

Page 7: IV Therapy

Hypotonic • Half-normal saline 0.45%N.S.• 0.33% sodium chloride• Dextrose 2.5% in water

• Administer cautiously. Hypotonic solutions cause a fluid shift from blood vessels into cells. This shift could cause cardiovascular collapse from intravascular fluid depletion and increased ICP from fluid shift into brain cells.• . Don’t give hypotonic solutions to patients at risk for increased ICP from stroke, head trauma or neurosurgery.• Don’t give hypotonic solutions to patients at risk for third-space fluid shifts (abnormal fluid shirts into the interstitial compartment or a body cavity) – for example: patients suffering from burns, trauma or low serum protein levels from malnutrition or liver disease.

Hypertonic • Dextrose 5% in half-normal saline• Dextrose 5% normal saline• Dextrose 5% lactated Ringer’s• 3% sodium chloride• 25% Albumin

• 7.5% sodium chloride

• Because hypertonic solutions greatly expand the intravascular compartment, administer them by IV pump and closely monitor the patient for circulatory overload• Hypertonic solutions pull fluids from the intracellular compartment; so don’t give them to a patient with a condition that causes cellular dehydration – for example, diabetic ketoacidosis.• Don’t give hypertonic solutions to a patient with impaired heart or kidney function – his system can’t handle the extra fluid.

Lippincott Williams & Wilkins. I.V. Therpay made Incredibly Easy.

Patient Assessment• Check patient’s status before starting fluid replacement. • What is their age? Are they having surgery? What is the condition of the veins? This may determine the size of needle you will use. •Anticipate changes in fluid balance that can occur during IV therapy - check lab. values.

Fluid deficits Fluid excessWt. LossIncreased, thready pulse rateDiminished B/P, (orthostatic hypotension)Decreased central venous pressure CVPSunken eyes, dry conjunctivas, decreased tearingPoor skin turgor (not reliable in elderly patients)Pale, cool skinPoor capillary refill (> 2 seconds)Lack of moisture in groin and axillaeThirstDecreased salivationDry mouth, Dry, cracked lipsFurrows in tongueDifficulty forming words (patient needs to moisten

Wt. GainElevated blood pressureBounding pulse that isn’t easily obliteratedJugular vein distentionIncreased respiratory rate DyspneaMoist crackles or rhonchi on auscultationEdema of dependent body parts: (sacral edema in patients on bed rest) (edema of feet and ankles in ambulatory pts.)Generalized edemaPuffy eyelidsPeriorbital edemaSlow emptying of hand veins when the arm is raised

Page 8: IV Therapy

mouth first)Changes in mental statusWeaknessDiminished urine outputIncreased hematocritIncreased serum electrolyte levelsIncreased blood urea nitrogen (BUN) levelsIncreased serum osmolarity

Decreased hematocritDecreased serum electrolyte levelsDecreased BUN levelsReduced serum osmolarity

Do they have a fluid deficits of fluid excess?RISKS and Complications r/t IV therapy

EDEMA = an imbalance between extracellular and intracellular fluid/ compartments; an imbalance in osmolarity (concentration) or osmotic pressure (pulling). • Bleeding – hematoma, separation of IV tubing• Blood vessel damage• Infiltration (IV sol. leaks into surrounding tissues)• Catheter dislodgement (extravasation) - extravasation from vesicant drugs• Occlusion – bent catheter, IV flow interrupted, line clamped, Failure to flush device, blood back-up• Phlebitis, - tenderness, redness caused by friction from catheter, hypertonic sol. c high pH. Can damages the blood vessel.

• may occur with prolonged indwelling IVs, immunocompromised pts, poor taping.

• Scrupulous aseptic tech. required when handling IVs at anytime.• thrombosis - painful, reddened, swollen vein. IV flow sluggish or stopped. Causes injury to endothelia cells of vein wall, platelets adhere & can form a thrombus• thrombophlebitis – severe discomfort, reddened, swollen & hardened vein. Caused by thrombosis and inflammation. Remove IV, restart, warm soaks, report MD• Infection – redness @ site, inflammation, warm to touch, drainage. Sepsis – fever, chills, general malaise. Failure to maintain aseptic technique. • Circulatory overdose (rapid infusion) – SX neck vein distention or engorgement, respiratory distress, inc BP, lung crackles. Raise HOB, slow infusion, O2, • Adverse or allergic reactions – stop infusion, notify MD. f/u protocol for adverse drug reaction

SX: itching, uticaria (rash), bronchospasm, wheezing, edema, anaphylactic reaction (occurs within minutes to up to 1 hour of exposure). Anaphylactic shock = flushing, chills, anxiety, agitation, generalized itching, palpitations, throbbing in ears, wheezing, coughing, seizures, cardiac arrest.STOP infusions & switch to N.S., maintain open airway, MD, adm, antihistamine steroid or anti-inflammatory agents, cortisone, epinephrine,.antipyretic as ordered. Monitor pt carefully.

Page 9: IV Therapy

• Air embolism. - SX respiratory distress, unequal breath sounds, weak pulse, inc. CVP, confusion or loss of conciousness. Cause: air in vascular system - caused: empty solution container – the next container will push air down the line. Tubing disconnects from venous access or IV bag.

DC IV, place pt in trendelenberg of left side. Give O2, Notify MD. Always purge IV lines, air-detection devices on pumps; secure all connections.

• Drug & IV incompatibility• Cellulitis – infection• Vein irritation or pain at IV site• Severed or fractured catheter – caused by reinsertion of needle into catheter. The fractured foreign catheter fragment may act as an emboli. If portion of catheter entered bloodstream, place a tourniquet above the IV site to prevent progression. Notify MD & radiology. • Never reinsert needle• Venous spasm - caused by severe vein irritation, rapid adm. of cold fluids or blood. Apply warm soak, slow rate of fluid.• Damage to a nerve, tendon, or ligament - causes extreme pain (electric shock when the nerve is contracted), numbness, or muscle contraction. Delayed effects may include paralysis, numbness & deformity. Caused by improper VP or improperly securing (splinting) the IV arm to an arm board. Like taping too tight.

If pain or damage occurs, stop procedure & remove IV. Avoid repeatedly penetrating tissue. Don’t encircle arm with tape; don’t apply excessive pressure when taping;

Physiological Interrelated Systemic Risks• Fluid overload– Cardiovascular system – inc. BP, HR, exerts the heart.

– R.Atrium releases hormone – Atrial natruiretic peptide (ANP) in response to elevated BP – it inhibits/blocks the rennin-angotensin mechanism & aldosteron secretion – in order to decrease BP by allowing Na+ and water to flow out of the body in urine. - produces salty urine.

– Nervous system – Pituitary gland secretes hormones that stimulate the kidneys to release fluid– ACTH (adenocorticotropic hormone) stimulates adrenal cortex to release corticosteriod hormones, like glucocorticoid and mineralocorticoids. – Minerolocorticoids helps regulate electrolyte concentrations in extracellular fluids (particularly K+, Na+). Aldosterone is a mineralocorticoid.

- Aldosterone reduces the secretion of Na+, through kidney tubules reabsorption, helps to regulate Bicarbonate and chloride, other electrolytes

– Renal system – Renin-angiotensin mechanism which influences blood volume & BP by releases rennin that acts on angiotensinogen (plama globuline made in the liver). It converts it to angiotensin I, which then converts that into angiotensin II. (by ACE – antiotensin converting enyme). Al this to help stablelize BP and extracellular fluid volumes. This is associated with capillary endothelium in various body tissues (particularly lungs)– Pituitary gland secretes ADH (vesopressin), in response to increased osmolarity of blood or decreased blood volume. Stimulates kidney tubule to reabsorb water.– Respiratory system – can easily become congested and dev. Pulmonary edema, and also develop blood gasses imbalance.

Page 10: IV Therapy

Complication of CV lines• Pneumothorax - usually discovered during CXR– Chest pain– Dyspnea (SOB)– Cyanosis - because of the diminished oxygen– Decreased or absent lung sounds on the affected side– Thoracotomy & chest tube - ACT = Acute respiratory distress, Chest wall motion asymmetrical, Tracheal shifting

Nutritional assessment

Medical HX. Allergies & intolerance to foods. HT, Wt, ideal body wt, body frame, BMI. Skin turgor, bruising, muscle wasting, ill-fitting denture & denture caries, dry mouth, darkening of mouth lining, infections or irritations in and around the mouth. Neck swelling, low albumin levels . Dietary intake.

Metabolic complication-• Monitor BS levels - Hyperglycemia (infuse insulin)• Hyperosmolar hyperglycemic non-ketotoc syndrome - stop dextrose, rehydrate• Hypokalemia - Hypomanesemia - Hypophosphatemia - hypocalcemiz - metabolic acidosis• Liver dysfunction – decrease carbs & IV lipids. Consider cyclic infusion rather than continuous• Hyperkalemia – decrease potassium

Factors Affecting Desired Flow Rate

• Change in cannula position- bent cannula can occlude flow; also level of IV bag (ht of liquid)• Patency of the cannula. – diameter of aannula and tubing; thrombus formation will impede flow

Also, the longer the tubing, the slower the flow. Viscosity of solution• Venous spasm.• Crying infants.• Local complications: Phlebitis, or thrombophlebitis.

Be sure to monitor the flow for patency; IV site, recheck calculations

PEDIATRIC IV ADMINISTRATION

Fluid volume is based on child’s age, size and 24 hr. needs

Before starting an IV in children: Parpare the parents and child for the stressful procedure Gather all necessary equipment – to minimize interruptions

o Infusions pumps calibrated for pediatric useo Small needle size: 24-22 ga. IV site: foot, scalp vs. hand.

Page 11: IV Therapy

o Use IV tubing with a graded buretrol or solumet drip chamber (60 gtts/min)o Use of buffered lidocaine: EMLA, or LMX4 (lidocaine & prolocine)o Child positioning – parental assistance vs. restraintso Check for latex sensitivity.

Anticipate changes in fluid balance that can occur during IV therapy – this is very crucial before any serious complication develops.

Apply tourniquet over a washcloth to reduce pain or use a tourniquet belt, B/P cuff.

Use an age appropriate approach

o Distracting activities, toy therapy, introduce to child that is coping well, handling equip., no use of restraints,

Other Pediatric Considerations• Difficulty evaluating drug response – how do you assess ringing in the ear of a child who doesn’t talk?• Vulnerable to overdose – infants may still have immature livers, or kidneys• Increase risk for fluid overload – know the minimum dilution for safe administration

of IV meds.• Dehydration poses a risk for toxic accumulation

• Subject to rapid fluid shifts• Intraosseous infusion – use in emergency trauma. A large-bore needle inserted into

the medulla cavity of a long bone (Tibial tuberosity, the distal 3rd of the femur in newborns)

o Watch for oozing, swelling at site and dependent areas, the tissue of the leg.

o Complication skin necrosis, fractures, osteomyelitis, cellulitis

Patient Teaching• Assess patient’s previous experience• Explain procedure• Explain purpose of medication • Length of time • Ease anxiety, allow them to express feelings• Homecare instructions: care, hep-flush, hygiene & bathing, what to watch for, SX of

infection, phlebitis, when to report to MD• Demonstrate of skill for administering medication (IM, via G-tube)• Document teaching

Page 12: IV Therapy

I.V. THERAPY - Part #2

Maintaining peripheral IV therapy.

Calculating flow rates IV flow rates – are measured in drops per minute The number of drops required to deliver 1 ml.:

– will vary with the type of administration set used – and its manufacturer (so check for the “drop factor” on the packet label)

There are 2 types of administration sets:1. macrodrip (standard) - deliver 10, 15 or 20 gtts/ml2. microdrip – delivers 60 gtts/ml

Another rate reminder is the:Roller clamp - visual monitoring - Label infusion bag, check rate in mm/hr.

Many nurses check IV flow rates q. time they’re in the patient’s room AND after ea. position change.Check Ivs frequently on Critical patients; elderly; when infusing caustic meds. Some solutions can damage tissue if infiltration occursPalpate gently around the IV area for infiltration; Ask the patient how it feels.IF the flow rate decreases, check c MD if the rate should be adjusted = especially if rate must must be increased by > than 30%

IV TUBINGBasic set Add-a-line Milli-size

- 70”-110” (178-279cm) - longer - air vent – prevents- Use for delivery of infusion - Delivery of secondary build-up of negative through an intermittent intermittent infusions through pressure in the volume infusion device. additional Y-sites chamber, allowing sol. to - Y-site for secondary - After secondary infusion is flow out. infusion in, the primary line resumes - Microdrip delivers 60 gtts/ml

Page 13: IV Therapy

-Macrodrip delivers 10, 15 its regular infusion. - Volume control set: Buretrol, Soluset, Volutrol

20 gtts/ml - Backheck valve to prevent - Used in ipediatrics backflow from secondary - Delivers precise amts of solution fluid/medication

Infection Control(3rd leading cause of death in the U. S.)

1. Local infection – infection penetrates the tissues at IV site; it can spread 2. Systemic infection – it’s when the microorganism travels freely throughout the body

and affects other/or all body systems3. Sepsis – is when the pathological condition resulting from the spread of

microorganisms or toxins throughout the circulatory system.

- Infection is the process in which a host is invaded by microorganisms that grow, reproduce and cause injury.- Pathogen = a substance or agent that is capable of producing disease- Colonization = is when the invading organisms do not result in a disease but reside in the host, making the host a carrier without causing adverse clinical signs or symptoms.

EXAMPLE:The nurse starts an IV infusion on a patient (host).The nurse accidently touches the tip of the catheter/needle contaminating it with bacteria (agent)The bacteria enters the blood (environment) which becomes an ideal area atmosphere for it to proliferate

Preventing Infections• Rotate IV site; standard is 48 –72 hrs.• Maintain the peripheral IV in order to prevent infections

Routine care – to prevent complications- observe IV site for signs of inflammation or infection, - minimize IV manipulation

• Wash hands & wear gloves when handling VP siteChanging the dressing q 48 hrs.

Know facility’s protocol/ policy Change transparent dressing when its integrity is compromised

Chang IV solutionDon’t allow IV container to hang for more than 24 hrs.Check for cracks, leaks or damage on new bags before hangingCheck for discoloration, turbidity & particlesNote date & time when solution was mixed

Changing administration set q 72 hrs.Change if contaminated or according to facility’s policy Change when you start a new venous access devise during routine site rotation.

Rotate IV siteStandard routine is to change IV site q. 48 –72 hrs, according to hospital policy

Page 14: IV Therapy

Sometimes limited vein access may prevent you from changing sites often If that’s the case, notify MD of the situation and discuss alternatives for long-term insertion

** A complete change may be ordered if you detect signs of thrombophlebitis, cellulites, or bacteremia related to IV therapy.** Cleanliness is the key: Always wash hands before handling IVs** Always clean a Y-site when accessing line or introducing a secondary infusion set.

Special Considerations

Pediatric veins – may be difficult. Veins are embedded in fat making them hard to isolate

Infants – have less subcutaneous fat, which makes the veins more prominent.Use: viens of hands, feet, antecubital fossa, dorsum of the hand, scalp (bilateral superficial temporal and the veins of the middle forehead

Elderly – skin tissue is loose which makes it difficult to stabilize veins.Veins are more fragile because of decreased connective tissues* Perform VP quickly & swiftly efficiently to avoid excessive bruising.* Smaller gauge needles, 24 ga ¾” needle * Remove the tourniquet promptly to prevent bleeding through the vein wall

Communication and the law Patient information must be communicated through verbal reports, medical record, written

documentation required by the nurse’s employing institution If it was not reported and recorded, it wasn’t done Nurse is liable for communicating all patient data that may alter his well-being; or hinder

progress. Court rulings have endited nurses liable and negligent for failure to report and record

significant information.

Just to review documentation:o Solution orderedo Type of venous access used (length, gauge)o Time, rate of infusiono Site; type of dressing; condition of site; unsuccessful attemptso Pt’s physical and psychological response to procedureo Use of electronic deviceo Patient teaching associated with procedure and therapy; pt’s understanding

Never ignore it or try to conceal an error if it occursIt must be addressed so that corrective measures are taken to counteract the error.

The patient’s safety comes first Notify physician Fill out appropriate forms (incident report, or medication error form) and documentation Follow protocols Patient has the right to know about the error

* Remember: to make an error is human, to conceal or lie is dishonest and a breach of duty owed to the patient

Legal Implications

Page 15: IV Therapy

Lawsuits may result from Wrongful medication administration Incorrect route Improper placement of an IV line Errors in infusion pump use Failure to monitor for adverse reactions, infiltration, dislodgement of IV equipment.

Medication IncompatibilityMost IV drugs are compatible with common IV solutionsThe more complex the solution, the greater the risk of incompatibility.IV solutions containing divalent cations (calcium) have higher incident of incompatibilityIncompatibility is also common among mixtures containing:

Other electrolytesMannitolBicarbonateNutritional solutions (TPNs)

Incompatibility falls into 3 categories: 1. physical incompatibility – commonly occurs with multiple additives

physical signs of incompatibility: precipitaion, hazy or cloudy solution, dev. gas bubbles lactated Ringer’s (has calcium in solution) increases precipitation when missed with another

drug. Norepnephrine with degraded when added to sodium bicarbonate

2. chemical incompatibility – mixtures of drugs alter the integrity and potency of active ingredients rendering it less potent. Factors influencing chemical incompatibility include: drug concentrations pH of the solution volume of solution used to mix medications length of time that medications are in contact with each other. The long 2 or more drugs are

together, the more likely an incompatibility will occur (Amikacin & Acyclovir > 4 hrs.) temperature – the higher the temp. of an admixture, the greater the risk of incompatibility.

READ Court casesp. 26 - “IV Therapy Made Incredibly Easy”

Know your limitsKnow the nurse practice acts, Federal regulations

Facility’s policiesDocument the condition of site; the IV care provided; dressing changes;

tubing & sol. changes; pt teaching & evidence of understanding.** document that you are following up and monitoring the IV site & infusion therapy.

Page 16: IV Therapy

Light – prolong exposure to light can affect the stability of certain drugs (Nitroprusside sodium; amphotericin B)

3. therapeutic incompatibility – occurs when 2 or more drugs are administered concurrently (Penicillin & Chloramphenicol). Penicillin should be given 1 hrs before chloramphenicol.

What should you put on the label when adding medication to IV solution, label: Patient’s full name Room number Date Name & amt. of IV solution & drugs Infusion rate

3 Checks of Medication Administration2. Read the medication label as it is removed from the shelf, medication cart, dispensing system

or refrigerator.3. Read the medication label when comparing it with the MAR4. Read the medication label once again before administering the drug to the patient

* Perform the 3 Check medication administration along with the 5 Rights.Eliminates human errors.

PART 3

Parenteral nutrition• Hyperalimentation: contains: Hypertonic Dextrose, proteins, lipids, electrolytes, vitamins, water• TPN – used in GI trauma when pt is unable to eat.• Critical patients with unstable hemodynamics - in severe burns, multiple trauma, anorexia nervosa• Poor tolerance to enteral feedings * Debilitating illness lasting > 2 weeks• Serum albumin < 3.5g/dl * Chronic vomiting or diarrhea

Inability to sustaine adequate wt. * Malnutrition (CA, GI dis;, ETOH)

Risk: catherter infection, hyperglycemia, hyperkalemiaAdded features: (any of the following to prevent metabolic deficiencies.)

50% dextrose in water – provides calories for metabolismAcetate – prevents metabolic acidosisAmino acids – provide protein necessary for tissue reparCalcium – promotes dev. of bone and teeth, aids in blood clottingChloride – regulates acid-base equilibrium, maintains osmotic pressureFolic acid – needed for deoxyribonucleic acid (DNA) formation & growth & developmentMagnesium – helps in the absorption of carbohydrate and protein

Page 17: IV Therapy

Micronutrients ( zinc, manganese, cobalt) – to help would healing & RBC synthesis Phosphate – minimizes peripheral paresthesia (numbness/tingling of extremities)Potassium – for cellular activity & tissue synthesisSodium – helps regulate water distribution & maintain normal fluid balanceVitamin B – helps in the final absorption of carbohydrates & proteinsVitamin C – wound healing, tissue repairVitamin D – for bone metabolism; helps maintain serum calcium levelsVitamin K – helps prevent bleeding disorders

Complications of TPN (read p. 289)Sepsis related to serious catheter infectionsMetabolic complications

** TPN solutions should not hang for more than 24 hours** TPN is a hypertonic solution of 1,800 – 2600 mOsmo/L

Nutritional Support• TPN – is used in GI trauma when pt. is unable to eat.

– Critical patients with unstable hemodynamics : such as severe burns, multiple trauma, anorexia nervosa

• Poor tolerance to enteral feedings * Debilitating illness lasting > 2 weeks• Serum albumin < 3.5g/dl * Chronic vomiting or diarrhea• Inability to sustaine adequate wt. * Malnutrition (CA, GI dis;, ETOH)