IPN(SIN) Figure 3 - CHERICcheric.org/PDF/PK/PK29/PK29-1-0001.pdf · 2005. 1. 27. · 1000 kgf/cm2...

7
Polymer(Korea), Vol. 29, No. 1, pp 1-7, 2005 / 1 Ê ' * / / 4 1. Æ 1 2. LSQ¿Û# »# k# .V# ®k 2 3. Â0Û# LSQ# 4jê# ²# «Û 4 4. Z## 7 1.# g«# ¾®ê 6Úæ V¦ÂÆ, IPN(interpenetrating polymer net- works) 1,2 ¦ V Ê® V¦ 6Úæ® W ¿Ò &®ê Ù² 6Úæ jb2V vk 6Úæ® W ¿Ú 3W ®Ê IPN V¦ 6Úæ® jb2Ò R n Þ:. IPNR 6Úæ j b2® gZ vk 6Úæ V¦ 6Úæ® ¿ÎÆ Ê ê semi-IPN² ÖÊÆ i ®N® IPN² Ú®r:(Figure 1). IPN® + ¦ V¦ 6Úæ® networkÊ W² V Þ ¢& 3nêÆ Ê W î(physical entanglement) ¢& ¦ V¦ 6Úæê r² Ún  6 :¢® î:. 1) V¦ 6Úæ® ¿²r V¦ 6Úæ® R 6Úæ j b2® ®B, V¦ 6Úæ® ÓÞ, ÿr, J î6 6Úæ jb2® +Î ® þR ç² (amphiphilicity) JÎ:. 2) IPN® þJ²ê ¿Rk g ¿ÆÊ® ( ¿~, « {, _:ã, ÿ:, V¦V) G® ² Æ^Ê Vû®Æ 6 Úæ jb2, j³ Kg¿ê B ²Þ kr þJ²ê V ¦ ÂÆ Ê® W î¢& W&Þ vr:. 1960V Wasserman& 3 ®Ê ¦ r Ê® v ® ª¿Ê W² V Þê catenane(Figure 1)Ê ¿r Ê IPN V¦ 6Úæ® W V¦ ÖÚÊ ® Ê>ê Ù& ®B polymeric catenane® r¦² 1960 &Ö r²n:. IPN semi-IPN ÂÆ v² "ê Òc r²n Þî IPN® ÿÒ î¢ ÿ² Ù 1960 Millar V 4 r²² JúFb/ j&úv® homo- / Lqwhushqhwudwlqj#Sro|phu#Qhwzrun+LSQ,Ì#øôQ#[á+#-#Â## |ë # -<F< Å^5< Pruskrorj|#Irupdwlrq#dqg#Dssolfdwlrq#ri## Lqwhushqhwudwlqj#Sro|phu#Qhwzrun#+LSQ,#Pdwhuldov# Vxqj#Fkxo#Nlp Department of Chemical and Biomolecular Engineering, KAIST 373-1 Guseongdong, Yuseong-gu, Daejeon,305-701, Korea 5¨Ü ¾®ê 6Úæ V¦ÂÆ(IPN) ê V¦ 6Úæ® jb2Ò6 R n Þ:. IPN® Æ + g® ®îê IPN ¿ g þJ²® Æ^Ê Vû®:ê f² n§ã Ú ã® VWÎ Â& Ò þJ²® Æ^Ê Vû®6 Òr îÎN ® Ú n Þ6 Fã (co-continuous phase) n Þ:. B ®î® gê² + IPN ÂÆ& Ê®ê V¦ÂÆ Ê® W î¢& ²Þ kr þJ²ê RZ ®& V Ê ®  ê:ê fÊ:. ²n J^R ân JúFb® ¿ IPN k2² ®Ê ²Ê& ²nR ân ªÎÊ KÊ®â n6 ÊB² ²ÊÊ n² ^· W¿ JÎ:. IPN ¿2 n§~, n§«{, V¦V G ª2r ân JúFb ªÎ® ÂÒ ª2ú6 Ê& Î ^· W¿® ªÒ F®V:. Abstract: Interpenetrating polymer network (PN) is a mixture of network polymers. The characteristics of IPN material is the control of morphology during the IPN synthesis. By controlling the relative kinetics of chemical reaction (as well as gellation) and phase separation, the morphology of IPN can be controlled to obtain materials with nano-scale domain and also the co-continuous phase. Other important advantage is the fact that the morphology is permanent due to the presence of the physical interlocking between the networks. The combination of hydrophilic polyurethane and hydrophobic polystyrene in IPN form provides enhanced blood compatibility due to the co-existence of the hydrophilic and hydrophobic domains in nano-scale on the surface. The reaction temperature, reaction pressure and the degree of crosslinking were varied during the IPN synthesis and the morphology and blood compatibility of the resulting IPN materials were studied. Keywords: IPN, phase separation, morphology formation, blood compatibility. / To whom correspondence should be addressed. E-mail: [email protected]

Transcript of IPN(SIN) Figure 3 - CHERICcheric.org/PDF/PK/PK29/PK29-1-0001.pdf · 2005. 1. 27. · 1000 kgf/cm2...

  • Demo

    Polymer(Korea), Vol. 29, No. 1, pp 1-7, 2005 �

    1

    ���� �

    ��

    1. �� 1

    2. ��������������� 2

    3. ������� ����������������� 4

    4. ��� � 7

    1.����

    �� ���� ��� ����, IPN(interpenetrating polymer net-

    works)�1,2 � �� ��� �� ���� ��� ���� ���

    ��� ��� ���� �� ���� ��� ����� ��

    �� IPN� �� ���� ���� � � ��. IPN� ��� �

    ��� �� ��� �� ���� �� ���� ���� �

    � semi-IPN�� ��� �� ��� IPN�� ����(Figure 1).

    IPN� ��� � �� ���� network� ����� �� �

    � ��� ����� � ��� ��(physical entanglement)���

    � �� ���� �� ���� �� �� ��� ����.

    1) �� ���� ����� �� ���� ��� ��� �

    ��� ��� ����, �� ���� ����, ����, ���

    � ���� ��� ���� �� ��� ���� �� ��

    � (amphiphilicity)� ��.

    2) IPN� ����� ���� � ����� ��(����, �

    �, ����, ��, ����) �� ���� ��� ���� �

    �� ���, �� ������ �� �� ��� ����� �

    � �� ��� ��� ����� ��� ����.

    1960�� Wasserman�3 �� � � ��� �� �� ����

    ����� �� �� catenane(Figure 1)� ��� �� IPN� ��

    ���� � �� ��� ��� ��� �� ���� polymeric

    catenane� ���� 1960� ��� ����. IPN �� semi-IPN

    ��� ��� ��� � ��� ��� IPN� �� � �

    �� �� 1960� Millar�4 ��� �����/������ homo-

    ��������������������������������������������

    �����

    ����������������

    ��������������������������������

    �����������������������������������������

    �������������

    Department of Chemical and Biomolecular Engineering, KAIST 373-1 Guseongdong, Yuseong-gu, Daejeon,305-701, Korea

    ��� �� ���� ��� ����(IPN)� �� ���� ����� � � ��. IPN� � �� �� ��� IPN �� � ����� ��� ����� ��� ����� � �� ��� ��� ��� �� ����� ��� ���� ��� ���� ��� ���� �� � �� ���� �(co-continuous phase)� �� � ��. � ��� �� ��� IPN ��� ��� ���� ��� ��� ����� �� ��� ����� �� ��� ��� ��� ���� ���. ��� ������ �� ������ �� IPN ��� �� ��� ���� �� ��� ��� �� ��� ��� ��� � ���� ��. IPN ��� ����, ����, ���� �� ���� �� ����� ��� ��� ����� �� �� � ���� ��� �����. Abstract:�Interpenetrating polymer network (PN) is a mixture of network polymers. The characteristics of IPN material is the control of morphology during the IPN synthesis. By controlling the relative kinetics of chemical reaction (as well as gellation) and phase separation, the morphology of IPN can be controlled to obtain materials with nano-scale domain and also the co-continuous phase. Other important advantage is the fact that the morphology is permanent due to the presence of the physical interlocking between the networks. The combination of hydrophilic polyurethane and hydrophobic polystyrene in IPN form provides enhanced blood compatibility due to the co-existence of the hydrophilic and hydrophobic domains in nano-scale on the surface. The reaction temperature, reaction pressure and the degree of crosslinking were varied during the IPN synthesis and the morphology and blood compatibility of the resulting IPN materials were studied. Keywords: IPN, phase separation, morphology formation, blood compatibility.

    †To whom correspondence should be addressed. E-mail: [email protected]

  • 2� ����

    ���, �29� �1�, 2005� �

    IPN�� ��� ����� �� �� ��� ��� �� �� PS

    � �� ��� ���/��� ��� ���� ��(sequential)�

    � ��� ���. � �� ��� Sequential IPN,5 Latex IPN,6

    Simultaneous IPN ��7 1960� � ���� ��� IPN,8 ��

    �� ��� IPN,9 ��-�� IPN,10 IPN RIM ��,11 IPN ��

    ,12 IPN NLO�,13 � ��� IPN��,14 ���� ����

    � �� IPN ��15 ��� ����(Table 1).

    IPN� �� � �� ��� �� ��(homogeneous), � �

    �(heterogeneous) IPN�� ���� �� IPN� �� � �

    � ��� �� ��� ��� ��� ��� � ��� � �

    �� � �� IPN� � �� �� �� ���� ���� �

    � ��� �� �� ��� ��� ��� ��� � ���

    �� ���. � �� ��� �� ��� ��� �� �

    �� IPN(homo-IPN), ��� IPN(hetero-IPN)�� �� � ���

    � �� IPN� � ��� �� ��� � ��� �� ���

    ��� ���� ��� ��� � �� IPN� �� ���

    IPN� � �� ��� �� ��� ��(��-��, ��-���,

    ��-�� �)� �� �� ���� ���� ��� �����

    �� ��� ���. � �� ��� �� ���� IPN(SIN;

    simultaneous IPN)� ��� IPN(SIPN; sequential IPN)�� ��

    � ��. SIN� � �� ��� �� ���� �� ��� �� �

    ���� �� ��� ���� ���� �� ���� ����

    ���� ���� ��� �� ��� ���� �� �� RIM,

    SMC/BMC, Pultrusion �� � �� ��� �� ��� � ��.

    SIPN� �� ��� ��� ����� 1�� ���� � ��

    ��� ��� ���� ���� 1� ��� ���� �� ��

    �� � 2�� ��� ���� 1� ���� � �� ��, ��

    ��� ��� 2�� �� ��� �� ��� ���� �

    �� �� �� ����� � ��, �� �� ��� � �

    ��. � ��� � �� ��� ��� ���� ���� ��

    �� �� �� ������ ���� ��� IPN(Latex IPN)�

    � ��� ���� � �, �� � �� ��� �� ��

    �� ��� ���� � ��, �� ��� ��� ���

    IPN(Thermoplastic IPN), � �� �� ��� �� ���� IPN �

    � � �� �� ��� � ��� IPN(Gradient IPN) ��

    ��.

    2. ���������������� �

    � �� ���� 1� ��� ��� � ��� � ��

    ��� ���� ��� �� ���� ����� � �� �

    �� ����� ���� ��� �� �� � ��� ��

    ��. Figure 2(a)� A�(1� ��� P1� 2� �� M2� ���

    50/50�� ��� �� �)�� ���� M2� ����� P2�

    ���� ��� ��� ���� ���� heterogeneous ���

    ����������� � �������� ���� ��������� �

    Figure 1. Schematic diagram of polymer blend, semi-IPN, IPN, catenane.

    Table 1. Historical Background of IPN

    E vent F irst investigators Y ear V ulcanization of rubber G oodyear 1844 IPN type structure A ylsw orth 1914 Polym er structure elucidated S taudinger 1920 G raft copolym ers O strom islensky 1927 In terpenetrating polym er netw orks S taudinger and H utchinson 1951 B lock copolym ers D unn and M elville 1952 H IPS and A B S A m os,M cC urdy,and M cIntire 1954 B lock copolym er surfactants L unsted 1954 H om o-IPN s M illar 1960 T herm oplastic elastom ers H olden and M ilkovich 1966 A B crosslinked copolym ers B am ford ,D yson,and E astm ond 1967 Sequential IPN s Sperling and Friedm an 1969 L atex IPN s Frisch ,K lem pner,and Frisch 1969 S im ultaneous in terpenetrating netw orks Sperling and A rnts 1971 IPN nom enclature Sperling 1974 T herm oplastic IPN s D avison and G ergen 1977 H igh Pressure IPN s D . S . L ee and S . C . K im 1984 H ydrophilic-H ydrophonic IPN s J. H . L ee and S . C . K im 1986 IPN R IM J. H . K im and S . C . K im 1987 IPN M em branes Y . K . L ee and S . C . K im 1988 IPN N L O M aterials K . I. K im and S . C . K im 1992 B lood C om patib le IPN s Y . C . Shin and S . C . K im 1994 IPN w ith m orphology spectrum Y . S . K im and S . C . K im 1999

    (a)

    (c�conversion Cg�gel conversion)

    (b)

    Figure 2. Change of phase diagram in (a) sequential polymerization and (b) simultaneous polymerization.

    heterogeneous

    homogeneous

  • Interpenetrating Polymer Network(IPN)� ���� ��� � �� 3�

    Polymer(Korea), Vol. 29, No. 1, 2005 �

    � � ��� � ��� ����. ��� � ��� ���

    �� ���� ���

    ����� �� �� ���

    ���� 3�� ���� ���� �� ���� 1� ���

    ����� �� ����� ��� � � ��� � ����

    ��� � ���� ����� �� ��. �� ����, ���

    �� �� ��� ��� � � �� ��� ����� ���

    �� ��� ��� 3�� ���� ���� ��(gel point)�

    ���� ����� ��� ��.

    �� �� ���� � �� �� ��� ���� ����

    ����� ���� ��� ���� ��� �� ����� �

    ��� ���� � �� ���� � ���� � ��

    ��-���. ��-�� �� �� ��� ���� ����

    � �� �� �� �� �� ��� ����. ��� ���

    � � �� ���� ���� ���� ���� ��� ��

    � �� ��� ����� ��, ��� ��� ��� ��� �

    � �� � �� �� ��. Figure 2(b)�� ���� T��

    ��� � �� ��� c1��� �� ��� ��� ���

    c2� ���� � �� � ��� ����� ��� ���

    ��� ���� ���� 3�� ���� ��� cg� �� �

    �� � ��� ���.

    �� �� IPN(SIN)� �� �� � �� ��� ��� ��

    �� Figure 3� ��. ��� y�� � ��� �� ��� ��

    ��� ��� �� �� �� �� 100%, � ��� ��� �

    ��� �� 100% ��� A� 100% ��� B� � ��� ��

    � �� 0%� ���� ����. � � ��� ��� �� �

    �� � �� � ��� ��� � �� ��� A� ��� ���

    B� � �� ��(A-rich phase), � �� ��� �� ��� B�

    ��� ��� A� � �� ��(B-rich phase) ��� ����. �

    � ����� ���� �� ��.

    Aavg

    AA

    1

    1100mixingofdegree

    x

    x

    −−=

    ��� xAA� A-rich phase� A� ����, xAavg� �� �� A

    � ����� ����.

    �� ����� ��� ��(Figure 3 (a)) �� ���� ���

    �� ���� ���� ���� � ��� ���� ��� �

    �� ���� ��� ��. � �� ���� ��� IPN� �

    �� UCST(upper critical solution temperature) �� ���� ��

    ��� �� �� �� ���� ���� ��� �� ����

    �� � � �� ��� ����. ���� ���� 3��

    ���� ��� �� ��� ��� � � ��� ���.

    ����� ��� ��(Figure 3 (b)) ���� IPN�� ��

    � ���� ���� �� � �� ���� ��� �� �

    ��� ���� ��� ��� � �� ��� �� � ��

    �� ��� ��� ����� ���.

    �� ��� ���(Figure 3 (c)) ���� ���� ���

    ���� ��� �� �� ��� ��� �� ���

    �� � ��� � ���� ���� ���� ���

    �� ���.

    ��� ��� ��(Figure 3 (d)) 3�� ���� � ��

    � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

    (a) (b)

    � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

    (c) (d) �

    Figure 3. Factors affecting IPN synthesis: (a) synthesis temperature, (b) synthesis pressure, (c) catalyst concentration, and (d) crosslinkg agent concentration.

    Conversion Cg

    ���

    Cg

    g

    Increasingtemperature

    T1

    T2

    0

    0

    Cg

    g

    Increasingtemperature

    T1

    T2

    0

    0

    Cg

    g

    Increasingtemperature

    T1

    T2

    0

    0

    Conversion Cg

    ���

    g

    Increasingpressure

    P2

    P1

    0

    0

    g

    Increasingpressure

    P2

    P1

    0

    0

    g

    Increasingpressure

    P2

    P1

    0

    0

    Conversion

    ���

    � Cg1 Cg2 Conversion Cg

    ���

    �Cg

    g

    IncreasingCatalystconcentration C2

    C1

    0

    0

    C3

    Cg

    g

    IncreasingCatalystconcentration C2

    C1

    0

    0

    C3

    Cg

    g

    IncreasingCatalystconcentration C2

    C1

    0

    0

    C3

    Cg

    g

    T1

    T2

    0

    00

    Cg

    g

    T1

    T2

    0

    00

    Cg

    g

    T1

    T2

    0

    00

    Deg

    ree

    of m

    ixin

    g

    Deg

    ree

    of m

    ixin

    g D

    egre

    e of

    mix

    ing

    Deg

    ree

    of m

    ixin

    g

  • 4� ����

    ���, �29� �1�, 2005� �

    ��� ���� ��� ���� ���� �� �� � ��

    � ��� ��� ����� ��.

    3. ������� �����������������

    ��� ���� �� ���� � ��� ��� ��� �

    �� �� ��� ��� �� ��� �� �� �����

    IPN ��� �� � �� ��. ��� ��� ��� ���

    � �� ��� �� ��� ��� ��� �� ���

    ��, �� ��� �� ���� ��� �����

    �� �� �� ��� �� � ���(blood compatibility)

    � ����. �� ����� ��� ��-�� ��� ��

    �� ��� ��-�� ��� 50/50�� ��� ���

    ��� ����� ��� �� ���� � �� ��

    � � ��� ����� �� ����� ��� �� ��

    � ��, � �� ��� �� ��� ��� � ��� �

    � ��� ��� ��� � ��� � ��� ��-

    �� ��� ���� ���. IPN� ���� � ��� ��

    ����� ��� ����� ��� ��� ��� � ��

    � ��� ��-��� ��� � ��.

    ��� ��(��� ���)(PEG)� HDI(hexamethylene diisocya-

    nate)� ���� ��� ��� �� �����(PU)� ���/

    ��� ��� ��� �� �� �����(PS)� IPN� ��

    �� �� �� � ����, ����, ����� ���� ��

    � ����� ����� �� �� �� ����� ���

    � ���� ����. Figure 4� ��� PU/�� PS IPN�

    �����16 ���� �� ��� ��� ��� �����

    50 ��� -20 �� � ��� ���� ��� ��� 50 �

    �� ��� ��� ����� ��� 0�20 ��� ��� �

    �� ��� � �� ��� ��� ����

    � ���.

    Figure 4�� �� � �� � ��� SEM ��� � �

    ��� ��� �� PS ��� ��� -20 ��� ���

    IPN� 0.05 - 0.1 ��� ��� ����. �� �� � �

    � ��� Figure 5�� �� � �� �� ��� ���

    ����� �� � ���� ����.

    ����� 50, 20, 0 � IPN� ���� �� �� ��

    � �� �� ��� � pseudopod �� ��� ���

    -20 ��� ��� IPN� ��� ��� �� ��� ��

    �� ��� ��� ���.

    ����� �� ���� ��� �� �� � ����

    ---------- ��µ�

    20 � 0 � -20 �

    Figure 4. IPN tube for artificial blood vessel and SEM photographs of fracture surfaces of hydrophilic PU/hydrophobic PS IPN synthesized at various temperature.12

    -------- ��µ�

    1000 kgf/cm2 3000 kgf/cm2 5000 kgf/cm2

    (a)

    --------- ���µ�

    1000 kgf/cm2 3000 kgf/cm2 5000 kgf/cm2

    (b)�

    Figure 6. SEM photographs of (a) fracture surfaces of hydrophilic PU/ hydrophobic PS IPNs synthesized at various pressure from 1000 to 5000 kgf/cm2 and (b) the platelets adhered after 10 hours incubation in PRP on hydrophilic PU/hydrophobic PS IPNs synthesized at various pressure from 1000 to 5000 kgf/cm.2

    ------------------ ���µ�

    Figure 5. SEM photographs of the adhered platelets after 10 hours incubation in PRP(platelet rich plasma) on hydrophilic PU/hydrophobic PS IPN synthesized at various temperature. (a) 50 �, (b) 20 �, (c) 0 �, and (d) -20 �.

    ��� ���

    ��� ���

  • Interpenetrating Polymer Network(IPN)� ���� ��� � �� 5�

    Polymer(Korea), Vol. 29, No. 1, 2005 �

    ��(Figure 6)�17 �� ����� 5000 kg/cm3�� ��� IPN�

    � �� PS ��� ��� 0.05 ��� ��� ����

    �� �� � � ���� ��� ����. IPN �� � �

    ���� ���18 Figure 3(d)� ��� ��� ��� ��� �

    � ����� ���� 3�� ���� ��� ���� �

    ����� �� ��� � �� ��� ���� � ��

    ��� ����� �� � �� ��� ��-�� ��� �

    �� �� ���� � � ��. ��� PU ����� ���

    � ��� PEG� ���� ��� ��� ���(Mc)�

    800�� ��� � ��� �� PS ��� ���� ���

    DVB� �� ���� �� ��� ��� ���� 300��

    ��� � ��.

    Figure 7� ����� ���� ��� PU/�� PS IPN� �

    ���� � ���� ��� ��� ��� ��� ����

    800 IPN� �� � ��� ��� ��. � �� PS�

    ���� ��� ����� �� ��� ���� � �

    �� �� ���� � ��.

    ��� PU ��� PEO ���� ���� ��� PEO ���

    ���� �� �� ��(molecular cilia) ��� ��� ��

    ��� ��19 PEO� ���� 350�� 2,000�� ���� PEO

    ���� �� �� ��� DHMPEO(dihydroxyl methoy termi-

    nated PEO)� ���� �� PU/PS IPN �� �� PU� �� �

    ��� ����.

    PEO� ���� �� �� ��� DHMPEO� ���� ��

    �� ��� ��� IPN ��� � �� ��� ��� PEO �

    ��� ���� 2,000� �� �� ��� � �� �����

    + NCO(CH2)6OCNHO [CH2CH2O] CH3nPoly(ehtylene glacol)methylether (Mw ; 350,750, 2000)

    HDIcat.

    at 65 oCOCN (CH2)6

    O

    NHC [CH2CH2O] CH3O n

    IMPEO�

    CH3[CH2CH2O]NHC

    O

    (CH2)6OCN

    CH2OH

    CH2OH

    CH2OH

    +O n H5C2C

    IMPEO TMP(excess)

    (CH2)6

    O

    NHC [CH2CH2O] CH3CH2OCNH

    O

    +

    O nH5C2C

    HOH2C

    HOH2C

    DHMPEO Unreacted TMP�

    ���(Figure 8). ��� IPN600-0� ��� PU/�� PS IPN�

    � ��� PU� PEO ���� �� ���� IPN600-2K� ��

    � PEO ���� ���� 2000 ����. IPN600� ��� ��

    � ���� ��� PEG� ���� 600��� ��� ����

    �� ���� �� PEG� ���� ���.

    ��� PU� ���� ���� ���� PEG� ���� �

    ��� ���� ��� ��� ��� ��� ����� ��

    � ��� ��� ���� ����� ����� � ��� �

    �� �� �����(Figure 9).

    �� ��� � �� IPN �� �� ��� � ���

    ����� ����� �� � � �� ����� �� �

    �� ���� ��� �� �� � ���� �� �� ���

    � � ��� ��� ���� ��� ����. Figure 10�

    Figure 9�� � �� SEM��� � IPN ��� �� AFM

    ���� �� ��� �� ��� ��� ��� ��� �� �

    �� � ��� ��� �� SEM ��� ���� � �� �

    �� � 30�50 ���� ����.

    �� �� ��� �� �� ��� PU ��� ��� 350�2000

    � PEO� ���� � PU/PS IPN� � ���� ���

    ���������������µ�

    1800 1300 800

    (a)

    --------- ���µ�

    1800 1300 800

    (b)��

    Figure 7. SEM photographs of (a) fracture surfaces of hydrophilic PU/ hydrophobic PS IPNs with changing crosslinking density and (b) the pla-telets adhered after 10 hours incubation in PRP on hydrophilic PU/hydro-phobic PS IPNs with changing crosslinking density.

    ����������������������������µ

    IPN600-0 IPN600-350 �

    IPN600-750 IPN600-2K

    Figure 8. SEM photographs of fracture surface for PEO-grafted hydro-philic PU/hydrophobic PS IPNs with changing grafted PEO molecular weight.

    ���������������µ

    IPN1000-2k IPN600-2k IPN200-2k�

    Figure 9. SEM photographs of fracture surfaces of PEO-grafted (Mn �2000) hydrophilic PU/hydrophobic PS IPNs with changing crosslinking density.

  • 6� ����

    ���, �29� �1�, 2005� �

    �� � ����� ����� ��� ��� �� SEM

    ��� Figure 11, 12� ��. Figure 11� IPN600� ���� PEO

    ���� ���� 350�2000�� ������ ��� ��-�

    ��� ���� ��� ��� ��� � �� ��� ��

    PS� ��� PU ����� �� �����(PU600 series). �

    �� ���� ��-��� ��� IPN ��(IPN600 series)�

    � ��� �� �� �� � �� �� ��� ����

    PEO� ��� ���� 2000�� ������ � ���

    ��� � ��. Figure 12� PU ����� ��-� IPN�

    ���� ��� �� � �� �� �� Figure 9��

    �� ��� ��� ���� ���� ��� � ��

    � ��� �� � ��.

    �� � ���� �(PRP� 37 ��� 10�� ��)� �

    ����18 Figure 13� ��. ��� PU ����� ��, ��

    �� �� ��(PU600-0)�� �� �� �� ��� 14,151

    platelets/mm2�� ����� PEO� ���� 2000�� ��� �

    �(PU600-2K) 11530 platelets/mm2�� ����� � �

    � %� ���� 97%�� 76%� ����. �� ��� �

    �-�� ��� ��� PU/PS IPN� ���� ��� PU �

    ��� �� � �� ��� �� ��� ���� �� ��

    (IPN600-0)�� � �� ��� 11136 platelets/mm2� ��

    ����� PEO� ���� 2000�� ��� ��(IPN600-2K)�

    � 6212 platelets/mm2�� ����. � �� %� �� 73%�

    41%��. ��� ������ ���� ��� PEG� ���

    � 600�� 200�� ��� ����� �� ���� �� �

    Surface in air �

    � � � � �

    Surface in water� ��

    � � � � �

    IPN1000-2K� � IPN600-2K� � IPN200-2K��

    Figure 10. AFM images in air and water of surfaces of PEO-grafted (Mn�2000) hydrophilic PU/hydrophobic PS IPNs with changing crosslinking density.

    � �����������������������µ

    � � � � �

    PU600-0 IPN600��

    � � � �

    PU600-350� IPN 600-350

    � � � � PU600-750 IPN 600-750

    � � � � PU600-2 k IPN 600-2 k

    Figure 11. SEM photographs of the adhered platelets on PEO-grafted PU homopolymers and PEO-grafted hydrophilic PU/hydrophobic PS IPNs with changing grfted PEO molecular weight.

    � � � � � �

    PU1000-2k IPN1000-2k

    � � � � �

    PU600-2k IPN 600-2k

    � � �

    PU200-2k IPN200-2k Figure 12. SEM photographs of the adhered platelets on PEO-grafted (Mn�2000) PU homopolymers and PEO-grafted (Mn�2000) hydrophilic PU/hydrophobic PS IPNs with changing crosslinking density.

    �������������������������µ

  • Interpenetrating Polymer Network(IPN)� ���� ��� � �� 7�

    Polymer(Korea), Vol. 29, No. 1, 2005 �

    ���� ��� � �� ��� 2361 platelets/mm2� �

    �� %� 16%� ���.

    4. ��� ��

    IPN� � �� ��� �� ���� ���� ��� ���

    � �� ��� ����� ���� ���� �� ����

    �� ���, ����, ����� ��. IPN� �� � ���

    �� ��� ���� ����� ��� � �� ��� ��

    ��� � �� ��� ��� ��� ���� � � �� ��

    � ��� � ��. IPN� �� � ��� ����� ���� �

    �� � ��� ��(����� �� ��� � ��; reac-

    tion-induced phase separation) � ��� � �� ���� 3��

    ���� �� �� �� ���� ��� ��� ��� ��

    ��. 3�� ���� ��� gellation� �� ����� ��

    � ��� chemical-pinning�� ���. �� IPN� � �� �

    ��� ��� ��� ��� �� ��� ����� �� �

    �� ��� ��� ���.

    ����� ��� �� � �� ��, ��, �� ����

    � �� ��� ��� �� � ���� ��� ��� �

    � ����, ����. ���� ���� � ��� ����

    � �� ��� �� ���� ��� � � �� ����.

    ��� ���� �� ��� ��� ���� ��� ��

    ��� IPN ��� �� � ��� � �� ����� � ��

    �� ����.

    ��� PU� �� PS� IPN� ���� ����, ����,

    ����� ���� � ����� ��� ������ 30�50

    ���� ��� �� ���� ��. IPN� ����� ��

    � �� ��� �� �� � � ���� ���

    � ���� ��� ����� � ���� ���� �

    �� ��� 2000� PEO� ��� PU� ����� ����

    �� �� ��� �� � �� ��� �� � �

    �� ��� 2361 platelets/mm2, � �� ��� 16%��

    � � ��.

    ���� 1. S. C. Kim, “Interpenetrating Polymer Networks Materials”, Polymer

    Engineering II, Hee Joong Dang , p 453-493 (1997). 2. L. H. Sperling, Interpenetrating Polymer networks and Related Materials,

    Plenum Press, New York, 1981. 3. E. Wasserman, J. Amer. Chem. Soc., 82, 4433 ( 1960). 4. J. R. Millar, J. Chem. Soc., 1311 (1960). 5. L. H. Sperling and D. W. Friedman, J. Polym. Sci. A-2, 7, 425 (1969). 6. H. L. Frisch, D. Klempner, and K. C. Frisch, Polym. Lett., 7, 775 (1969). 7. L. H. Sperling and R. R. Arnts, J. Appl. Polym. Sci., 15, 2317 (1971). 8. S. Davison and W. P. Gergen, U.S.Pat. 4,015,103 (1977). 9. D. S. Lee and S. C. Kim, Macromolecules, 17, 2193 (1984). 10. J. H. Lee and S. C. Kim, Macromolecules, 19, 644 (1986). 11. J. H. Kim and S. C. Kim, Polym. Eng. Sci. J., 27, 1252 (1987). 12. Y. K. Lee and S. C. Kim, Polym. Bull., 20, 261 (1988). 13. K. I. Kim and S. C. Kim, Polym. Bull., 29, 293 (1992). 14. Y. C. Shin, D. K. Han, Y. H. Kim, and S. C. Kim, J. Biomater. Sci. Polym.

    Ed., 6, 195 (1994). 15. Y. S. Kim and S. C. Kim, Macromolecules, 32, 2334 (1999). 16. J. H. Kim and S. C. Kim, J. Biomat. Sci.-Polym. Ed., 14, 601 (2003). 17. M. J. Song, “Blood Compatibility of Hydrophilic PU and Hydrophobic PS

    IPNs”, Master Thesis, unpublished, 1996. 18. J. H. Kim and S. C. Kim, Biomaterials, 23, 9, 2015 (2002). 19. J. H. Kim and S. C. Kim, J. Biomat. Sci.-Polym. Ed., 11, 197 (2000). 20. J. H. Kim and S. C. Kim, Macromolecules, 36, 2867 (2003).

    (a)

    (b) �

    Figure 13. The number of the platelets adhered and the %-adhesion of the platelets adhered on PEO-grafted PU homopolymers and PEO-grafted hydrophilic PU/hydrophobic PS IPNs: (a) With changing the grafted PEO molecular weight and (b) with changing the crosslinking density.

    Pla

    tele

    t adh

    ered

    (m

    m)

    �����

    �����

    �����

    ����

    ������� �� ���� ���� ���

    x

    ����

    ���

    ��

    %-A

    dhes

    ion

    � ����� ���� ����

    x

    ����

    ���

    ��

    %-A

    dhes

    ion

    Pla

    tele

    t adh

    ered

    (m

    m)

    �����

    �����

    �����

    ����

    ������