Ippen nes osa 9-15-11

34
Clocks, Combs and OAWG MIT Optics and Quantum Electronics Erich P. Ippen Massachusetts Institute of Technology Cambridge, MA 02139 [email protected] NEOSA September 15, 2011

Transcript of Ippen nes osa 9-15-11

Page 1: Ippen nes osa 9-15-11

Clocks, Combs and OAWG

MIT Optics and Quantum Electronics

Erich P. Ippen

Massachusetts Institute of TechnologyCambridge, MA 02139

[email protected]

NEOSASeptember 15, 2011

Page 2: Ippen nes osa 9-15-11

Outline

MIT Optics and Quantum Electronics

Femtosecond lasers – few cycle pulses

Carrier envelope phase control

Optical frequency combs

Arbitrary optical waveforms

Applications

Clocks

Precision sampling and timing

Page 3: Ippen nes osa 9-15-11

The 5-fs Ti:sapphire Laser

Kerr lens modelocking (KLM)Double-chirped mirrorsAll-solid state, prismless cavity

MIT Optics and Quantum Electronics

5 fs = less than 2 cyclesOctave-spanning spectrum

Page 4: Ippen nes osa 9-15-11

Under Each Pulse is a Short Waveform

2nGL/c

The electric field waveform slips under the envelope from pulse to pulse – if group delay and phase delay differ.

MIT Optics and Quantum Electronics

Carrier-envelope phase slip

-80

-70

-60

-50

-40

-30

-20

RF

po

we

r sp

ect

rum

(d

Bm

)

200150100500

Frequency (MHz)

RBW: 100 kHz

fCE fR - fCE

BBO

570 nmfilter

PBS

RFspectrumanalyzer

PMT

Second harmonic generation

Page 5: Ippen nes osa 9-15-11

Control Over the Optical Phase

Carrier-envelope phase stabilization

An optical clockwork !

MIT Optics and Quantum Electronics

The optical frequency is an exact multiple of the pulse rep-rate.

Page 6: Ippen nes osa 9-15-11

A Clock

an oscillator a clockwork

Pendulum - Christiaan Huygens 1656

Chronometer - John Harrison (H4) 1761 (10-6 ~ 1 sec/ 9 days )

Quartz - W. Marrison, Bell Labs, 1928 (10-8 ~ 1 sec/3yrs )

Cesium atom - 1955 (10-10 ~ 1sec/300yrs)

Hg ion – 5x10-18 ~ 10sec since big bang

Atomic fountain - NIST-F1 (1.7x10-15 ~ 1sec/20Myrs)

and

MIT Optics and Quantum Electronics

Page 7: Ippen nes osa 9-15-11

From the 9.192 GHz Cs frequency standard to the 456 THz (657nm) Ca transition

Clockwork by Frequency Multiplication

1999

10-14 accuracy

MIT Optics and Quantum Electronics

10 lasers8 phase-lock loops

Page 8: Ippen nes osa 9-15-11

The Clockwork in the Frequency Domain

2 1 1g g

1mc mc f f f

2n L 2 L2f

n

MIT Optics and Quantum Electronics

d

dt

lasermodes

exactmultiples

of frep

1f 2f

repg

cf2n L

12f

2nd harmonics

f

1f-to-2f frequency locking

Octave-spanning frequency comb

This locks the rep rate to the optical frequency. Still need an optical reference.

Page 9: Ippen nes osa 9-15-11

Locking to the 3.39m HeNe Reference via DFG

g

c2n L m

g

mcf

2n L

He-Ne/CH4

Laser

3.39m

TransportableStability ~ 10-14

Difference frequency generation in PPLN

1f 2fDFG

2 1 rep reff f mf f

refref

c 3.39 mf

MIT Optics and Quantum Electronics

Page 10: Ippen nes osa 9-15-11

A Portable Optical Frequency Reference

Monolithic“sitall / zerodur”

resonator

• Compact• Ultrastable (< 10-14)• Transportable

Phase- locked He-Ne laser

3.39 m output

MIT Optics and Quantum Electronics

Mikhail Gubin, Lebedev Institute

Methane-stabilized He-Ne Laser: = 3.39m

Page 11: Ippen nes osa 9-15-11

L

1GHz Ti:sapphire Laser Frequency Comb

MIT Optics and Quantum Electronics

CEO locked

Frequency referenced

• 1f-to-2f in LBO

• CH4- stabilized HeNe

Page 12: Ippen nes osa 9-15-11

Optical Arbitrary Waveform Generation(OAWG)

MIT Optics and Quantum Electronics

Amplitudes and phases of all these frequencies are now determined. How about:

Page 13: Ippen nes osa 9-15-11

Completely Arbitrary Waveforms

G

ncf

2n L

G

mcf

2n L

G

cf

2n L

Fast modulator array

Spectrum lockedto “absolute” grid

Arbitraryelectrical field

waveform !

MIT Optics and Quantum Electronics

Pulse-to-pulseAM & PM

f

t

Arbitraryspectrum

Page 14: Ippen nes osa 9-15-11

Optical Arbitrary Waveform Generation

Sufficiently complicated temporally varying spectral phase masks create encoded optical signals.

Dispersion matchedgrating-lens pairs

Grating-lens pairs withphased mask inserted

The basic idea (Heritage and Weiner)

• A grating disperses the broad spectrum of an ultrashort pulse.• A phase and amplitude mask is inserted into the Fourier plane.• A second grating recombines the modified spectrum into a “shaped” waveform.

The advanced integrated version (UC Davis)

AWG1 AWG2

Phase modulators

IN OUT

Bond pads

Delay lines

AWG1 AWG2

Phase modulators

IN OUT

Bond pads

Delay lines

Modulatorarray

ArrayedWaveguide

Grating

In current technology, a small band of frequencies passes through each modulator element.

MIT Optics and Quantum Electronics

Page 15: Ippen nes osa 9-15-11

InP Encoder: 10channel

14.2 mm

MIT Optics and Quantum Electronics

UC DavisS.J. Ben Yoo et al.

Time (20ps/div)Time (20ps/div)

Trial output waveforms

10.7

mm

PMAM

Page 16: Ippen nes osa 9-15-11

Packaged InP OAWG(10 Ch AM+ 10 Ch PM) x 10 GHz

MIT Optics and Quantum Electronics

InPhi & UC Davis

Page 17: Ippen nes osa 9-15-11

1.5cm DCM11G

1% Inverse Gain OCDCM11G

1.5cm DCM11G

2.28mm Ti:Sa

5.5 GHz

1.5cm DCM11G

1% Inverse Gain OCDCM11G

1.5cm DCM11G 2.28mm Ti:Sa

3.3 GHz

10 GHz0.75cm

DCM11G

1% Inverse Gain OCDCM11G

0.75cm DCM11G

2.28mm Ti:Sa

Route to 10 GHz

• Precise dispersion compensation • Gain flattening• Optimized output mirror•Tight focusing; low loss

MIT Optics and Quantum Electronics

Page 18: Ippen nes osa 9-15-11

Mode Matching

Optics

Balanced Detector

Brewster Plate

PBS

λ/4

4%BS

Loop Filter

Piezo Driver

Output10xf

Piezo

ML Laser

LaserRep Rate: f

Super-invar

Hänsch-Couillaudlocking method

• F = 156 => 30dB sidemode suppression• F = 2100 => 55 dB sidemode suppression

J. Chen et al. Opt.Lett.32, 1556, 2007

MIT Optics and Quantum Electronics

Alternate Route: 10 x Rep-Rate Multiplication by Filtering

-70

-60

-50

-40

-30

-20

RF

Spectr

a (

dB

m)

1086420

10x F = 2100

Page 19: Ippen nes osa 9-15-11

MIT Optics and Quantum Electronics Group

+d1

+d2

frep

2frep

2frep

4frep

Interleaver 1

frequency comb

f

f

f

tTR

t

t

frep

pulse train

4frepTR/4

Interleaver 2

Rep Rate Multiplication withMonolithically Integrated Interleavers

19

2 4 6 8 10

-60

-50

-40

-30

-20

-10

0

Frequency (GHz)

Tra

nsm

issi

on

(d

B)

c=50%idealc = 60%

• Thermal tuning for optimizing• delays• coupling coefficients

• Side-mode suppression limited by• offsets in coupling coefficients• waveguide dispersion

M. Sander et al, CLEO 2011: CThY5

Page 20: Ippen nes osa 9-15-11

GHz Er:Fiber Laser Technology

MIT Optics and Quantum Electronics

Page 21: Ippen nes osa 9-15-11

Wider Goal: Two Octaves of Frequency Comb

Ti:sapphire Er/Yb glass/fiber

0.5 m 1.0 m 1.5 m 2.0 m

3.39 m /2

f-to-2f + DFG f-to-2f + DFG

repg

cf 10GHz2n L

• More power per comb line• Facilitates demultiplexing via AWG

HeNe-CH4

3.39mreference for DFG

MIT Optics and Quantum Electronics

Page 22: Ippen nes osa 9-15-11

22

1-GHz Er-doped Fiber Laser

121x94x33mm3

Poutput = 27.4 mW

Wintracav = 283 pJ

Ppump = 380 mW

967.1 967.7-100

-80

-60

-40

-20

0

frequency (MHz)

a) b)

c) d)

1 2 3 4 5 6 7 8 9 10-70

-60

-50

-40

-30

-20

-10

0

frequency (GHz)

inte

nsi

ty (

dB

m)

1540 1560 1580 16000

0.2

0.4

0.6

0.8

1

wavelength (nm)

inte

nsi

ty (

a.u

.)

17.5nm

sech2 fit

measured

-500 0 5000

2

4

6

8

time delay (fs)

IAC

(a.u

.)

1.54x187fs

187 fs pulses17.5 nm BW

MIT Optics and Quantum Electronics

SBR

Partial Reflector OC 10%

OutputErbium Fiber

(92mm)

FC/PC connector

WDM

977 nm

SMF28e(11mm)

Page 23: Ippen nes osa 9-15-11

Integrated Femtosecond Waveguide Laser

4 cm 5cm10% out

outputLoop: 16 cmSBRpump

1520 1550 1580

-2000

0

2000

80

90

wavelength (nm)

a)

b)

refle

ctan

ce (

%)

disp

ersi

on (

fs2 )

70

100

4 cm 5cm10% out

outputLoop: 16 cmSBRpump

1520 1550 1580

-2000

0

2000

80

90

wavelength (nm)

a)

b)

refle

ctan

ce (

%)

disp

ersi

on (

fs2 )

70

100

4 cm 5cm

10% outoutputLoop: 16 cmSBRpump

• Integrated gain + dispersion compensation• Integrated pump coupling• Integrated loop mirror/output coupler• Butt-coupled SBR

44x18 mm2

• 400 MHz rep rate• 440 fs pulse duraton

MIT Optics and Quantum Electronics

Page 24: Ippen nes osa 9-15-11

MIT Optics and Quantum Electronics

• High power femtosecond amplifier• Octave-spanning continuum generation: = 1m - 2 m

1.55 m oscillator1 GHz, 200fs, 20mW

Output100fs2 W

PC

SMFPre-chirp Fiber

HNLFISO

Pre-Amplifier

PC ISO WDM

10W Raman Fiber Laser

LiekkiEr-doped Fiber

SMFPost-chirp

1480nm PUMP

Lens

980 nm

LiekkiEr-doped Fiber

(83 mm)PUMP

ISO

980 nmCollimator

DichroicLens Lens

SBROC(5%)

PZT

AOM

Lens

LoopFilter

~

PD

Amp

BPF

LO

Feedback Control Electronics

DFG

HeNe

SHG(f-2f)

LoopFilter

~

PD

Amp

BPF

LO

Feedback Control Electronics

Positive dispersionhigh power amplifier

1 GHz Er-Fiber Comb

D. Chao et al, to be published

Page 25: Ippen nes osa 9-15-11

1 GHz Octave-Spanning 1µm-2µm Continuum

MIT Optics and Quantum Electronics

1012nm7.09mW

2024nm65.37mW

1 GHz Source

1 GHz Supercontinuum

1082nm8.56mW

1590nm47.02mW

1f-2fDFG

Page 26: Ippen nes osa 9-15-11

• High field and coherent control science

• Optical coherence tomography

• Ultrahigh-resolution 3-D LADAR imaging

• Multi-dimensional spectroscopic sensing

• Bistatic LADAR

• Novel coherent optical communications

• Impairment avoidance in fiber communications

Some Applications

MIT Optics and Quantum Electronics

Page 27: Ippen nes osa 9-15-11

Application: Photonic analog –to- digital conversion

• Amplitude fluctuations of sampling pulse can be cancelled by balanced detection

• Resolution and dynamic range limited by timing jitter

• Modelocked lasers can achieve quantum-limited jitter

High Resolution Optical Sampling

MIT Optics and Quantum Electronics

optical sampling pulseI(t)

voltage waveformV(t)

timing jitter

V(t)

E-O Modulator

• Optical pulses sample analog signal on an electro-optical modulator

voltage waveform

Page 28: Ippen nes osa 9-15-11

Precision Sampling for ADC

G.C. Valley, Opt.Exp. 15, 1955 (2007)R. H. Walden IEEE J.Sel.Areas in Comm 17, 539 (1999)

ADC limited by timing jitter in sampler

MIT Optics and Quantum Electronics

The Walden Wall

Page 29: Ippen nes osa 9-15-11

• 4mm x 4mm chip

•20 HIC ring filters with 8 m radius, 20 nm FSR

• SiGe detectors with 2 GHz BW, 100 nW NEP

• Analog Si modulator bandwidth 50 GHz

• Ultra Low-jitter direct optical sampling

Kaertner, Ippen, Hoyt, Smith, Ram, MIT Lincoln Lab

40 Gs/s 8-bit Optical Bit Interleaved ADC

MIT Optics and Quantum Electronics

Page 30: Ippen nes osa 9-15-11

Synchronization of a Large Scale X-Ray FEL

MIT Optics and Quantum Electronics

Kim et al., MIT/DESY

Page 31: Ippen nes osa 9-15-11

Acknowledgments

Andrew Benedick

Hyunil Byun

Jeff Chen

David Chao

Jonathan Morse

Michelle Sander

Jason Sickler

Franz Kärtner

MIT Optics and Quantum Electronics

Noah Chang

Jung-Won

Kim

Page 32: Ippen nes osa 9-15-11

-50 -40 -30 -20 -10 0 10 20 30 40 500

0.5

Frequency (GHz)

Spectral Domain

Inte

nsi

ty

-50 -40 -30 -20 -10 0 10 20 30 40 50

-3

-2

-1

0

1

2

3

ph

ase

(ra

ds)

-100 -80 -60 -40 -20 0 20 40 60 80 1000

2000

4000

6000

8000

10000

12000

time (ps)

Inte

nsi

ty

Comparison of Chirped vs. Unchirped pulse

Chirp

No Chirp

-50 -40 -30 -20 -10 0 10 20 30 40 50

-3

-2

-1

0

1

2

3

Time (ps)

ph

ase

(ra

ds)

temporal phase

-50 -40 -30 -20 -10 0 10 20 30 40 500

500

1000

1500

2000

2500

time (ps)

Time Domain

Inte

nsi

ty

-50 -40 -30 -20 -10 0 10 20 30 40 50-100

-80

-60

-40

-20

0

20

40

60

80

100

Ch

irp

(G

Hz)

exp(-(n/3.5355)8) apodization, 2p radians of phase across spectrum

• 10 x 10GHz (10ps pulses)• Supergaussian amplitude apodized• 2p quadratic phase• Chirp over timeslot - 100GHz/100ps

Linearly Chirped Waveform – 10 Modes

Spectral domain Time domain – chirped pulse

Phase vs. time

Chirp

Amplitude

Initial vs. chirped pulse

MIT Optics and Quantum Electronics

Theory

Page 33: Ippen nes osa 9-15-11

100 x 10GHz (1ps pulses), Supergaussian amplitude apodized27p quadratic phaseChirp over timeslot - 1THz/100ps

Linearly Chirped Waveform – 100 Modes

-500 -400 -300 -200 -100 0 100 200 300 400 5000

0.5

Frequency (GHz)

Spectral Domain

Inte

nsity

-500 -400 -300 -200 -100 0 100 200 300 400 500

-3

-2

-1

0

1

2

3

phas

e (r

ads)

-100 -80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14x 10

5

time (ps)

Inte

nsity

Comparison of Chirped vs. Unchirped pulse

Chirp

No Chirp

-50 -40 -30 -20 -10 0 10 20 30 40 50

-3

-2

-1

0

1

2

3

time (ps)

phas

e (r

ads)

temporal phase

-50 -40 -30 -20 -10 0 10 20 30 40 500

5000

10000

15000

time (ps)

Time Domain

Inte

nsity

-50 -40 -30 -20 -10 0 10 20 30 40 50-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Chi

rp (

GH

z)

exp(-(n/1490.712)10) apodization, 27p radians of phase across spectrumSpectral domain Time domain – chirped pulse

Phase vs. time

Chirp

Amplitude

Initial vs. chirped pulse

MIT Optics and Quantum Electronics

Page 34: Ippen nes osa 9-15-11

Linearly Chirped Waveform 10-Modes

-50 0 500

0.2

0.4

0.6

0.8

1

Inte

nsity

(au

)

-50 0 50-3

-2

-1

0

1

2

3

Time (ps)

Pha

se (

rad)

Blue Curve – Target Intensity Black Curve -- Measured IntensityBlue dots – Target PhaseRed Curve – Measured Phase

Circles – Target Intensity Black Stems -- Measured Intensity Blue X – Target PhaseRed Dots – Measured Phase

-50 0 500

0.2

0.4

0.6

0.8

1

Frequency (GHz)In

tens

ity (

au)

-50 0 50-3

-2

-1

0

1

2

3

Pha

se (

rad)

MIT Optics and Quantum Electronics

Experiment