Issues on the border of economics and computation נושאים בגבול כלכלה וחישוב

14
Issues on the border of economics and computation הההההה ההההה ההההה ההההההSpeaker: Dr. Michael Schapira Topic: Combinatorial Auctions III

description

Issues on the border of economics and computation נושאים בגבול כלכלה וחישוב. Speaker: Dr. Michael Schapira Topic: Combinatorial Auctions III. Combinatorial Auctions. Set M of m indivisible items Set N of n bidders Preferences are on subsets S – bundles – of items - PowerPoint PPT Presentation

Transcript of Issues on the border of economics and computation נושאים בגבול כלכלה וחישוב

Page 1: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

Issues on the border of economics and computation

נושאים בגבול כלכלה וחישוב

Speaker: Dr. Michael SchapiraTopic: Combinatorial Auctions III

Page 2: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

Combinatorial Auctions• Set M of m indivisible items• Set N of n bidders• Preferences are on subsets S – bundles – of

items • Valuation function vi: 2M R

– vi(S) – bidder i’s value for bundle S

– monotone: vi(S) not decreasing in S

– normalized: vi() = 0

Allocation: mutually-disjoint subsets S1, S2, … Sn

Social welfare of allocation: i vi(Si)

Page 3: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

What Do We Want?

1. “Good” (w.r.t. efficiency) outcomes (preferably optimal)

2. Incentive compatibility (preferably in dominant strategies)

3. Low running time (in the “natural parameters”: n and m)

Page 4: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

Cannot Simply Use VCG!

• Finding optimal allocation is computationally (=NP) hard!

• Cannot compute “approximate” VCG payments.

• The “clash” between Econ and CS. What can we do?

Page 5: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

Natural Restrictions on Bidders

• Defn: A valuation v is subadditive (complement-free) if for all S,TM, v(ST) ≤ v(S) + v(T).

• Defn: A valuation v is submodular if for all S,TM, v(ST) + v(ST) ≤ v(S) + v(T).

• Equivalent definition of submodularity: for all STM, and j not in T,

v(T{j})-v(T) ≤ v(S{j})-v(S)

(decreasing marginal utilites)

• Fact: Submodularity implies subadditivity.

Page 6: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

Computational Perspective

• Thm: Finding an optimal allocation in combinatorial auctions with submodular bidders is NP-hard.

• Thm: A 2-approximation to the optimal allocation in combinatorial auctions with submodular bidders can be computed in a computationally-efficient manner.

• The 2-approximation algorithm is not truthful. What’s next?

Page 7: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

Computational Perspective• Thm: There exists a computationally-

efficient and incentive compatible 2m½-approximation mechanism for auctions with subadditive bidders.

• Thm: No computationally-efficient and incentive compatible mechanism can obtain an approximation ratio of m½-e for auctions with submodular bidders.

• An inherent clash between efficient computation and incentive compatibility.

Page 8: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

Incentive Compatibility via VCG?

• We want an algorithm that is incentive compatible in dominant strategies.

• VCG is the only general technique known for making auctions incentive compatible

– each bidder i pays: Sk≠ivk(O-i) - Sk≠ivk(Oi)

– Oi is the optimal allocation, O-i the optimal allocation of the auction without the i’th bidder.

Page 9: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

• Problem: VCG requires finding optimal allocations!

• This is computationally intractable.

• Approximations do not suffice…

• But, that does not mean we cannot use VCG in a more creative way…

Incentive Compatibility via VCG?

Page 10: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

• A mechanism M is MIR (= VCG-based) if:– There’s a fixed subset RM of the possible

outcomes (allocations of the m items between the n bidders) = “M’s range”.

– For every valuation profile (v1,…vn) M outputs the optimal partition in RM.

• Fact: MIR mechanisms are truthful (Why?).

RM

allpartitions

Maximal-In-Range Mechanisms

Page 11: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

MIR for Subadditive Auctions

• Key idea: limit the set of possible allocations.– either each bidder gets at most one item– or all items are allocated to a single bidder.

• Optimal solution in the set can be found in a computationally efficient manner VCG prices can be computed incentive compatibility.

• We still need to prove that we achieve an approximation.

Page 12: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

The Algorithm• Ask each bidder i for vi(M), and for vi(j), for

each item j.

• Construct a bipartite graph and find the maximum weighted matching P.

• can be done in polynomial time.

1

2

3

A

B

ItemsBidders

v1(A)

v3(B)

Page 13: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

The Algorithm (Cont.)

• Let i be the bidder that maximizes vi(M).

• If vi(M)>Val(P)– Allocate all items to i.

• else– Allocate according to P.

• Let each bidder pay his VCG price (in respect to the restricted set).

Page 14: Issues on the border of  economics and computation נושאים בגבול כלכלה וחישוב

Proof of Approximation Ratio

Theorem: The algorithm provides an(2m1/2)-approximation for subadditive bidders.

Proof: Let OPT=(T1,..,Tk,Q1,...,Ql), where for each Ti, |Ti|>m1/2, and for each Qi, |Qi|≤m1/2. |OPT|= Sivi(Ti) + Sivi(Qi)

Case 1: Sivi(Ti) > Sivi(Qi)(“large” bundles contribute most of the social welfare)

Sivi(Ti) > |OPT|/2At most m1/2 bidders

get at least m1/2 items in OPT.

For the bidder i the bidder i that

maximizes vi(M), vi(M) > |OPT|/2m1/2.

Case 2: Sivi(Qi) ≥ Sivi(Ti)(“small” bundles contribute most of the

social welfare)

Sivi(Qi) ≥ |OPT|/2For each bidder i, there is an

item ci, such that: vi(ci) > vi(Qi) / m1/2.

(The CF property ensures that the sum of the values is larger than the value of

the whole bundle)

{ci}i is an allocation which assigns at most one item to

each bidder: |P| ≥ Sivi(ci) ≥ |OPT|/2m1/2.