Investmech - T&M Seat Response Reconstruction

download Investmech - T&M Seat Response Reconstruction

of 26

Transcript of Investmech - T&M Seat Response Reconstruction

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    1/26

    Strain and acceleration measurement andanalysis for vehicle seat response

    reconstruction

    Dr. Michiel Heyns Pr.Eng.T: +27 12 664-7604

    C: +27 82 445-0510

    [email protected]

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    2/26

    Introduction

    • Objective: – To reduce weighted root-mean-square seat response of

    the driver and crew seats to specified limit:• Limited time - only 1 month

    • Limited resources – only four measurement opportunities on theGerotek test track

    • Could only change damping of the vehicle suspension – only 3days for this phase

    • Needed an approach using

     – Analytical modelling – optimize damper characteristics – Experimental response measurements

     – Laboratory testing and seat characteristic refinement

    2

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    3/26

    Method

    3

    Best damping

    • Non-linear time and state dependant transient equations – solve by fixed step Fourth Order Runge-Kutta

    • Response simulation with pseudo-random theoretical road profile

    • Measure vehicle responses

    • System ID and road profile reconstruction

    • Verify road profile accuracy by calculating responses and compare

    • Damping factor sensitivity analysis – optimal damping factor

    • Verify on the test track

    Seat weighted

    RMS

    • Select test track

    • Seat and seat mount response measurements

    • Test rig assembly

    • Reconstruct seat mount vibration in the laboratory

    • Iterative testing and seat modification to obtain required seat Weighted RMS

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    4/26

    Vehicle layout

    4

    The position of the

    centre of gravity was

    determined as follows:

    1. Horizontally – from

    weights measured atrear and front wheels

    2. Vertically – estimated

    from relative weight

    and CoG’s of the

    components

    Effect of modifications onCoG determined in the

    same way

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    5/26

    Tyre model

    5

    1 1.5 2 2.5 3 3.5 4 4.5 50.7

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    Displacement (mm)

       S  p  r   i  n  g  s   t   i   f   f  n  e  s  s   (   M   N   /

      m   )

     

    350 kPa 30 kN load

    350 kPa 40 kN load

    600 kPa 30 kN load

    600 kPa 40 kN load

    No data at 2

    This bump occurs

    at both pressures

    and 40 kN load

    Used stiffness and damping

    coefficient

    10% damping factor was

    assumed

    Measured data was used

    Linear stiffness coefficient

    and linear damping

    coefficient was assumed

    Effect of stiction during

    characterization was

    assumed negligible

    Note, in this case tyre

    stiffness >> suspension

    stiffness

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    6/26

    Non-linear time and state dependant

    modelling

    6

    ∑ =  − 4 + 1 − 3= , ̈, 

    ∑ = 1 + 4 − 11 − 3= , ̈, 

    ∑ = 1 + + 3 + 4 = ̈ 

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    7/26

     Axle mathematical model

    7

    3 4  x  1 

     4 

      y

    z

         

    4  3 

    3 =   3 − 3  + 3 ̇ − 3 ̇    4 =   4 − 4  + 4 ̇ − 4 ̇   

    3=

      − 3 

    4 =  + 4 ∑ = 4 − 3+ 13 − 4 = , ̈, ∑ = 

    3+

    4 − 3 − 4 = ̈ 

    0

    2000

    40006000

    8000

    10000

    12000

    14000

    16000

    18000

    0 0.2 0.4 0.6 0.8 1 1.2

       F  o  r  c  e   [   N   ]

    Velocity [m/s]

    Force vs. veloci ty

    Tension

    Compression

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    8/26

    Damper model

    • Rebound/Compression force ratio = typically 1 to 3

     – R/C ration = 1 typical for off-road

     – R/C ration = 3 typical for sport sedan vehicles

     – In this case150306450

    = 2.33 

    8

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    0 0.2 0.4 0.6 0.8 1 1.2

       F  o  r  c  e   [   N

       ]

    Velocity [m/s]

    Force vs. veloci ty

    Tension

    Compression

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    9/26

    Reference damping factor

    • Use average of compression and rebound

    • Damping factor for the reference vehicle = 0.27 

    9

    = 18500

    2 360000 ×

    13300

    4

     

    = 0.27 

    Question: What is a typical damping factor for off-

    road vehicles?

     Answer:

    Trade-off between ride comfort, road holding and

    road handling, you must compromise, cannot have

    all

    Low value at High Speed and High value at Low

    speed

    Need more as road roughness increase

    Race cars need good handling: = 0.65− 0.75 Passenger cars maximized for ride comfort: ≈ 0.25  0 0.5 1 1.5 2 2.5 3

    0

    2

    4

    6

    8

    10

    12

    Frequency ratio

       T  r  a  n  s  m   i  s  s   i   b

       i   l   i   t  y

     

    ξ = 0.05

    ξ = 0.25

    ξ = 0.60

    ξ = 0.80

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    10/26

    Strain gauges & accelerometers

    10

    Instrumentation to record

    acceleration input and

    response of crew seatStrain gauges to

    measure suspension

    force

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    11/26

    Hardware used

    • Data Logger:

     – Description: Somat eDaq-Lite

     – Sampling frequency = 2,000 Hz

     – Anti-aliasing:• Linear Phase

    • Cut-off frequency = 667 Hz

    • Output data type: 32 Bit Float

    13

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    12/26

     ARX modelling

    • ARX = AutoRegresive model with eXternal input

    • Part of PCMatlab System Identification toolbox

     – Model Characterization: th=arx([Response Input],NN)

    • Mathematics: + 1 − 1 + − 2 +⋯+ − = 1 + − 1 +⋯+ − + 1 +() • The function solves the  &  coefficients•

     (

    ) is external noise

     – Simulation: Response=idsim(Input,th)

    14

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    13/26

    MIMO-System ID with random road

    profile

    150 0.5 1 1.5 2 2.5x 10

    4

    -0.04

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    Correlation coefficient = 0.87

    Reconstructed road input

    Point

       D   i  s  p   l  a

      c  e  m  e  n   t   [  m   ]

     

    Blue - from transient analysisRed - reconstructed

    8060 8080 8100 8120 8140 8160 8180 8200 8220-0.04

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02Reconstructed road input

    Point

       D   i  s  p   l  a  c  e  m  e  n   t

       [  m   ]

     

    Blue - from transient analysis

    Red - reconstructed

     ARX forward system identification was used: th= arx([y_temp u_id],NN); 

    Check accuracy by reconstructing acceleration responses used: y_id=idsim(u_id,th); 

    The mode order was   ,   , = 1,1,0  Reverse-inverse ARX model to reconstruct road input

    Correlation coefficient = 0.87

    Only a slight shift in mean of

    signal required to give good

    perception of fit

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    14/26

    Road profile reconstructed from

    recorded accelerations

    160 1 2 3 4 5 6

    x 104

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06Reconstructed road input from measured accelerations

    Point

    Di  s  pl  a  c  e

      m  e  nt[  m]

    0 1 2 3 4 5 6

    x 104

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15Reconstructed road input from measured accelerations

    Point

       D   i  s  p   l  a  c  e

      m  e  n   t   [  m   ]

    Measured acceleration used to calculate road profiles: y_idRIm=idsim(u_idRIm,thRI);

    The function does not use time step or sampling frequency – time step in reconstructed

    data = time step of response data used, 200 Hz in this case

    Calculated road profile () Measured ̈ 

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    15/26

    Simulations to Weighted RMS

    • Use road profile to calculate responses

    • ISO 2631 running weighted RMS

    • Repeat for damping magnification factor varied

    from 0.2 to 2.4 in steps of 0.2 – That is the compression and rebound damper

    characteristics were multiplied with this factor

     – This will indicate in which direction to adjust the

    dampers

    17

    Tips that enabled 55 simulations of 120s each in 15 hour span on ONE Dell Notebook Computer:

    • Read data into memory and limit disk operations to the minimum

    • Ensure that all computer threads are used – split algorithms if necessary

    • Declare result matrix sizes before starting the simulation

    • Limit array values used in interpolations to find instantaneous road profile displacement

    and velocity

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    16/26

    Damping factor sensitivity

    18

    0 0.5 1 1.5 2 2.53.4

    3.6

    3.8

    4

    4.2

    4.4

    4.6

    4.8

    5Max. wrms for Road 2

    Damper modification factor 

       O   b   j  e  c   t   i  v  e   f  u  n  c   t   i  o  n

    Results indicated an increase

    of 60% (factor 1.6) on

    damping factor

    Damping factor was changed

    to 1.6 x 0.27 = 0.43 (43%)

    Response optimal point

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    17/26

    Test rig

    19

    Designed to give

    mounting points exactly

    as in the vehicle No natural modes in the operating

    frequency range

    40 kN servo-hydraulic

    actuator excites the

    super structure

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    18/26

    Objective – reconstruct measured seat

    frame acceleration

    20

    Instrumentation to verify

    drive signal

    0 20 40 60 80 100 120-10

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    10

    Time [s]

       A  c  c  e   l  e  r  a   t   i  o  n

       [  m   /  s   2   ]

     Acceleration in the Time domain

    This is the measured acceleration, that

    is also the desired response of the seat

    frame on the servo-hydraulic actuator

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    19/26

    Why High-pass filter – Sine wave?

    21

    0 1 2 3 4 5 6 7 8 9 10-2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2Sine wave

    Time [s]

       A  c  c  e   l  e  r  a   t   i  o  n   [  m   /  s   ]

    0 1 2 3 4 5 6 7 8 9 10-0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7Sine wave

    Time [s]

       V  e   l  o  c   i   t  y   [  m   /  s   ]

    0 1 2 3 4 5 6 7 8 9 100

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    Sine wave

    Times [s]

       D   i  s  p   l  a  c  e  m  e  n   t   [  m   ]

    0 1 2 3 4 5 6 7 8 9 10-0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Sine wave

    Time [s]

       V  e   l  o  c   i   t  y   [  m   /  s   ]�  

    �  =

    =

    Note the non-zero mean

    ̇ = ̈2  = 0.318 

    Non-zero

    mean causes

    the trend

    Solution: High-pass

    filter signals

    Servo-hydraulic actuator in displacement control → =  ∫   ∫   ̈==0   ==0  

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    20/26

    High-pass filter effect on random

    signals

    22

    0 1 2 3 4 5 6 7 8 9 10-4

    -3

    -2

    -1

    0

    1

    2

    3

    4Random wave

    Time [s]

       A  c  c  e   l  e  r  a   t   i  o  n   [  m   /  s   ]

    0 1 2 3 4 5 6 7 8 9 10-0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15Random wave

    Time [s]

       V  e   l  o  c   i   t  y

       [  m   /  s   ]

    0 1 2 3 4 5 6 7 8 9 10-0.7

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    Random wave

    Times [s]

       D   i  s  p   l  a  c  e  m  e  n   t   [  m   ]

    0 1 2 3 4 5 6 7 8 9 10-0.04

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04Random wave - High-pass filtered

    Time [s]

       V  e   l  o  c   i   t  y   [  m

       /  s   ]

    0 1 2 3 4 5 6 7 8 9 10-2.5

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5 x 10

    -3 Random wave - High-pass filtered

    Times [s]

       D   i  s  p   l  a  c  e  m  e  n   t   [  m   ]

    d1x = filtfilt(B,A,(cumtrapz(t,d2x)));

    x=filtfilt(B,A,cumtrapz(t,d1x));

    d1x = cumtrapz(t,d2x);

    x=cumtrapz(t,d1x);

    Fs=200;

    HPFCutoff=1;

    [B,A]=butter(8,HPFCutoff/(Fs/2),'high');

    UNFILTERED FILTERED

    It is essential to remove the

    low-frequency “drifts” from the

    integrated signals

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    21/26

    Test rig drive signal

    230 5 10 15 20 25 30 35 40 45 500

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Frequency [Hz]

       A  m  p   l   i   t  u   d  e   [  m   /  s   2  -   R   M

       S   ]

    Spectrum of recorded acceleration

    Measured Acc. Spectrum RMS = 2.04

    0 5 10 15 20 25 30 35 40 45 500

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Frequency [Hz]

       A  m  p   l   i   t  u   d  e   [  m   /  s   2  -   R   M   S   ]

    FREQUENCY SPECTRUM FOR MEASURED ACC. SIGNAL VS. COMPENSATED ACC. SIGNAL

     

    Measured Acc. Spectrum RMS = 2.04

    Compensated Acc. Spectrum RMS = 2.65

    Blue - Measured Acc.

    Red - Compensated Acc.

    0 20 40 60 80 100 120 140-0.05

    -0.04

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    Time[s]

       D   i  s  p   l  a  c  e  m  e  n   t   [  m   ]

    Dsplacement intheTimedomain

    0 20 40 60 80 100 120 140-0.08

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    Time[s]

       D   i  s  p   l  a  c  e  m  e  n   t   [  m   ]

    Dsplacement intheTime domain

     

    Red- CompensatedDisplacement

    Blue- RecordedDisplacement

    Test rig (DAC – Hydraulics – Servo-valve – Inertias – AAF – ADC):

    • Non-linear frequency dependant responses

    • Natural frequencies

    • Inertia in the oil supply system, etc.

    • Therefore,  ≠  • Solution:

    • Compensate in the time or frequency domains• In this case, frequency domain is sufficient

    Measured

    acceleration spectrum

    = Desired response

    Drive signal

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    22/26

    How was this done

    24

    0 20 40 60 80 100 120 140

    -15

    -10

    -5

    0

    5

    10

    15

    Time [s]

       A  c  c  e   l  e  r  a   t   i  o  n   [  m   /  s   2   ]

     Acceleration in the Time domain

     

    Blue - Recorded Acc.

    Red - Compensated Acc.

    =  

    Measure rig Response  

    =

    ()()

     

    +1 = ( × ) 

    Iterate until:()() ≥ 90% 

    The result is an acceleration

    drive signal adjusted for the rig

    frequency response

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    23/26

    Reconstructed frame response

    250 5 10 15 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

     

    Marlin Spectrum RMS = 2.04

    Rig Spectrum RMS = 2.05

    X: 2.197

    Y: 0.7608

    Frequency [Hz]

       A  m  p   l   i   t  u   d  e   [  m   /  s   2  -   R   M   S   ]

    FREQUENCY SPECTRUM RMS OF THE MARLIN VS. RIG

    X: 6.348

    Y: 0.4391

    Blue - Marlin

    Red - RigMeasured RMS = 2.04

    Rig RMS = 2.05

    The objective is to haveaccurate reconstruction of

    the dominant peaks in the

    spectrum

    Motion sickness: 0.1 – 0.5 Hz

    Health, comfort, perception: 0.5 Hz – 80 Hz

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    24/26

    5 10 15 20 25 300

    0.5

    1

    1.5

    2

    2.5

    3Transmissibility function driver seat responce/vehicle

    Frequency [Hz]

       F   R   F   A  m  p   l   i   t  u   d  e

     

    0 0.5 1 1.5 2 2.5 30

    1

    2

    3

    4

    5

    6

    X: 0.991Y: 5.123

    X: 0.929

    Y: 1.995

    X: 1.414

    Y: 1

     

    Frequency ratio

       T  r  a  n  s  m   i  s  s   i   b   i   l   i   t  y  m  a  g  n   i   t  u   d  e

    Effect of damping on magnitude at resonance

    ξ = 0.1

    ξ = 0.3

    Driver Seat32 km/h Rally Track Full

    Load

    Transmissibility more than 1 at f < 6 Hz

    Seat resonates

    Solution: Increase damping

    5 10 15 20 25 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Spectrum RMS = 1.54

    X: 1.587

    Y: 0.5959

    Frequency [ Hz]

       A  m  p   l   i   t  u   d  e   [  m   /  s   2  -   R   M   S   ]

    Spectrum of Driver Seat Response acceleration

    5 10 15 20 25 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Spectrum RMS = 1.88

    X: 1.709

    Y: 0.3531

    Frequency [Hz]

       A  m  p   l   i   t  u   d  e   [  m   /  s   2  -   R   M   S   ]

    Spectrum of Driver Seat Input

    250 250.5 251 251.5 252 252.5 253 253.5 254 254.5

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    10

    12

    Time [s]

       A  c  c  e   l  e  r  a   t   i  o  n   [  m   /  s   2   ]

    Paramount Run3: 32km/h Rally track (Full L)

     

    Blue - Seat Input

    Red - Seat Response

    This seat filters high

    frequency content

    Spectrum of Crew Seat Response acc eleration Spectrum of Crew Seat InputX: 1 465

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    25/26

    0 5 10 15 20 25

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    Transmissibility function crew seat responce/vehicle

    Frequency [Hz]

       F   R   F   A  m  p   l   i   t  u   d  e

     

    Crew Seat32 km/h Rally Track Full

    Load

    Seat response is in phase with vehicle

    Seat is stiff due to mounting straps

    Solution: Replace straps with elastic material

    250 250.5 251 251.5 252 252.5 253 253.5 254 254.5 255

    -6

    -4

    -2

    0

    2

    4

    6

    Time [s]

       A  c  c  e   l  e  r  a   t   i  o  n   [  m   /  s   2   ]

    Paramount Run3: 32km/h Rally track (Full Load)

     

    Blue - Seat Input

    Red - Seat Response

    5 10 15 20 25 300

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    Spectrum RMS = 0.90

    Frequency [Hz]

       A  m  p   l   i   t  u   d  e   [  m   /  s   2  -   R   M   S   ]

    Spectrum of Crew Seat Response acc eleration

    X: 1.343

    Y: 0.2884

    5 10 15 20 25 300

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    Spectrum RMS = 0.97

    Frequency [Hz]

       A  m  p   l   i   t  u   d  e   [  m   /  s   2  -   R   M   S   ]

    Spectrum of Crew Seat InputX: 1.465Y: 0.4281

    Note how this seat

    acceleration follows that

    of the vehicle body over

    the frequency spectrum

    of the time signal

  • 8/18/2019 Investmech - T&M Seat Response Reconstruction

    26/26

    Final remarks

    • Servo-hydraulic test rig now used to minimisetransmissibility to the seat – Adding elasticity to isolate

     – Seat layout design changes

    • This process major contribution – Enable quick (3 Days) for damper selection for minimum

    seat weighted RMS response

     – Test rig that enables continuous, cheap, repeatable,

    reliable reconstruction of vehicle responses at the seatmounts

     – Laboratory verification of seat designs to meet clientobjectives

    28