Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse...

23
Ion Injector Design Ion Injector Design Andrew Seltzman

Transcript of Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse...

Page 1: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Ion Injector DesignIon Injector Design

Andrew Seltzman

Page 2: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

IEC Fusion Neutron IEC Fusion Neutron SourceSource

Construction in progress:

•Will fuse deuterium for 2.45MeV fast neutron production

•Requires 4 ion injectors positioned around reactor core for deuterium beam injection.

Page 3: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

ION Injector TypesION Injector Types

Filament (Thermionic emission)Filament (Thermionic emission) RF IonizationRF Ionization

ICP / Ohmic HeatingICP / Ohmic Heating ECRF / ICRFECRF / ICRF

Page 4: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Filament IonizationFilament Ionization

•Benefits

•Simplicity

•Size

•Low Cost

•Limitations

•Filament life

•Filament Sputtering

•Filament EvaporationHirsch Meeks ion injector

•Maximum beam current of 10mA at 12keV

Page 5: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

RF Ionization: ICPRF Ionization: ICP

University of Tokyo ICP ion source

Inductive coupling to plasma

Eddy currents resistively heat plasma

Resistance decreases with increasing temperature

•Upper limit on ICP plasma temperature

Page 6: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

RF Ionization ECRRF Ionization ECR

Institut für Atom- und Molekülphysik ECR ion source

•RF excitation of electrons/ions at their fundamental gyro frequency

•X-mode resonance for CP or LP wave

Electron cyclotron resonance heating of a plasma: more efficient then ICP

Page 7: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Injector Design OverviewInjector Design Overview RF ionizationRF ionization

Resonant RF coilResonant RF coil Minimum B trapping Minimum B trapping

External magnet External magnet yokeyoke

Electrostatic Electrostatic ExtractionExtraction Extractor coneExtractor cone DC biased RF coilDC biased RF coil

Expected Expected performance:performance: 5-20mA @ 15keV5-20mA @ 15keV

Page 8: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

RF Coil DesignRF Coil DesignModeled in NEC2

ECRF / ICP Frequency: 900MHz (33cm wavelength)

Coil Dimensions:

•5.5 turns

•1cm Diameter

•0.9cm height

Coil Impedance: 41.2+j166 Ohms @ 900MHz

Pi low pass matching networkMolybdenum RF coil:

•Lower sputtering coefficient (As compared to stainless steel)

•Higher conductivity

•Higher melting temperature

Page 9: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

RF Coil FieldsRF Coil FieldsEy,Ex RF Field:

Perpendicular to B

Excites ECRF Resonance

Ez RF Field:

Parallel to B

Useless

•Field tangential to B is greatest at coil center

Electron Gyro radii:

2.3mm for 1keV electron in 0.03T

•For electron gyro radii much smaller then coil diameter, electron sees well behaved linear field

Page 10: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Simple Mirror EquationSimple Mirror EquationConservation of energy

Conservation of angular momentum

Mirror Equation

Confinement time

Bmax, Bmin to be measured at surface of ionization cup

Boundary velocity

Page 11: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Magnetic YokeMagnetic Yoke

6 Cylindrical grade N48 rare earth magnets

•Centers positioned 27mm from injector axis

•25.4mm length 12.7mm diameter

Provides Magnetic trapping of heated electrons

Page 12: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Magnetic Field VectorsMagnetic Field Vectors

Axially symmetric near center

Page 13: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Magnetic Field Magnetic Field MagnitudesMagnitudes

-500

0

500

1000

1500

2000

2500

0 10 20 30 40 50

Distance from flange face mm

Fr

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

B(T

)

Z-field magnitude measured on axis

•Field will be reduced to bring 900MHZ ECRF resonance to center of RF coil

•Mu-metal shielding

Page 14: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Extractor FieldExtractor Field•Ionization Cup prevents current flow from biased antenna coil to sidewalls or rear of injector.

•Antenna coil bias: 0-15kV

•Extractor cone concentrates electric field on axis and assists in ion focusing.

•Extractor cone fabricated from 304L SS

•¼”height 7/8” base diameter

•0.1” aperture

Page 15: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Extractor FieldExtractor Field

Page 16: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

External ComponentsExternal Components

Bidirectional couplers / active detectors

Main ECRF Amplifier 240W @900MHz

Oscillator and mixer

Preamp

Page 17: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Injector TestingInjector Testing•Paschen discharge from biased standoffs

•High voltage feedthrough open air breakdown

•ICP excitation at 150MHz

Ion Injector Test bed

Page 18: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Paschen discharge

Discharge occurred at 8kV @ 30mTorr

Injector test bed was evacuated with a rotary vain vacuum pump.

Injector was connected to Hitek 3000 power supply: 0-35kV @ 75mA

Page 19: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

High voltage breakdownHigh voltage breakdown

•High voltage feedthrough breaks down at 17kV

•Final design will be de rated to 15kV and feedthroughs will be potted in silicone.

Page 20: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

ICP ExcitationICP Excitation

•Components

•FT-50R transceiver

•150MHZ 45W RF Amplifier

•-40dB bidirectional coupler

•Celwave active detector 1/40 (V/W)

•Matching network modified for 150MHz operation.

Page 21: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

ICP ExcitationICP ExcitationSuccessful ICP excitation at 150MHZ

•20W drive

•5W reflected (PI match designed for 900MHZ)

Page 22: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

Future ModificationsFuture Modifications

•Switch PI low pass matching network for Pi high pass network for better protection of RF amplifier.

•Modification of magnetic field configuration for ECRF resonance at 900MHz.

•Assembly of new 4.5W RF driver boards to feed main ECRF amplifier.

•Testing of extractor cone design.

•Measurement of deuterium beam current.

Page 23: Ion Injector Design Andrew Seltzman. IEC Fusion Neutron Source Construction in progress: Will fuse deuterium for 2.45MeV fast neutron production Requires.

QuestionsQuestions??

?