Investigating Production-Induced Stress Change at Fracture Tips

download Investigating Production-Induced Stress Change at Fracture Tips

of 12

Transcript of Investigating Production-Induced Stress Change at Fracture Tips

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    1/12

    I n ve st ig a ti n g p r od uc ti o n- in du c ed s tr es s c ha n ge a t f r ac tu r e t ip s:

    I mp li ca t io ns f or a n o ve l h y dr a ul ic f r ac tu ri n g t ec h ni qu e

    M . K . R a h ma n ⁎, A .H . J oa rd er    

    S c h oo l o f O i l a n d G a s E n gi n e er i n g, U n i v er s i t y o f We s t e rn A u st r a l ia , M B DP : 0 5 2, P e r th , WA 6 0 09 , A u s tr a l i a

    R e ce i ve d 7 A p ri l 2 0 05 ; r e ce i ve d i n r e v is e d f o r m 2 9 N o ve m be r 2 0 05 ; a c ce p te d 2 9 D e ce m be r 2 0 05

    Abstract

    H y d ra u l ic f r a c tu r i ng f r o m v e r t i c al w e l l s s u b j ec t t o r e v er s e f a u l t i n g s t r e s s r e g i m es i s f o u nd t o b e p r o bl e m at i c d u e t o t u r ni n g a n d

    t w i s t i n g o f p r o p a g a t i n g f r a c t u r e s , a n d e v e n t u a l l y r e s u l t i n g i n i n e f f e c t i v e t r e a t m e n t s t o i n c r e a s e p r o d u c t i o n . T h e p r i m a r y m o t i v a t i o n

    o f t h i s p a p er i s t o i n v es t i g at e w h e t h e r e f f e c t iv e h y d r a u li c f r a c t u r i ng c a n b e a c h ie v e d i n t h e se r e s e rv o i r s i n a n u mb e r o f s t a ge s w i t h

     p ro d u ctio n in terv als. Th e b asic mech an ism th at is en v isag ed to ach iev e a lo n g , p lan ar p ro d u ctiv e fractu re in su ch a man n er is th e

     p ro d u ctio n-in d u ced ch an g e o f stress state aro u n d th e cu rren t fractu re tip to b e su itab le fo r fu rth er p lan ar p ro p ag atio n o f th e fractu re

    i n t h e n ex t t r ea t me n t s t ag e. T h e t i me - de p en d en t p r od u ct i on - in d uc e d s t re s s s t at e c a n b e f o rm ul a te d b y c ou p le d f l ui d f l ow a nd

    d ef o rm a ti o n p r in ci p le s . T h is c on c ep t h a s b ee n a pp l ie d t o a m od e l- s ca l e r e se r vo i r t o p r od uc e s om e i n si g ht f ul r e su l ts . B as e d o n

    r e s u l t s f r o m t h e m o d e l s t u d y , t h e p a p e r h a s d e m o n s t r a t e d t h e w i d e i m p l i c a t i o n s o f t h e c o n c e p t f o r s u c c e s s f u l h y d r a u l i c f r a c t u r i n g i n

    t h e m e n ti o n ed r e s e rv o i r c o n di t i o ns , a n d h i g hl i g ht e d f u r t he r r e s e ar c h d i r ec t i o ns w i t h f u l l - sc a l e r e s er v o i rs .

    © 2 0 0 6 E l s e v i er B . V. A l l r i g h ts r e s e rv e d .

       Keywo rd s:   H y d r a ul i c f r a c t ur i n g ; M u l t is t a ge f r a c t ur i n g ; C o u p l ed f l u i d f l o w a n d d e f o r ma t i o n ; P o r o e l a s ti c m o d e li n g

    1. Introduction

    H y d ra u l ic f r ac t u ri n g i s a p r oc e ss w h er e by p r op p a nt -

    l a d e n f l u i d i s i n j e c t e d i n t o a w e l l u n d e r h i g h p r e s s u r e t o

    i n i t i a t e a f r a c t u r e f r o m t h e w e l l b o r e w a l l a n d e x t e n d t h e

    f ra ct u re d e ep i n to t h e r es er vo i r. O nc e t he i nj e ct io n i sc ea se d, t he p ro pp e d f ra ct u re b e co me s t h e p ri n ci p al

    c o nd u i t f o r f l ow o f t h e h y dr o ca r b on f r om t h e r e s e r vo i r    

    t o t h e w e l l , a n d t h u s a l l o w i n g e n h a n c e d p r o d u c t i o n . T h e

     petroleum industry has long been applying hydraulic

    f ra ct u ri n g a s a p ri n ci pa l t ec h ni q ue t o i mp r ov e o il a nd

    g a s p r o d u c t i o n . O f t h e p r o d u c t i o n w e l l s d r i l l e d i n N o r t h

    A m e r i c a s i n c e 1 9 5 0 s , a b o u t 7 0 % o f g a s w e l l s a n d 5 0 %

    o f o i l w e l l s h a v e b e e n h y d r a u l i c a l l y f r a c t u r e d ( Valko and

    E c o n o mi d e s , 1 9 9 5).

    D e sp i t e s o me s u cc e ss c a se s , t h e o p e ra t i on a l p e r fo r -

    m an c e a nd c os t  – benefit accounts of hydraulic fracture

    t re at me n ts h a ve n ot b e en p os it i ve i n m an y o c ca si o ns , particularly onshore Australia. Major difficulties en-

    c o un t e re d d u ri n g t r ea t me n t s i n c lu d e t h e r e qu i r em e n t o f                    

    h i g h i n je c t io n p r es s u re , h i gh f r ic t i on a l p r es s u re d r op ,

    i n ab i l it y t o i n je c t p r op p an t a t r e qu i r ed c o n ce n t ra t io n s

    w it hi n t he p ump c ap ac it y, i na bi li ty t o e xt en d t he

    i n i t i a t ed f r a c t u re , a n d c o n s e q ue n t l y, p o o r p o s t - st i m u l a -

    t io n p ro d uc t iv i ty. A n i n ve st i ga t io n (R ah ma n e t a l.,

    2000a ) e st ab l is he d t h at m an y o f t h e A us tr al i an r es er -

    v o i r s , l i k e m a n y o t h e r s w o r l d w i d e , a r e s u b j e c t t o r e v e r s e

    f a ul t i ng s t re s s r e gi m e s (H i l li s a n d R e yn o l ds , 2 0 00 ) , i . e .

    J o ur n a l o f P e tr o l eu m S c ie n ce a n d E n gi n ee r in g 5 1 ( 2 00 6 ) 1 8 5– 196

    www. els evier. com/locate/petrol

    ⁎   C o rr e sp o nd i ng a u th o r. Te l .: + 6 1 8 6 4 88 7 3 37 ; f a x: + 6 1 8 6 4 88

    1964.

      E - ma il a d d ress: krahman@cyllene. uwa. edu. au  (M. K. Rahman).

    0 9 20 - 41 0 5/ $ - s e e f r on t m a tt e r © 2 0 06 E l se v ie r B . V. A l l r i gh t s r e se r ve d .doi:10. 1016/j. petrol. 2005. 12. 009

    mailto:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.petrol.2005.12.009http://dx.doi.org/10.1016/j.petrol.2005.12.009http://dx.doi.org/10.1016/j.petrol.2005.12.009mailto:[email protected]

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    2/12

    t h e v e r t i c a l s t r e s s i n t h e r e s e r v o i r r o c k i s s m a l l e r t h a n t h e

    h o ri z o nt a l s t re s se s . A v e rt i c al f r ac t u re i n i ti a t ed f r om a

    v er ti ca l w el l i n t hi s s tr e ss c o nd i ti on (F ig . 1) r e or i en t s

    i ts el f t h ro u gh c o mp l ex t ur ni n g a nd t w is t in g ( us ua ll y

    c a l l e d f r a c t u r e t o r t u o s i t y ) t o b e c o m e h o r i z o n t a l , b e c a u s e

    t h i s i s t h e p r e f e r r e d f r a c t u r e p l a n e i n t h i s s t r e s s c o n d i t i o n(H o ss ai n e t a l. , 2 0 00 ) . T he t wi st e d f ra ct ur e g eo me t ry

    c au se s p ro pp an t b ri dg in g i n t he c on st ri ct ed w id th

    r es ul t in g i n p re ma t ur e s cr ee n -o u ts ( in ab i li ty t o i n je ct  

    f ur th er w it hi n t he p um p c ap ac it y) a nd l ow p ro pp ed

    f r a c tu r e c o n d u i t f o r p r o d u c t i on . A l t h o u g h a p p r o p r i a t el y

    o ri e nt ed w el l s a nd p er fo r at io n s a re r ec om me nd e d t o

    o ve rc om e s om e o f t he se d i ff ic u lt i es (R ah ma n e t a l. ,

    2 0 0 0 a ; H o s s a i n e t a l . , 2 0 0 0 ) , d r i l l i n g a n d c o m p l e t i o n o f                    

    s u ch w e l ls i n v ol v e s a d v an c ed t e ch n o lo g i es , h i g he r c o s t  

    a n d h i g h e r f o r m a t i o n d a m a g e p o s s i b i l i t i e s , a n d m a y a l s o

    l e ad t o o t h er f r ac t u re c o mp l e xi t i es .O n s i mi l a r j u st i fi c a ti o n s,   Wa r pi n s ki a n d B r an a ga n

    (1989)   r e c o mm e n d e d a l t e r e d - s t r es s f r a c t ur i n g a n d d e m -

    o n s t r a t e d i t s a p p l i c a b i l i t y b y e x p e r i m e n t a l a n d a n a l y t i c a l

    s tu di e s. T he b a si c c on c ep t w as t o p re ss ur iz e a f ra c tu re b y

    i n j e c t i n g f l u i d i n a n e a r b y o f f s e t w e l l t o c h a n g e t h e p o r e

     pressure, and in turn the stress state, around the fracture

    i n a p r o d u c t i o n w e l l t o i n f l u e n c e t h e d i r e c t i o n o f f u r t h e r    

    f r ac t ur e e x t en s i on . A s i mi l a r c o nc e p t i s a l so m o de l l ed

    a nd s tu d ie d r ig o ro u sl y b y   B e rc h e nk o a n d D e t ou r na y

    (1997). A pa rt f ro m a dd it io na l c os ts a ss oc ia te d w it h

    d ri l li n g a nd t re at i ng s uc h o f fs et w e ll s, t he re a re m an y

    s ys te m p ar am e te rs t ha t n e ed t o b e o p ti m iz ed t o d er iv ea n y b e n e f i t s f r o m s u c h o p e r a t i o n s . T h e p r i n c i p l e o f p o r e

     pressure change due to injection/productio n, and result-

    i n g s t r e s s c h a n g e i n u n f r a c t u r e d a n d f r a c t u r e d r e s e r v o i r s ,

    h ow ev er, h as b ee n t he t op ic o f f ur th er r es ea rc h f or    

    d i f f er e n t a p p l i c a t io n s (D e t o u r n a y e t a l . , 1 9 8 6 ; C h e n g e t  

    a l ., 1 9 9 3; E l b el a n d M a c k , 1 9 9 3 ; C h en a n d T e uf e l, 2 0 0 1;

    S av i ts ki e t a l ., 2 0 00) . T he p or oe l as ti c t he or y h as b ee n t h e

     basic foundation for most of these investigations. A

     particular effort is noted to investigate the creation and

     propagation of a secondary fracture orthogonal to the

     primary fracture to derive production benefits from

     permeability anisotropy in the reservoirs (S i e b r i t s e t a l . ,

    1998 ) . T h e s e c o n d a r y f r a c t u r i n g t r e a t m e n t w a s p r o p o s e dt o c ar ry o ut a ft er a c er ta in p er io d o f p ro du ct io n t im e

    f o ll o wi n g t h e p r im a ry f ra c tu r in g t re a tm e nt . F u rt h er    

    u n d e r s t a n d i n g s o f c r a c k r e o r i e n t a t i o n a n d i t s a p p l i c a t i o n

    t o h y d ra u l ic f r ac t ur i n g h a ve b e en c o nt r i bu t e d b y   Dong

    a n d d e P a t e r ( 2 0 0 1 , 2 0 0 2 ) .

    I n e s s e n c e, t h e a b o v e -d e s c r i be d p r o d u c t i on - i n d u ce d

    a l te re d- st re ss s ec on d ar y f ra ct u ri n g i s j u st c re a ti ng a

    s t re ss e nv i ro n me n t b y n o n- un i fo rm f lu i d e xt ra c ti o n

    f ro m t h e r es er vo i r t o i nf lu en c e t he s ec on d ar y f ra ct u re

    g ro wt h a lo ng a d ir ec ti on w hi ch w as i ni ti al ly t he s o

    c a l l e d n o n - p r e f e r re d d i r e c t io n f o r f r a c t u r e p r o p a ga t i o n .T h i s m o t i v at e d t h es e a u t ho r s t o i n v es t i ga t e f u rt h e r t h e

     production-induced stress change around the wellbore

    a nd t he p ri ma ry f ra ct ur e t ip a s a f un ct io n o f m ai nl y

     production time and some fracture parameters. One

     particular feature of our study is that the primary

    f ra ct ur e i s c re at e d a lo n g t h e n on -p r ef er re d d i re c ti o n,

    a n d t h en t he a lt e re d -s t re ss es a nd p or e p re ss u re s a t t h e

    f ra ct ur e t i p a nd a t a n e ar -w el l bo re r eg io n a lo n g o rt h o-

    g o n a l d i r e c t i o n t o t h e p r i m a r y f r a c t u r e a r e c h a r a c t e r i z e d

    a s a f un ct io n o f p ro du ct io n t im e. U si ng t hi s a lt er ed

    s t re ss f ie l d, t h e p ro p ag a ti o n p re ss ur e o f t h e e xi st i ng

    f ra ct ur e t ip a nd t h e i n it ia t io n p re ss u re o f a p o te nt i al lys ec o nd a ry f ra ct u re a t t h e o rt h og on a l l oc at i on o n t h e

    w e ll b or e w al l a re e st i ma te d a s a f un ct i on o f t i me . We

    h a ve t hu s e st ab l is he d a p ro du ct io n- in du ce d s tr es s

    c o nd i ti o n w h ic h i s s ui t ab le f or f ur th e r p ro p ag a ti o n o f                    

    t h e e x is t i ng f r ac t ur e a l o ng i t s c u rr e nt d i re c t io n , w h ic h

    w a s i n it i al l y n o n- pr ef er re d d ir ec ti on , w i th ou t a ny

    t ur ni ng /t wi st in g a nd w it ho ut c re at in g t he p ot en ti al

    s e co n d ar y f r ac t u re a l o ng t h e o r th o g on a l l o c at i o n. T h e

    i mp li ca ti on o f t hi s s tu dy o n h yd ra ul ic f ra ct ur in g i n

    r e se r vo i r s s u bj e c t t o t h e r e ve r s e f a ul t i ng s t re s s r e gi m e

    c a n b e d e sc ri b ed a s f ol l ow s.A l i mi t e d e x t en t v e rt i c al f r ac t u re a l o ng t h e p r ef e rr e d

    d i r e c t io n ( i . e . a l o n g σH   d i r e c t i o n ) w i l l b e c r e a t e d i n t h e

    v er ti ca l w el l a t t he f ir st s ta ge . I t i s e xp er ie nc ed t ha t  

    s uc h p ar ti al ly p en et ra te d f ra ct ur e g eo me tr y c an b e

    c re at e d w i th o ut a ny m aj o r d i ff ic u lt ie s i rr es pe ct i ve o f                    

    t h e i n s it u s tr es s c on d it i on . T he t op a nd b ot t om t i ps o f                    

    t h i s v e rt i c al f r ac t u re a r e, h o we v e r, a l o ng n o n -p r ef e rr e d

    d ir ec ti on f or p ro pa ga ti on , s in ce   σvbσh. W it ho ut  

    a t te mp t in g t o e x te nd t h e f ra ct u re f ur th e r, t he w el l w i ll

    t h er ef or e b e a ll o we d t o p ro d uc e f or a c er ta i n p er io d o f                    

    t i m e u n t i l t h e s t r e s s c o n d i ti o n a r ou n d t h e t i p s b e co m e s

    r e v e r se , i . e . σhbσv. H a l ti n g p r od u ct i o n, a s e co n d -s t ag eF ig . 1 . T ur ni ng o f t op a nd b ot to m t ip s o f a v er ti ca l f ra ct ur e f r om av e r t ic a l w e l l i n a r e v e r se f a u l t in g s t r e ss r e g i me .

    186   M . K . R a hm a n, A . H . J o a rd e r / J o u rn a l o f P e t ro l e um S c i e nc e a n d E n gi n e e ri n g 5 1 ( 2 00 6 ) 1 8 5 – 1 9 6    

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    3/12

    t re at me nt c an t he n b e c arr ie d o ut t o p ro pa ga te t he

    f ra ct ur e u p t o t he d is ta nc e h av in g t he r ev er se s tr es s

    c on di ti on . A n um be r o f s uc h s ta ge s c an f in al ly

    a cc om p li sh a v e ry p ro du c ti ve f ra ct ur e. A l so a s ig ni f-

    i c a n t v o l u m e o f h y d r o c a r b o n t h a t h a s b e e n p r o d u c e d s o

    fa r m ay o ffe r a s ig ni fi ca nt f in an ci al b en ef it t o t heoperator.

    A s c o p i n g s t u d y w a s u n d e r t a k e n a t t h e U n i v e r s i t y o f                    

    W e s t e r n A u s t r a l i a ( U W A ) w i t h a v e r y l i m i t e d s u p p o r t b y

    t h e F a c u l t y a n d U W A g r a n t s . W i t h i n t h e p r o j e c t ' s s c o p e ,

    a m od el -s ca le r es er vo ir s ys te m h as b ee n s tu di ed b y

    c ou pl ed f lo w a nd d ef or ma ti on a na ly si s. T he m ai n

    o bj ec ti ve o f t hi s p ap er i s t o p re se nt t he m od el , t he

    a s so c i at e d f o rm u la t i on s a n d t h e r e su l t s t h a t s u pp o r t t h e

    c o nc e p t a n d e n c ou r a ge e x t en d e d f u rt h er i n v es t ig a t io n s

    i n t h e a r ea , p o ss i b ly w i t h a f u ll - sc a l e r e s e r vo i r.

    I n t he r es t o f t hi s p ap er , w e p re se n t t h e c on st i tu t iv ef or mu l at i on s o f t he c o up l ed p ro bl e m, a n al yt i ca l f or -

    m u la t i on s f o r f r ac t u re i n i ti a t io n a n d p r op a g at i o n p r es -

    s u re s , t h e m o de l d e sc r ip t i on a n d s p ec i a l t e c h n i qu e s t o

    r ep re s en t a f ra ct ur e, n u me ri ca l r es ul t s a n d t h ei r i nt e r-

     pret atio ns. Fina lly, we have conc lude d the pape r  

    s um ma ri s in g m aj o r f in di n gs a nd t he w a ys f or f ur th er    

    research.

    2. Coupled fluid–mechanical formulation

    T he p ro du ct io n- in du ce d s tr es s s ta te a ro un d t he

    w el lb or e a nd t he f ra ct ure t ip re gi on i s a c omp le xf un ct i on o f f or ma ti on p ro pe rt i es a n d c um ul at i ve

     production, and should be investigated as a three-

    d i me n si o na l f u ll y c o up l ed h y d ro - po r o- m ec h an i c al

     prob lem. FLAC3 D (Fast Lagra ngia n Anal ysis of          

    C on t in u a i n 3 D i me n si o ns ) c od e, a l i ce ns ed p ro d uc t  

    f ro m I ta sc a C on s ul ti n g G ro u p, h a s b ee n u se d f or t hi s

     purpose. FLAC3D provides an option for coupled

    fluid–m ec ha ni ca l a na ly si s i n w hi ch t he m ec ha ni ca l

    r es po ns e o f t he p or ou s m at er ia l i n t he p re se nc e o f a

    s i ng l e -p h a se t r an s i en t f l u id f l ow c o nd i t io n i s m o de l le d

    w it h in t he f ra m ew or k o f t h e q u as i- st a ti c B i ot t h eo r y.T he p ar am et er s i nv ol ve d i n t he d es cr ip ti on o f f lu id

    fl ow t hr ou gh p oro us m ed ia a re t he p ore p re ssu re ,

    s at ura ti on a nd t hr ee c omp on en ts o f t he sp ec if ic

    d i sc h a rg e v e ct o r. T h es e p a ra m e te r s a r e r e la t ed t h ro u g h

    t h e D a rc y 's l a w f o r f l ui d t r an s p or t , f l ui d m a ss - ba l a nc e

    e qu a ti o n, a c on st i tu t iv e e qu a ti o n s pe c if yi n g t h e f lu i d

    r es po n se t o c ha ng e s i n p or e p re ss u re , s at u ra t io n a nd

    v ol um et ri c s tr ai ns a nd a n e qu at io n o f s ta te r el at in g

     pore pressure to saturation in the unsaturated range.

    T he p o re p re ss ur e i n fl u en c e i s i nv o lv ed i n t he m ec ha -

    n ic al c on st it ut iv e l aw s t o c om pl et e t he f lu id f lo w–

    m e c h a n ic a l c o u p l i n g.

    T he r es po ns e o f p or e f lu id c an b e f or mu la te d a s a

    f u n c t i o n o f t i m e - d e p e n d e n t c h a n g e s i n p o r e p r e s s u r e ,   p p,

    saturation,   s, a n d m e ch a n ic a l v o l um e t ri c s t ra i n s,   ε   as

    f o l l o w s (F L A C 3 D , 2 0 0 2 a , b ):

    1   M         

    A         p p

    At    þ /

     sA sAt   

     ¼   1 sAfAt   

     −aAeAt   

      ð1Þ

    w h e r e   M            i s t he B io t' s m od ul us ,   α   i s t he Bi ot 's

    coefficient,   t      i s t he f lo w t im e,  ϕ   i s t he p or os it y i n t he

    s o li d a n d ζ   i s t h e v a ri a t io n o f f l u i d c o n te n t o r v a ri a t io n

    o f f l u i d v o l u m e p e r u n i t v o l u me o f p o ro u s m a t e ri a l d u e

    t o d i ff u si v e f l u id m a ss t r an s p or t .

    T h e t e rm  ∂ζ /  ∂t      i n E q. ( 1) c an b e o bt ai ne d b y f lu id

    m as s b al an ce f or s ma ll d ef or ma ti on c on di ti on a s

    follows:

    −qi ;i þ   qv ¼  AfAt   

      ð2Þ

    where   qv   i s t h e v o l u m e t r i c f l u i d s o u r c e i n t e n s i t y i n [ 1 / s ]

    and qi   i s t h e s p e c i f i c d i s c h a r g e v e c t o r ( i = 1 , 2 , 3 i n a 3 - D

    s p ac e t o r e pr e se n t 3 s p at i a l c o m p o ne n ts ) o f t h e f l o w i n g

    fluid.

    T h e f o ll o w in g e x pr e ss i o n o f D a rc y 's l a w d e s cr i be s

    t h e s p ec i fi c d i sc h a rg e v e ct o r,   qi    f or a c on st an t d en -

    s it y f lu i d t hr ou g h a h om og e ne o us , p o ro u s, i so t ro p ic

    medium:

    qi  ¼ −k     il     k̂     ð sÞ½         p p−qf                 x  j    g                             j ;l      ð3Þ

    where   k        i s t h e t e n so r o f a b so l u te m o bi l i ty c o e ff i ci e n ts

    ( F LA C 3D p e rm e ab i l it y t e ns o r ) o f t h e m e di u m ,   k     ˆ     ( s) is

    t he r el a ti ve m ob i li ty c oe ff ic ie nt w h ic h i s a f un ct i on o f                    

    f l u i d s a t u r at i o n   s,  ρf    i s t h e f l ui d d e n si t y,   g    j    (              j  = 1 , 2 , 3 )

    r ep re s en t s t h e t hr ee s pa ti a l c o mp o ne n ts o f t he g ra vi t y

    v e c t o r, a n d s i m i l a rl y, x   j   i s t h e p o s i t i o n v e c t o r i n a t h r e e -

    d i me n si o n al s p ac e . T h e g e ne r al c o nv e n ti o n t o i n t er p re t  

    o th er s ub sc ri pt s i n E qs . ( 2) a nd ( 3) i s a s f ol lo ws : t he

    symbol   ai   d e n o te s c o m p o n en t     i   o f t he v ec to r [a] i n aC a r t e s i a n s y s t e m o f r e f e r e n c e a x e s ;   Aij   i s c o m p o n e n t (i,

                  j ) of ten sor [    A];   f                 ,i   d e no te s t he p ar ti a l d e ri v at iv e o f                      f                 

    w it h r es pe ct t o   xi   where   f                    d en ot es e it he r a s ca la r    

    v ar ia b le o r a v ec to r c om po n en t. T hu s,   qi,i   i n E q. (2 )

    r ep re se nt s t he p ar ti al d er iv at iv e o f t he s pe ci fi c

    discharge  qi    w i th r es pe c t t o   x1,   x2   and   x3   f or 3 s pa ti al

    c om po n en t s. A l so , t h e t er m [         p p−ρ  f     x  j   g    j ],l    i n t he r ig ht  

    h an d s id e o f E q. ( 3) r ep re se n ts t he p a rt i al d er iv a ti ve o f                    

    t he f un c ti on (         p p−ρf    x  j    g    j ) w it h r es pe ct t o   x1,   x2   and   x3f o r 3 s p at i a l c o mp o n en t s .

    T he f un ct io n (         p p−ρ

    f   x

      j    g    j 

    ) r ep re se nt s t h e p re ss ur e

    h e a d a n d t h e q u a n t i t y (         p p−ρf   x  j    g    j ) / (ρf  g ) ( w h e r e g   i s t h e

    187   M.K. R a h ma n , A .H. Jo a rd er / Jo u rn a l o f P etro leu m S cien ce a n d E n g in eering 5 1 ( 2 0 0 6 ) 1 8 5 – 1 9 6    

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    4/12

    m od ul us o f t he g ra vi ty v ec to r) c an b e d ef in ed a s t he

    h e ad . T h e m o bi l i ty c o ef f ic i en t ,   k        i s r el at ed w it h t he

    i n t r i n si c p e r m ea b i l i t y,  κ   as   k      =κ / μ, i n w hi ch  μ   i s t he

    d y n a m i c v i s c o s it y.

    F u r t h er d e t a i l s o f f o r m ul a t i o n s , m o d e l d i s c r et i z a t i o n

    a nd s ol u ti on s ch em e s w i th t im e- st e ps c a n b e f ou nd i nF L AC 3 D m a nu a l s (F L A C 3 D , 2 0 0 2 a , b) . T he re a re t wo

    d if fe re nt s ch em es i n F LA C3 D t o s ol ve t he c ou pl ed

    f o rm u la t i on s : ( 1 ) e x p li c i t f i n it e d i ff e re n c e s c he m e a n d

    ( 2) i mp li ci t f in it e d if fe re nc e s ch em e. T he f or me r    

    s ch em e i s u se d t o r un t he m od el i n t hi s w or k. D ur in g

    s i mu la ti on , t he s o lu t io n s t ar ts f r o m a s ta t e o f                    

    m e ch a n ic a l e q ui l i br i u m a n d p r og r es s es t h ro u g h a s e ri e s

    o f s te ps . E ac h s te p i nc lu de s o ne o r m or e f lo w l oo ps

    f ol lo we d b y e no ug h m ec ha ni ca l l oo ps t o m ai nt ai n

    q u as i -s t a ti c e q u il i b ri u m. T h e c h a ng e i n p o r e p r es s ur e

    d ue t o f lu id f lo w i s e va lu at ed i n t he f lo w l oo p; t hec o nt r ib u t io n f r om v o l um e t ri c s t ra i n i s e v al u a te d i n t h e

    mec ha ni c a l l o op as a z o n e v a l u e w h i c h i s t h e n

    d i s t r i b u t e d t o t h e n o d e s . F o r e f f e c t i v e s t r e s s c a l c u l a t i o n ,

    t he c h an ge i n t o ta l s tr es s d ue t o p o re p re ss ur e c ha ng e

    a ri si n g f ro m m ec h an i ca l v o lu m e s tr ai n i s e va lu a te d i n

    t h e m e c h a n i c a l l o o p , a n d a r i s i n g f r o m f l u i d f l o w , i n t h e

    f l ow l o o p.

    3. Analytical formulations

    A s m en ti on ed e ar li er, t he f ra ct ur e p ro pa ga ti on

     pressure at the fracture tip and the fracture initiation pressure at the wellbore wall at 90° phased with the

    c u rr e nt f r ac t u re d i r ec t i on a r e c h ar a ct e r iz e d w i t h t i m e a s

    f u nc t io n s o f t i me - de p e nd e n t s t re s se s a n d p o re p r es s ur e

    a t t h e se p o i nt s . S i mp l e a n a ly t i ca l f o rm u l at i o ns a r e u s e d

    f o r t h i s p u r p o s e . A s s u m i n g a v e r t i c a l w e l l s u b j e c t t o t w o

    o r t h o g o n a l h o r i z o n t a l s t r e s s e s , σxx   and σyy, t h e w e l l b o r e

    f lu i d p re ss u re t ha t i ni t ia te s a f ra ct u re a t     A   along   σxxd i r e c ti o n ( a l o n g   x- ax is i n   F ig . 2) c an b e c al cu la te d a s

    (H o s s a i n e t a l . , 2 0 0 0 ):

             p bw ¼   3ryy−rxx

    −         p p þ   T           ð4Þ

    where   p p   i s t h e p o r e p r e s s u r e a n d   T         i s t h e t e n s i l e s t r e n g t h

    o f r o c k . T h e e q u a t i o n i s w i d e l y r e f e r r e d t o a s T e r z a g h i ' s

    cri teri on and i s vali d onl y in t he case o f no flui d

     penetration assuming that a perfect non-penetrating

    m ud c ak e h a s b e e n f or me d o n t he w el l bo re w al l b y t h e

    f ra ct ur in g f lu i d a dd i ti ve s. A l so t he e ff ec t o f f ra ct u re

    along   y- a xi s i s n e gl e c te d , b e c a u se t h e e x is t e nc e o f t h i s

    f r ac t ur e r e ta r ds t h e i n i ti a t io n o f f r ac t u re a t     A   b y s t re s s

    r el i ev in g . I n o t he r w o rd s, t h e m in i mu m p re ss ur e t h at  

    ma y i ni ti at e a f ra ct ur e a t     A   c an b e o bt ai ne d fr om

    E q. ( 4) .

    T he m in im u m p re ss ur e i ns i de t he e xi st i ng f ra ct u realong  σyy   d i re c t io n r e qu i re d t o p r o pa g a te t h e f r ac t u re

    c a n b e c a l c u l a t e d f r o m t h e t e n s i l e s t r e s s c r i t e r i o n . A s t h e

    f ra ct ur e i s d i re ct l y a lo n g t h e p ri n ci pa l s tr es s   σyy, th e

    s h e a r e f f e c t a n d h e n c e t h e m o d e - I I s t r e s s i n t e n s i t y f a c t o r    

    (   K     II) v an is he s. T he re fo re , t he c ri te ri on f or f ra ct ur e

     propagation simply becomes:

       K     Iz   K     I C   ð5Þwhere   K     IC   i s t h e f r a c t u r e t o u g h n e s s , a m a t e r i a l p r o p e r t y

    t h a t r e f l e c t s t h e r o c k r e s i s t a n c e f o r a n e x i s t i n g f r a c t u r e t o

     propagate. The mode-I stress intensity factor (   K     I) f o r o u r    

    f r a c t u r e c o n f i g u r a t i o n c a n b e d e r i v e d a s ( R a h m a n e t a l . ,2 0 0 0 b):

       K     I ¼   C    ffiffi 

    l   p 

     ð         pf                −rxxÞ ð6Þwhere   pf    i s t h e p re ss ur e i ns i de t he f ra c tu re ,   l      i s t he

    f r ac t ur e l e n gt h o n o n e s i d e o f t h e w e ll , u s ua l l y r e f e rr e d

    t o a s h al f- le ng t h a n d   C      e q ua l s t o   π   f o r l i n e a r- s h a p e d

    fracture.

    S o lv i n g t h e a b o ve f r ac t u re p r op a g at i o n c r i te r io n , t h e

    m i n i m u m p r e s s u r e r e q u i r e d t o p r o p a g a t e t h e f r a c t u r e c a n

     be written as:

             pf                 ¼  rxx þ  K     

    I CC     ffiffi l   

    p   :   ð7Þ

    4. Model description

    D u e t o r e so u r ce c o ns t ra i n ts , p a rt i c ul a rl y c o mp u t a-

    t i o na l t i me , a s c al e d p r ot o t yp e r e se r v oi r o f r e ct a n gu l a r    

    s ha pe ( 10 m l en gt h, 1 0 m w id th a nd 2 m h ei gh t) h as b ee n

    u s e d ( s ee   F i g . 3) . F u rt h e r s i m p l if i ca t i on h a s b e e n m a de

     by taking quarter-symmetry of the model reservoir.

    F ra ct u re i n t h e r es er vo i r i s c on si d er ed a s r ec ta n gu la r    

    s ha pe t hr ou gh ou t i ts l en gt h. A v er ti ca l w el lb or e i s

    c o n s i d e r e d a t t h e c e n t r e o f t h e r e s e r v o i r .

    F ig . 2 . F ra ct ur e a lo ng n o n- p re fe rr ed d ir ec ti on s ub je ct t o t wo

    orthogonal s tres s es , σxx   and σyy.

    188   M . K . R a hm a n, A . H . J o a rd e r / J o u rn a l o f P e t ro l e um S c i e nc e a n d E n gi n e e ri n g 5 1 ( 2 00 6 ) 1 8 5 – 1 9 6    

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    5/12

    T he o ri gi n o f t he C ar te si an c oo rd in at e s ys te m i s

    c o ns i d er e d a t t h e b o tt o m c e n tr e o f t h e w e l lb o re .   X              and

    Y             or th o go n al a xe s a re p er pe n di c ul ar t o t he w e ll bo rea xi s a nd   Z     - ax is i s p ar al le l t o t he w el lb or e a xi s. F or    

    t he c on v en i en c e o f m od el li n g a n d u nd er st a nd i ng , t h e

    i nv es ti ga ti on i s c ar ri ed o ut a t t he l at er al t ip o f t he

    f ra ct ur e o ri en te d i ni ti al ly a lo ng t he n on -p re fe rr ed

    d ir ec ti on f or p ro pa ga ti on . S in ce t he t op a nd b ot to m

    t ip s o f a v er ti ca l f ra ct ur e i n a r ev er se f au lt in g s tr es s

    r e gi m e a r e a l so a l o ng t h e n o n -p r ef e rr e d d i re c t io n , a n d

     propagation of these tips are also very much similar  

    t o t he l at er al t ip i n t er ms o f s tr es s f il ed , t he r es ul ts

    w i t h l a t e ra l t i p a r e e x p e c t e d t o b e v e r y m u c h

    i nd ic at iv e of t he b eh av io ur o f t he v ert ic al ti ps .

    H ow ev er, t hi s w il l b e d es cr ib ed f ur th er a ft er t he presentation of results.

    4 . 1 . B o u nd a r y c o nd i t io n s

    A s t h e m o d e l h a s b e e n t a k e n o n e q u a r t e r o f t h e t o t a lr es er vo ir s iz e d ue t o s ym me tr y, a ll t he b ou nd ar y

    c on d it i on s a re a pp l ie d o n t h is q u ar te r o f t h e r es er v oi r.

    A l l b o u n d a r i e s ( e . g . f a c e s A B a n d B C ) a r e f i x e d a g a i n s t  

    m e ch a n ic a l d i s pl a ce m e nt s . F a ce A E i s f r ee f o r m e ch a n -

    i c al d i sp l a ce m en t a l o ng   X           - ax is o nl y a nd t he f ac e C D

    along   Y          - ax is o nl y. T he w el lb or e w al l i s f re e t o m ov e

    a l o n g b o t h a x e s .

    E xc ep t t he w el l bo r e w al l , a ll t he b ou n da r ie s o f t h e

    r e se r v oi r a r e c o n si d e re d a s i m p er m ea b le f o r f l ow, i . e.

    t h er e i s n o e x ch a n ge o f f l u i d b e t we e n t h e r e se r v oi r a n d

    i ts s ur ro u nd i ng r oc k s t ra t a. T he f ac es A E a nd C D a re

    c on si d er ed i mp e rm ea b le f or f lo w a lo n g t h ei r p e rp e n-d i c u l a r d i r e c t i o n s d u e t o s y m m e t r y . A c o n s t a n t w e l l b o r e

    F i g . 4 . F r a c tu r e r e p r e se n t a t io n w i t h a r e c t a ng u l a r s t r i p .

    F i g . 3 . M o d e l -s c a l e q u a r t e r r e s e r v o ir w i t h a h y d r a ul i c f r a c t u r e .

    189   M.K. R a h ma n , A .H. Jo a rd er / Jo u rn a l o f P etro leu m S cien ce a n d E n g in eering 5 1 ( 2 0 0 6 ) 1 8 5 – 1 9 6    

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    6/12

     pressure which is lower than the reservoir pore pressure

    i s m a i nt a i ne d i n t h e w e l lb o r e.

    T h e m o d e l i s f i r s t i n i t i a l i s e d w i t h i n s i t u s t r e s s e s ,  σxxand  σyy   a t a l l n o de s ( su b -z on e s) , a pp l ie d f or ce s a t t h e

    o u te r b o u nd a r y, a u n if o rm p o re p r es s u re t h ro u g ho u t t h e

    re se rv oi r a nd a f ix ed p re ss ur e o n t he w el lb or e t o

    r e p r e s e n t a c o n s t a n t w e l l b o r e p r e s s u r e . S t r e s s e s σxx   and

    σyy   a nd p o re p re ss u re i n a ll s ub -z o ne s a re a ll o we d t o

    c h an ge i n r es po n se t o f lu id f lo w e xc ep t t h e w el l b o re

     pressure.

    4.2. Fracture representation

    F LA C3 D i s a c od e f or F as t L ag r an gi a n A na l ys is o f                    

    C o n t i n u a i n 3 D i m e n s i o n s a n d r i g h t l y i t d o e s n o t h a v e a

    d i r e c t o p t i o n f o r f r a c t u r e s i m u l a t i o n . D u r i n g p r o d u c t i o n ,

    a h y d r a u l i c f r a c t u r e i s , h o w e v e r , v e r y m u c h a c o n t i n u u m

    w i th d if fe re nt p er me ab i li t y a nd p o ro si ty b ei n g p a ck ed b y

     proppants with respect to the other portion of the

    r e s e r v o i r . O n e n o n - p h y s i c a l c o n v e n i e n t w a y t o d e s c r i b e

    a h y dr a ul i c f r ac t u re i s t h e u s e o f n o n -d i me n s io n a l f r a c -

    t u r e c o n d u c t i v i t y (C i n c o - L e y e t a l . , 1 9 7 8 ) , d e f i n e d a s :

      F      C D ¼ jf                wjl   

      ð8Þ

    where  κf    i s t h e p r op p e d f r ac t ur e p e rm e ab i l it y,   w   i s t he

     propped fracture width,   κ   i s t he i n tr in s ic r es er vo i r    

     permeability and   l      i s t h e f r ac t ur e h a l f- l en g t h ( l en g th o f                    

    f ra ct ur e o n o ne s id e o f t he w el l) . T he v al ue o f                      κf    is

    s i g n i f i c a n t l y g r e a t e r t h a n κ. T h i s d e s c r i p t i o n o f p r o p p e d

    f ra ct ur e a ll ow s u s t o r ep re se nt t he f ra ct ur e i n t he

    F LA C3 D m od el b y a s ub -z on e o f w id th   w   along   X           -

    a x i s o v e r l e n g t h   l      along   Y          - a x i s w i t h p e r m e ab i l i t y κf   (see

    F i g s . 3 a n d 4 ).   F i g . 4   s h o w s t h e n e a r - w e l l b o r e p o r t i o n o f                    

    t h e f ra ct u re d r es er vo i r. C l ea rl y, t he f ra ct u re i s r ep re -s en t ed b y a r ec t an g ul a r s tr ip w h ic h i s a ss i gn ed w i th a

    v er y h ig h p er me ab il it y c om pa re d t o t he r es er vo ir    

     permeability. Due to symmetry, a half of the total

    Ta b l e 1

    I n p u t p a r a m e t er s t o s i m u l a t e c o u p l e d f l u i d f l o w

    Parameter s SI units Field units

    S i ze o f t h e r e se r vo i r    

    Length 10 m 32.8 1 ft  

    Width 10 m 32. 81 ft  Payzone height 2 m 6.56 ft  

    Well bore r adius 0.1 m 0.33 ft  

    Fracture width 0.01 m 0.03 3 ft  

    Fracture half length 1.25 m, 0.6 m 4.1 f t, 1 .97 ft  

    Fluid bulk mo dulus 3.83 e5 Pa 55. 55 ps i

    F lu id c om pr es si bi li ty 2 .6 1 × 1 0−6 1/Pa 1.8 × 10−2 1/ps i

    Euler' s constant 1.78 1.78

    Poros ity 0.15 0.15

    Biot modulus 2.55 × 106 Pa 3.7 × 102  ps i

    Biot coefficient 0.21, 1 0.21, 1

    I n i t ia l r e s e r vo i r    

     pore pres s ure

    2 5 × 1 06 Pa 3.6 × 103  ps i

    Well b ore pr es sur e 107 Pa 1.45 0 × 103  ps i

    R es er vo ir p er m ea bi li ty 9 .9 × 1 0−16 m2 1 mdF ra ct ur e p er me ab il it y 9 .9 × 1 0−14 m2 1 0 0 m d

    Fluid vis cosity 10−3 Pa s 1 cp

    Bulk modulus 2.758 × 108 Pa 1.8 5 × 105  ps i

    Shear modulus 1.15 × 108 Pa 1.67 79 × 104  ps i

    M in im um in si tu st re ss 3 4 × 1 06 Pa 4.9 27 × 103  ps i

    M ax im um i n s it u st re ss 5 1 × 1 06,

    3 4 . 6 8 9 5 × 1 06

    o r 3 4 . 3 4 4 7 5 × 1 06 Pa

    7 . 4 × 1 03,

    5 . 0 2 7 × 1 03

    o r 4 .9 77 5 × 1 03  ps i

    Tens ile strength 5.7 × 107 Pa 8.12 × 103  ps i

    F i g . 5 . C o n t o u r p l o t o f p o r e p r e s s u r e a f t e r 1 9 0 h o f f l o w w i t h   l    = 1 . 2 5 m ,  Δσ= 0 . 3 5 M P a , α = 0 . 2 5 .

    190   M . K . R a hm a n, A . H . J o a rd e r / J o u rn a l o f P e t ro l e um S c i e nc e a n d E n gi n e e ri n g 5 1 ( 2 00 6 ) 1 8 5 – 1 9 6    

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    7/12

     propped fracture width was modelled in the quarter  

    r es er v oi r m od el i n   Fig . 4. I so t ro p ic p er me ab i li t y i s

    a s s u m e d f o r b o t h r e s e r v o i r a n d f r a c t u r e z o n e s .

    5. Presentation of results and discussions

    I n o r d e r t o d e v e l o p i n s i g h t s , a n u m b e r o f c a s e s h a v e

     been studied. Two different fracture lengths have been

    u s e d t o a n a l y s e t h e e f f e c t o n f l o w r a t e , p o r e p r e s s u r e a n ds t re s s d i st r i bu t i on w i th i n t h e r e se r vo i r c o mp a re d t o a n

    u n fr a ct u r ed r e se r vo i r. A p a rt f r om t h e f r ac t u re l e n gt h ,

    B i o t c o e f f i c i e n t , a n d t h e m a g n i t u d e o f t h e i n s i t u s t r e s s e s

    a re a ls o c ha ng ed t o o bs er ve t he a bo ve m en ti on ed

    e f fe c ts . Va l u es f o r d i ff e re n t p a ra m et e rs t o d e sc r ib e t h e

    r e se r v oi r c o n di t i on a r e s u mm a ri s ed i n   Ta b l e 1.

    Va lu es u se d f or t wo p ar am et er s d es er ve s om e

    e x pl a n at i o ns h e re . T h e a c tu a l f r ac t u re p e rm e ab i l it y, o r    

    t h e f r ac t u re c o nd u c ti v i ty, w i l l b e m u ch h i g he r t h a n t h e

    v al u e u se d f or t he m od e l h er ei n. A l th ou g h t he m od e l

    v al u e i s c ho se n a rb i tr ar il y, t he r el at i ve ly l o w f ra ct u re

     permeability was used to avoid the infinite conductivityc on di ti on i n t he s ma ll m od el r es er vo ir. T he f lu id

    c o mp r es s ib i l it y i s a b o ut 1 0 0 t i me s t h e c o mp r e ss i bi l i ty

    o f n at ura l ga s wi th a p art ic ul ar c omp osi ti on a t a

    F i g. 6 . C o n t o ur p l ot o f                     σxx   a f t e r 1 9 0 h o f f l o w w i t h   l    = 1 . 2 5 m ,  Δσ= 0 . 3 5 M P a , α = 0 . 2 5 .

    F i g. 7 . C o n t o ur p l ot o f                     σyy   a f t e r 1 9 0 h o f f l o w w i t h   l    = 1 . 2 5 m ,  Δσ= 0 . 3 5 M P a , α = 0 . 2 5 .

    191   M.K. R a h ma n , A .H. Jo a rd er / Jo u rn a l o f P etro leu m S cien ce a n d E n g in eering 5 1 ( 2 0 0 6 ) 1 8 5 – 1 9 6    

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    8/12

    t e mp e ra t u re a n d t h e r e se r v oi r p r es s u re u s ed . T h e h i gh

    c o mp r e ss i bi l i ty w a s u s e d j u s t t o a c ce l er a te t h e c o mp u -

    t at i on b y a d ju s ti n g t h e t i me s te p i n t he e xp l ic i t f in it e

    d if fe re nc e s ol ut io n s ch em e. T hi s h as h el pe d u s t o

    d em on st ra te t he k ey c on ce pt o f t hi s w or k i n a t im e-

    e ff ic ie n t m an ne r. I n a r ea l c as e w h er e o th e r r es er vo i r     parameters will also be different, the actual fluid

    c om pr es si bi l it y m us t b e u se d a n d t h e c o mp u ta ti o na l

    t im e i ss ue h as t o b e m an ag ed i n s om e o th er w ay s, a s

    d i s c u ss e d l a t e r.

    O u r p r i m a r y i n t e r e s t i s t o s e e t h e p r o d u c t i o n - i n d u c e d

    s t r e s s c h a n g e w h e n a f r a c t u r e i s a l o n g t h e n o n - p r e f e r r e d

    d ir ec ti o n. To s im u la te t h is s ce na ri o , a f ra ct u re h al f-

    l en gt h o f 1 .2 5 m w as m od e ll ed a lo n g   Y          - d i r e ct i o n w i t h

    v al ue s o f i n s it u s tr es se s,   σxx = 3 4. 35 M Pa a nd   σyy =

    3 4 M P a , c r e a t i n g a d e v i a t o r i c s t r e s s o f 5 0 p s i ( 0 . 3 5 M P a ) .

    A c ou pl ed fl ow p ro ce ss w as si mu la te d fo r 1 90 h .C o nt o u r p l o ts f o r p o re p r es s u re , a n d a b s ol u t e s t re s se s σxxand  σyy   a ft er 1 9 0 h o f f l o w a re p re se n te d i n   F i g s . 5 , 6

    a nd 7, r e s p ec t i v e l y.

    A s c a n b e s e e n i n   F i g . 5 , t h e p o r e p r e s s u r e d e p l e t i o n

    i s e l o ng a t ed a l o ng t h e f r a c t ur e l e n gt h , a n d t h e f l u i d h a s

     been extracted both through matrix to the wellbore, and

    f ro m t he m at r ix t h ro u gh t h e f ra ct ur e t o t h e w e ll b or e.

    O b v i o u s l y , e x t r a c t i o n t h r o u g h t h e f r a c t u r e d o m i n a t e s t h e

    f l o w p a t t e r n a s e x p e c t e d . N o n - u n i f o r m p a t t e r n s o f s t r e s s

    c o n t o u r s i n   F i g s . 6 a n d 7   a r e o f p a r t i c u l a r i n t e r e s t , w h i c h

    a r e p o t e n t i a l l y t h e s o u r c e f o r s t r e s s r e v e r s a l t h a t w e a r e

    i n t e r es t e d i n .To d e v el o p c o n fi d e nc e i n o u r a p p ro a c h f o r p r op p ed

    f ra ct ur e m od el li ng i n F LA C3 D, w e s im ul at ed f lo w

     processes for two other cases with the same stress

    c o n d i t io n : f r a c t ur e h a l f - le n g t h ,   l    = 0 .6 a nd   l    = 0 m, i.e.

    w it h ou t a n y f ra ct u re . F lo w p ro fi l es f or t he t hr ee c as es

    (l    = 1 . 2 5 ,   l    = 0 .6 a nd   l    = 0 m) d uring th e first 13 h are

     plotted in   F i g . 8 . S e n s i b l y , t h e p r e s e n c e o f f r a c t u r e s h a s

    i n cr ea se d t h e f lo w r at e s ig n if i ca nt l y, a nd t h e o rd e r o f                    

    i nc re as e w as a ls o c lo se t o a p re di ct ed v al ue b y a n

    a p pr ox i ma te a na l yt ic a l m et h od i n w h ic h a f ra ct u re i s

    r e p re s e n t e d b y a s k i n a s a f u n c t i on o f t h e n o n -

    d i m en s i on a l f r ac t u re c o nd u c ti v i ty (E co n om i de s e t a l. ,

    1994 ) . A p p a r e n t l y , a l m o s t t h e s a m e f l o w r a t e f o r t h e t w o

    d i f fe r en t f r ac t u re l e n gt h s d u ri n g t h e f i rs t f e w h o u rs c a n

     be perc eive d as inco nsist ency. Howev er, rigo rous

    i n v es t i ga t io n s r e ve a l ed t h a t t h i s i s v e ry m u ch s e ns i bl e

    a s n o a d di t io n al f lo w b en e fi t i s r ea li se d f or t h e l on g er    

    f ra ct ur e u n ti l t he d i ff us i on p ro ce s s g oe s b ey o nd t h e

    l e n g t h o f t h e s h o r t e r f r a c t u r e , a f t e r w h i c h t h e f l o w r a t e i so b v io u s ly h i g he r f o r t h e l o n ge r f r ac t u re .

    A b s o l u t e s t r e s s e s a n d p o r e p r e s s u r e a t t h e v i c i n i t y o f                    

    t h e f r a c t u r e t i p a r e p l o t t e d i n   F i g . 9   w i t h r e s p e c t t o f l o w

    t im e. S en si bl y, t he p or e p re ss ur e h as d ec li ne d a s a

    f un ct io n o f p ro du ct io n t im e. T hi s d ec li ni ng p or e

     press ure creat es an effect of stress relie f on the

    s u rr ou n di ng r oc k m at ri x , a nd t he re fo re t h e a bs o lu te

    F i g. 8 . F l ow r a te c o mp a ri s on f o r d i ff e re n t f r ac t ur e c o nd i ti o ns w i thΔσ= 0 . 35 M P a, α = 0 . 2 5 .

    F i g. 9 . A b so l ut e s t re s se s a n d p o re p r es s ur e a t t h e f r a ct u r e t i p v e rs u s

     production time with   l    = 1 . 2 5 m ,  Δσ= 0 . 3 5 M P a , α = 0 . 2 5 .

    F i g. 1 0 . Va r ia t io n o f s t re s se s a n d p o re p r es s ur e a l on g t h e f r ac t ur ed i r e c ti o n w i t h   l    = 1 . 2 5 m ,  Δσ= 0 . 3 5 M P a , α = 0 . 2 5 .

    192   M . K . R a hm a n, A . H . J o a rd e r / J o u rn a l o f P e t ro l e um S c i e nc e a n d E n gi n e e ri n g 5 1 ( 2 00 6 ) 1 8 5 – 1 9 6    

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    9/12

    s tr es se s h av e a ls o d e cl in e d a s a f un ct i on o f f lo w t i me .T h e m o s t i m p o r t a n t a n d i n t e r e s t i n g i n f o r m a t i o n t h a t c a n

     be derived from this figure is that the stress reversal

    ( st r es s c o nd i ti o n f ro m   σxxNσyy   to   σyyNσxx) h a s

    o cc u rr e d a f t er a bo u t 4 8 h o f f lo w, a nd a ls o t h e r e v er se

    d ev ia to ri c s tr es s a t t he f ra ct ur e t ip h as i nc re as ed

    a ft er wa rd s w it h f lo w t im e. I t i s i nt er es ti ng t o k no w

    h ow f ar f ro m t he f ra ct ur e t ip t hi s s tr es s r ev er sa l h as

    m o v e d a f t e r 1 9 0 h o f f l o w . F o r t h i s p u r p o s e , s t r e s s e s a n d

     pore pressure at different points from the fracture tip

    a l o n g t h e f r a c t u r e d i r e c t i o n a r e p l o t t e d i n   F i g . 1 0, w h i c h

    c l ea r l y s h o w s t h at t h e s t re s s r e v e r sa l r e gi o n e x t en d s u p

    t o a bo ut 3 5 c m f ro m t he f ra ct ur e t ip . I mp li ca ti on s o f                    r es ul ts i n t he se t wo f ig ur es o n m ul ti st ag e h yd ra ul ic

    f r ac t u ri n g w i l l b e d i sc u s se d l a t er.

    S t r e s s e s a n d p o r e p r e s s u r e a t a p o i n t v e r y n e a r t o t h e

    w e l l b o r e w a l l a l o n g   X           - a x i s a r e p l o t t e d i n   F i g . 1 1   against 

    f l o w t i m e . N o t e t h a t t h e p o i n t i s n o t t a k e n e x a c t l y o n t h e

    w el l bo r e w al l t o a v oi d t h e e ff ec t o f c o ns ta n t w e ll bo re

     pressure. The figure shows that the total stresses and the

     pore pressure decrease very sharply during the initial

    f lo w p er io d a nd t he c ha ng es a re v er y n eg li gi bl e

    a ft er wa rd s. A n i nt er es ti ng n ot e t o b e t ak en f ro m t he

    f i g u r e t h a t t h e d i f f e r e n c e b e t w e e n t h e t o t a l s t r e s s e s ,  σxx−σyy, h a s i n c r e as e d s i g n i fi c an t l y d u e t o t h e f l o w e f fe c t  

    f ro m i ts i ni t ia l v e ry n eg li g ib l e v al u e. A ls o t h er e i s n o possibility of stress reversal at this point due to the flow

    e f fe c t. H o w ev e r, t h i s d o es n o t c l ea r l y a n sw e r w h et h e r    

    t he e x is ti ng f ra ct u re w il l p ro p ag a te f ur th er a lo n g i ts

     plane (Y          - a xi s ) w i t ho u t i n it i a ti n g a n o th e r f r ac t ur e a t t h is

     point (along   X           - a xi s ) i f t h e w e l lb o r e i s p r es s ur i ze d a f te r    

    1 9 0 h . F o r t h i s p u r p o s e , t h e f r a c t u r e i n i t i a t i o n p r e s s u r e a t  

    t hi s p o in t a nd t h e p ro pa g at i on p re ss ur e a t t he e xi s ti ng

    f ra ct u re t ip p ro p ag a ti o n a re c al c ul at e d a nd p l ot te d i n

    F ig . 1 2. T h e t e n s i l e s t r e n gt h   T           h a s b e en a ss um ed z er o

    w it h w h ic h t he l ik e li h oo d o f f ra c tu re i n it i at i on a t t h is

     point before the tip propagation is maximum. In other  w or ds , i f t he s ec on da ry o rt ho go na l f ra ct ur e i s n ot  

    i n i ti a t ed b e fo r e t i p p r op a g at i o n w h e n   T         = 0 , it is very

    u nl ik el y t ha t w il l h ap pe n i f t he f or ma ti on h as s om e

    r e a s o n ab l e t e n s i l e s t r e n g th .   F i g . 1 2   c l e a r l y s h o w s t h a t i f                    

    t h e i n i t i a l f r a c t ur e i s n o t c r ea t e d a l o n g   X           - a x i s a n d i f t h e

    w e l l b o r e i s p r e s s u r i z e d a g a i n a f t e r a b o u t 2 0 h o f f l o w , a

    s e c o n d a r y o r t h o g o n a l f r a c t u r e w i l l n o t b e i n i t i a t e d a t t h i s

     point. In fact, the declining nature of fracture propaga-

    t i o n p r es s ur e i n d ic a t es t h a t t h e f r ac t u re w i l l p r op a g at e

    m o r e r e a d i l y i f p r e s s u r i z e d a f t e r l o n g e r p r o d u c t i o n t i m e .

    T he o pp os it e i s t ru e w it h t he s ec on da ry o rt ho go na l

    f r a c tu r e i n i t i a t i on .B e f o r e d i s c u s s i n g t h e i m p l i c a t i o n s o f t h e s e r e s u l t s o n

    t h e m e n t i o n e d m u l t i s t a g e h y d r a u l i c f r a c t u r i n g , v a r i a t i o n

    o f r es ul ts w it h c ha ng e o f s om e s tu dy p ar am et er s a re

    s u mm a ri s e d i n   Ta bl e 2   w i th o u t p r es e nt i n g d e t ai l ed

     plotting to shorten this presentation.

    It i s c le ar f ro m   Ta bl e 2   t h at w i th i nc re a se d s tr es s

    d if fe re nc e a l on ge r f lo w t im e i s n ec es sa ry f or t he

    s t r e s s e s t o r e v e r s e , a n d t h e s t r e s s e s r e v e r s e q u i c k l y f o r a

    s h or t er f r ac t u re . F o r a h i g he r v a lu e o f B i ot c o ef f ic i e nt ,

    t h e f l o w p e r i o d f o r s t r e s s r e v e r s a l i s s h o r t e r . T h i s i s a l s o

    s e ns i bl e , b e ca u se a h i g he r B i o t c o ef f ic i en t r e pr e se n t sl o w er g r ai n c o mp r e ss i b il i t y o f t h e r o ck . T h er e fo r e, t h e

    F i g . 1 2 . F r a c t u r e i n i t i a t i o n p r e s s u r e ( a t w e l l b o r e w a l l a l o n g   X            - a x i s ) a n d

    t i p p r op a ga t io n p r es s ur e f o r t h e c u rr e nt f r a ct u re ( a lo n g   Y          - a x i s ) w i t hl    = 1 . 2 5 m ,  Δσ= 0 . 3 5 M P a , α = 0 . 2 5 .

    Ta b l e 2

    E f f e c t s o f s t r e s s d i f f e r e n c e , B i o t c o e f f i c i e n t a n d f r a c t u r e h a l f - l e n g t h o n

    s t r e ss r e v e r sa l t i m e

    S t r e ss d i f f er e n c e

    σxx−σyy   (ps i)

    Biot 

    coefficient, α

    Fracture

    half-length,   l   f    (m)

    S t r e ss r e v e r sa l

    t i me ( h )

    50 0. 25 1.25 4 8

    50 0. 25 0.60 1 2.5

    100 0. 25 1.25 9 4

    50 1. 0 1.25 4 6

    100 1. 0 1.25 8 3

    F i g . 1 1 . A b s o l u t e s t r e s se s a n d p o r e p r e s su r e a t t h e n e a r - w e l lb o r e w a l l

    along   X            - a x i s w i t h   l    = 1 . 2 5 m ,  Δσ= 0 . 3 5 M P a , α = 0 . 2 5 .

    193   M.K. R a h ma n , A .H. Jo a rd er / Jo u rn a l o f P etro leu m S cien ce a n d E n g in eering 5 1 ( 2 0 0 6 ) 1 8 5 – 1 9 6    

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    10/12

    m ec h an i ca l d i sp l ac em en t i s a bs o rb e d l es s b y t h e r oc k  

    w it h a h i gh e r B io t c o ef fi ci e nt , a n d i s m or e e ff ec ti v e t o

    s q u e e z e p o r e s p a c e s r e s u l t i n g i n a h i g h e r f l o w r a t e . T h i s

    h ig h er f lo w r at e a cc el er a te s t h e p or oe la st i c e ff ec t a n d

    h en ce a cc el e ra te s t h e s tr es s r ev e rs a l. I t i s i mp or ta n t t o

    m en t io n h e re t ha t t h e p er me ab i li t y c h an ge d ue t o f lo we f f e c t i s n o t m o d e l l e d i n t h i s w o r k . F o r r o c k s w i t h a l o w

    B i ot c o ef f ic i en t ( e .g .  α= 0 .2 5 ), t h e s tr es s r ev e rs a l t im e

    w ou l d b e l o ng er t ha n r ep o rt e d d ue t o t i me -d ep e nd en t  

     per mea bil ity red uct ion res ult ing from hig h gra in

    c o m p r e s s i o n . F o r B i o t c o e f f i c i e n t , α = 1 ( i n c o m p r e s s i b l e

    g r a i n s) , t h i s t i m e -d e p e n d e n t p e r m e a b i l i ty r e d u c ti o n d u e

    t o g r ai n c o mp r e ss i bi l i ty a l on e i s z e ro a n d t h er e fo r e t h e

    s tr es s r ev e rs a l t i me w o ul d r em ai n u nc h an g ed . W he n

     plotted all the graphs for other cases in   Ta bl e 2, th e

    g e n e r a l n a t u r e s w e r e v e r y s i m i l a r t o t h o s e f o r       l    = 1 . 2 5 m ,

    Δσ= 0 . 3 5 M P a , α = 0 . 2 5 i n   F i gs . 5

    12 .

    5 .1 . I m pl i ca ti o ns o f r es u lt s f o r m ul t is t ag e h yd r au li c

                   fracturing  

    A s w e m e n t i o n e d e a r l i e r , t h e m a i n m o t i v a t i o n b e h i n d

    t h i s s t u d y i s t o i n v e s t i g a t e i f t h e t w o o r t h o g o n a l s t r e s s e s

    (σv   and   σh) a t t he t op a nd b ot to m t ip s o f a v ert ic alh y d r a u l i c f r a c t u r e u n d e r a r e v e r s e f a u l t i n g s t r e s s r e g i m e

    (σvbσh) r ev er s e i n t e rm s o f t h ei r m ag n it u de s i n r es po n se

    t o p ro du c ti on o v er t i me . I f t h ey r ev er se , i .e . t h e l oc a l

    s tr es s c o nd i ti on a ro un d t h es e t ip s b ec o me s s uc h t h at  

    σvNσh, t h e s e t i p s c a n t h e n e a s i l y b e p r o p a g a t e d f u r t h e r    v e rt i ca l l y w i t h o ut t u rn i n g a n d t w i st i n g u p t o t h e e x te n t  

    t h is c on d it io n h a s b e en e st a bl i sh e d. N e gl e ct i ng t h e g r av i ty

    e f fe c t o f h y d ro c a rb o n f l ow, t h e h y d ro c a rb o n e x tr a c ti o n

     pattern around the top and bottom tips of the fracture is

    v er y m uc h s i mi la r t o t ha t a t t he l at e ra l t i p. T he re fo re ,

    r e f e rr i n g t o   F i g . 9   a n d m a ki n g t h e c o r re s po n d en c e b e t -

    ween σv and σyy, a nd σh and σxx w e c an n o w c o nf id e nt l y

    a ns we r t h at t h e s ug g es t ed s tr es s r ev er sa l a t t h e t o p a n d

     bottom tips is possible, and also possible without 

    i ni t ia ti n g a n y s ec on da r y f ra ct u re f ro m t he w e ll b or e.

    F o r o u r m o de l -s c a le s m al l r e se r vo i r, t h e s t re s s r e ve r sa lh as o cc u rr ed i n t h e m ag n it u de o f h o ur s a nd t he e xt e ns io n

    o f t h is s tr es s- re ve rs ed z on e h a s b e en i n c e nt i me t re s. F or a

    f u ll - sc a l e r e al r e se r vo i r w i t h r e al i st i c s t re s s d i ff e re n ce ,

    t he f ra ct ur e d i me n si o n w i ll b e i n h u nd r ed s o f f ee t a n d t h e

    t im e w il l b e i n m on th s, o r y ea rs . H ow ev er, w it h a n

    i m p r o v e d m o d e l l i n g c a p a b i l i t y i t i s p o s s i b l e t o o p t i m i z e

    t h e p r o po s ed m u lt i s ta g e h y d ra u li c f r ac t u ri n g b y s i mu -

    l at i ng t h e p ro c es s f or t he v er ti c al f ra ct u re t ip s o v er a l on g

     period of time to extend the stress reversed zone

    s ig ni fi ca nt ly. T hi s h as t o b e r ep ea te d i n a n um be r o f                    

    s ta g es a nd t h e p r od u ct i on t i me a n d t h e f ra c tu re d i me n -

    s io n s h a ve t o b e r ec o rd e d f o r a l l t h e s t ag e s. R e fr ac t ur i ng

    t re at me nt s f or a ll t he s ta ge s h av e t o b e o pt im iz ed a nd

    c a r r i e d o u t a c c o r d i n g t o s i m u l a t i o n r e s u l t s .

    It i s i mp or ta nt t o n ot e h er e t ha t t he p ro po se d

    m u l ti s ta g e h y d ra u l ic f r ac t u ri n g t e ch n i qu e i s d i ff e re n t  

    f ro m o th e r m ul ti s ta ge h y dr au l ic f ra ct u ri ng j ob s d i s-

    c u s s e d i n m a n y l i t e r a t u r e s a n d o f t e n p e r c e i v e d c u r r e n t l y by the petroleum industry. Currently, there are two

     practices that are often referred to as multistage hydraulic

    f r ac t ur i n g: ( 1 ) p u mp i ng t h e p r op p an t - la d e n f r ac t u ri n g

    f lu i d i n a n u mb e r o f s ta g es w i th s ho rt i nt e rv a ls d u ri n g t h e

    f ra ct ur in g j ob c ar ri e d o ut b ef or e t h e p ro du c ti on p h as e

    s t a r t s , a n d ( 2 ) a s e c o n d f r a c t u r i n g j o b t h a t i s c a r r i e d o u t  

    a ft er a f ew y ea rs o f p ro du ct io n, o ft en k no wn a s

    r e fr a ct u r in g . T h e p r op o se d m u lt i s ta g e f r ac t u ri n g t e c h-

    n i q u e h a s a c o m m o n f e a t u r e w i t h t h e s e c o n d p r a c t i c e i n

    t h e s e n s e t h a t a n u m b e r o f r e f r a c t u r i n g j o b s a r e p r o p o s e d

    t o b e c a r r i e d a t d i f f e r e n t s t a g e s o f p r o d u c t i o n ; h o w e v e r ,t h e n u m b e r o f s t a g e s a n d t h e i r t i m i n g a r e p r o p o s e d t o b e

    o p ti mi z ed b as ed o n s im il a r a na l ys es p re se n te d i n t h is

     paper, but for the full-scale reservoir. The treatment for  

    e a ch s ta g e c a n b e o p ti mi z ed i n a w ay t h at a l le v ia t es o th e r    

    f r a c t u r i n g c o m p l e x i t i e s a s w e l l ( R a h m a n e t a l . , 2 0 0 1 ).

    P e rf o rm i n g t h e p r op o s ed m u l ti s ta g e h y d ra u l ic f r ac -

    t u r in g s i mu l a ti o n a n d t r ea t m en t o p t im i za t i on f o r a r e al

    r e se r vo i r w i ll b e c e rt a i nl y c o mp u t at i o na l l y c h al l e ng i n g

    a nd t he re fo re f ur th er e xt en si ve r es ea rc h h as t o b e

    u n d er t a ke n t o o v er c om e b o th m o de l l in g a n d c o mp u t a-

    t i o n a l c h a l l e n g e s f o l l o w i n g t h e l e a d o f t h i s s m a l l p r o j e c t ,

    w h i ch h a s, w i t hi n i t s s c op e , d e mo n s tr a te d t h e p o t en t i -a l it y o f t h e c on c ep t . I n a dd i ti on t o a pp r op ri at e m es h in g i n

    d i ff er en t z on es o f t he m od el , t h e u se o f i mp l ic i t f in it e

    d i f fe r en c e s o lu t i on s c he m e m i g ht a l l ow a s i gn i fi c a nt l y

    l a rg e r t i me s t e p w i t ho u t g r ea t l y c o mp r om i s in g w i t h t h e

    a cc ur ac y, a nd h en ce h as a g re at p ot en ti al t o h el p i n

    c o m p u t a t i o n a l t i m e m a n a g e m e n t . F u r t h e r i m p r o v e m e n t s

    i n f o rm u l at i o ns a r e a l so n e ce s s ar y t o c o n si d e r m u lt i p ha s e

    f lo w a n d p se ud o -s te ad y s t at e f lo w c o nd it i on s . F or t h e

    c on ve ni en ce o f m od el li ng a nd u nd er st an di ng , t he

     phenomenon has been studied at the lateral tips of the

    f r ac t ur e s w i t h a h i g hl y c o mp r es s i bl e h y p ot h e ti c a l p o r ef l u id . W i th a d e qu a t e r e so u r ce s , a c o mp r e he n si v e i n v es -

    t ig at io n w it h a f ul ly 3 -D s ol id m od el f or a f ul l- sc al e

    r es er vo ir c on ta in in g a r ea l h yd ro ca rb on f lu id m ay

     produce further stimulating insights directly for the top

    a nd b ot to m t ip s o f t he f ra ct ur e. I nt ui ti ve ly, t he

     production-induced stress alteration process is inherent-

    l y d e p en d e nt o n t h e r e s er v o ir p e r me a b il i t y. T h e a p p li c a -

    t i on s o f t h is c o nc e pt t o l o w t o e xt r em el y l o w p e r me a bi l it y

    f o rm a ti o ns n ee d t o b e s t ud i ed f ur t he r, a n d t h e o p ti m iz a ti o n

    o f c o n tr o l la b l e p a r am e t er s l i k e f r ac t u re d i m en s i on s a n d

    c o nd u ct i vi t y m ay b e c ru ci a l t o i t s f ea si b le a pp l ic at io n s t o

    a g i v e n r e s e r v o i r p e r m e a b i l i t y a n d o t h e r p r o p e r t i e s .

    194   M . K . R a hm a n, A . H . J o a rd e r / J o u rn a l o f P e t ro l e um S c i e nc e a n d E n gi n e e ri n g 5 1 ( 2 00 6 ) 1 8 5 – 1 9 6    

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    11/12

    I de a ll y, t h e d e ve l op m en t o f a s t an d a lo n e c o de w i th

    s l i gh t l y s i m pl i f ie d a n d c o m pu t a ti o n al l y e f fi c i en t t h e or i e s

    ( e . g . b o u n d a r y e l e m e n t b a s e d f o r m u l a t i o n s ) s h o u l d b e t h e

    s u b je c t o f f u r th e r i n v es t i ga t i on s t o i m p le m e nt c o n ce p t t o

    a ct ua l r es er vo ir s. T he F LA C3 D c od e c an b e a v it al

    v a li d at i on t o ol i n t h at d e ve l op m en t p r oc e ss . I n s h or t, ag re at d ea l o f w or k t o b e d on e i n t he f ut ur e c ov er in g

    f o r mu l a ti o n s, m o d el l i ng a s w e l l a s c o m pu t a ti o n a l a s p ec t s .

    O n r e a li s a ti o n o f s u c h a t e c hn o l og y, h o w ev e r, A u s tr a l ia

    a n d m a n y o t h e r c o u n t r i e s i n t h e w o r l d , w h e r e m a n y t i g h t  

    r e s er v o ir s a r e s u b je c t t o r e v er s e f a u lt i n g s t r es s r e g im e s ,

    a re e nv is ag ed t o d er iv e h ug e b en ef it s. S uc h a p ro je ct  

    therefore warrants significant long-term investments.

    6. Conclusions

    T he ma in mo ti va ti on b eh in d t hi s s tu dy w as t oi n v e s t i ga t e w h e t h e r t h e p r o d u c t io n - i n d u c ed p h e n o m e na

    c an e st ab li sh a s tr es s s ta te a t a n e xi st in g h yd ra ul ic

    f r ac t u re t i p , w h i ch w a s i n i ti a l ly a l o ng t h e n o n -p r e fe r re d

    d i r e c t i o n f o r p r o p a g a t i o n d u e t o t h e i n i t i a l s t r e s s s t a t e , s o

    t h a t t h e f r a c t u r e c a n b e e x t e n d e d f u r t h e r a l o n g i t s c u r r e n t  

    d i r e c t io n w i t h o u t t u r n i n g a n d t w i s t i n g. T h e s i g n i f i c a n c e

    o f s u c h a f i n d i n g i s t h a t a v e r t i c a l f r a c t u r e f r o m a v e r t i c a l

    w e l l i n a r e v e r s e f a u l t i n g s t r e s s r e g i m e c a n b e e x t e n d e d

    i n a n um be r o f s ta ge s t o i ts f in al p la na r, p ro du ct iv e

    c o n f i g u ra t i o n b y e x p l o i t i ng t h i s p h e n o m e n o n .

    W it h in t h e f ra me w or k o f F LA C 3D , a l i ce n se d p ro -

    d u ct o f I t as c a C o ns u l ti n g G r ou p f o r m o de l l in g c o u pl e df lu id f lo w a nd m ec h an i ca l d ef or ma ti o n, a s ol i d m od el

    h a s b e e n d e v e l o p e d t o r e p r e s e n t a s m a l l - s c a l e r e s e r v o i r ,

     producing well and a propped fracture from the well. A

    n u m b e r o f p r o d u c t i o n s i m u l a t i o n s h a v e b e e n c a r r i e d o u t  

    v ar yi n g i n s it u s tr es se s, f ra ct u re s iz e a n d p o ro e la st i c

     parameters to characterize the time-dependent stress

    s ta te . R e su l ts d e mo n st ra t e t h at t h e s tr es s s ta t e a t t h e

    f r a c t u r e t i p b e c o m e s s u i t a b l e f o r f u r t h e r p l a n a r p r o p a g a -

    t i o n o f t h e f r a c t u r e a f t e r a p e r i o d o f p r o d u c t i o n t i m e , b y

    r e v e r s i n g t h e m a g n i t u d e o f t h e o r t h o g o n a l s t r e s s e s a t t h e

    f ra ct u re t ip . F or a g iv e n p ro p pe d f ra ct ur e s iz e , i n s it us t re s se s a n d r e se r v oi r p r op e r ti e s, t h i s s u it a b le t i me a n d

    t h e t i m e t o e x t en d t h i s f a v o u ra b le s t re s s c o n d it i o n u p t o a

    t a rg e t r e gi o n c a n b e e s ta b l is h ed f r om s u c h s i mu l a ti o n s.

    T h e i m p l i c a t i o n o f t h i s c a p a b i l i t y i s t h a t a t r e a t m e n t c a n

    t he n b e o pt i mi z ed a n d e xe cu t ed t o e xt e nd t h e f ra c tu re

    t hr ou g ho ut t h at r eg i on . R ep e at i ng t h is i n a n um be r o f                    

    s t ag e s , a f i na l p r o du c t iv e f r ac t u re c a n b e c r ea t e d. F r om

    t h e s i m u l a t i o n c a s e s , i t i s f o u n d t h a t a l o n g e r p r o d u c t i o n

    t im e i s n e ce ss ar y f or t he s tr e ss r ev er sa l t o o cc u r i f t h e

    d if fe re n ce b e tw ee n t h e o rt h og on a l s tr es se s a t t he t ip i s

    h ig he r, t he s ta ge o ne f ra ct ur e i s l on ge r a nd t he r oc k  

    g r ai n s a r e m o re c o mp r es s ib l e ( i .e . α   i s l o w e r ) . I t i s a l s o

    e s ta b l is h ed t h a t t h e r e fr a ct u ri n g o f t h e c u rr e n t f r ac t u re

    c a n b e d o n e w i t h o ut c r ea t i ng a s e co n d ar y f r ac t u re f r om

    t h e w e l l b o r e.

    F i na l l y, t h e p a p er h a s c o n cl u d ed b y e m ph a s iz i n g t h e

    n e ed f o r f u rt h er r e se a r ch w i t h f u ll - sc a l e r e se r v oi r s, a n d

    f ut ur e r es ea rc h d ir ec t io n s t o o p ti mi z e t h e p ro po s edm u l t i s ta g e f r a c t u ri n g p r o c e s s.

    Acknowledgements

    T h e f i rs t a u th o r a c k no w l ed g es t h e F a cu l t y S t ar t -u p

    G r a n t a t U W A t o d e v e l o p t h e b a s i c f a c i l i t i e s f o r r e s e a r c h

    i n h y d r a u l i c f r a c t u r i n g , a n d b o t h a u t h o r s t h a n k U W A f o r    

    U W A R e s e a r c h G r a n t t h a t h a s l e d t h e p r o j e c t u p t o t h i s

     point. The two anonymous reviewers must be credited

    f o r t h e i r m a n y c o m m e n t s t h a t h a v e i m p r o v e d t h i s p a p e r .

    F i n a l l y , C h r i s t i n e D e t o u r n a y o f I t a s c a C o n s u l t i n g G r o u pd e se r v es t h a nk s f o r h e r a d v ic e o n   ‘t h e u s u al p r oc e d ur e’

    t o f ol l ow w he n p ub l is hi ng a w or k d o ne u si n g I ta sc a' s

    s of tw ar e p ro du c ts b as ed o n w hi ch t h is r ev is e d m an u-

    s c ri p t i s p r ep a r ed .

    References

    B e r c h en k o , I . , D e t o ur n a y, E . , 1 9 9 7 . D e v i at i o n o f h y d r a ul i c f r a c t u r e s

    t h r o u gh p o r o e la s t i c s t r e s s c h a n g e s i n d u c e d b y f l u i d i n j e c t i o n a n d

     pumping. International J ournal of Rock Mechanics and Mining

    S c ie n ce s 3 4 ( 6 ) , 1 0 0 9–1019.

    C h en , H ., Te u fe l , L . W. , 2 0 01 . R e se r vo i r S t re s s C h an g es I n du c ed by Produ ction /Inje ction , paper SPE 71087 . SPE Rocky

    M o u n ta i n P e t r ol e u m T ec h n o l og y C o n f e re n c e , K e y s to n e , C o l o r -

    a do , M ay 2 1–23.

    C h e n g , A . H . - D ., A b o u sl e i ma n , Y. , R o e g i er s , J . - C ., 1 9 9 3 . R e v i e w o f                    

    s o m e p o r o e l a s ti c e f f e ct s i n r o c k m e c h a n i c s. I n t e r na t i o na l J o u r n al

    o f R oc k M ec ha ni cs a nd M in in g S ci en ce s a nd G eo me ch an ic s

    A b s t ra c t s 3 0 ( 7 ) , 1 1 1 9–1126.

    C i n c o -L e y, H . , S a m a ni e g o , V. F. , D o m í n gu e z , A . N ., 1 9 7 8 . T r a ns i e n t  

     pres s ure behaviour of a well with a finite conductivity fracture.

    S o c i et y o f P e t r o le u m E n g i n e e r s J o u r n a l 2 5 3–2 6 4 ( A u g u st ) .

    D e to u rn a y, E . , M c Le n na n , J . D. , R o eg i er s , J . -C . , 1 9 86 . P o ro e la s ti c

    C o n c e p t s E x p l a i n S o m e o f t h e H y d r a u l i c F r a c t u r i n g M e c h a n i s m s ' ,

     paper SPE 15262 pres ented at the Unconventional Gas Technology

    S y m p os i u m h e l d i n L o u i s vi l l e , K Y, M a y 1 8–21.

    D on , C .Y. , d e P at er , C .J ., 2 0 01 . N u me r ic a l i m pl em e nt a ti on o f                    

    d i s p l a c e m e n t d i s c o n t i n u i t y m e t h o d a n d i t s a p p l i c a t i o n i n h y d r a u l i c

    f r ac t ur i ng . C o mp u te r M et h od s i n A pp l ie d M e ch a ni c s a n d

    E n g i n e e r i n g 1 9 1 , 7 4 5–760.

    D on g, C .Y. , d e P at er , C .J ., 2 00 2. N um er ic al m od el in g o f c ra ck  

    r e o r i en t a t io n a n d l i n k - up . A d v a nc e s i n E n g i ne e r i n g S o f t w a r e 3 3 ,

    577–587.

    E c o n o m i d e s , M . J . , H i l l , A . D . , E h l i g - E c o n o m i d e s , C . , 1 9 9 4 . P e t r o l e u m

    P r o d u ct i o n S y s t e m s . P r e n t i c e H a l l , N e w J e r s ey, U S A .

    E lb e l, J .L ., M a ck , M .G ., 1 9 93 . R e fr a ct u ri n g: O bs er v at i on s a nd

    T h eo r ie s , P a p e r S P E 2 5 46 4 , P r e s en t ed a t t h e P r od u ct i on O p er a ti o ns

    S y m p o s i u m h e l d i n O k l a h o m a , U S A , M a r c h 2 1–2 3 , p p . 5 2 1–531.

    F L A C 3D , 2 0 0 2 a . T h e o r y a n d B a c k gr o u n d . I t a s c a C o n s u l t i ng G r o u p,I n c . , M i n n ea p o l is , M i n n e so t a , U S A .

    195   M.K. R a h ma n , A .H. Jo a rd er / Jo u rn a l o f P etro leu m S cien ce a n d E n g in eering 5 1 ( 2 0 0 6 ) 1 8 5 – 1 9 6    

  • 8/9/2019 Investigating Production-Induced Stress Change at Fracture Tips

    12/12

    F L AC 3 D, 2 0 02 b . F l ui d–M e c h an i c a l I n t e r ac t i o n . I t a s ca C o n s ul t i n g

    G r o u p, I n c . , M i n n ea p o l i s, M i n n es o t a , U S A .

    H i l l i s , R . R . , R e y n o l d s , S . D . , 2 0 0 0 . T h e A u s t r a l i a n s t r e s s m a p . J o u r n a l

    o f t h e G e op h ys i ca l S o ci e ty o f L o nd o n 1 5 7 , 9 1 5–921.

    H os sa in , M .M ., R ah ma n, M .K ., R ah ma n, S .S ., 2 00 0. H yd ra ul ic

    f r ac t ur e i n it i at i on a n d p r o pa g at i on : r o le s o f w e ll b or e t r aj e ct o ry,

     perforation and s tres s regimes . J ournal of Petroleum Science andE n g i ne e r i n g 2 7 ( 3–4 ) , 1 2 9–149.

    R a h m an , M . M ., R a h m an , M . K ., R a h m an , S . S ., 2 0 0 0 a . T h e r e c o g ni t i o n

    a n d a l le v ia t io n o f c o mp l ex i ty w i th h y dr a u li c f r ac t ur i ng o n sh o r e

    A u s tr a l i a. A P P EA J o u r n al 4 6 9–480.

    R a h m an , M . K ., H o s sa i n , M . M . , R a h m a n, S . S ., 2 0 0 0 b . A n a n a l yt i c a l

    m e th o d f o r m i xe d -m o de p r op a ga t io n o f p r es s ur i ze d f r ac t ur e s i n

    r e m o t el y c o m p r es s e d r o c k s . I n t e r n a t i o na l J o u r n al o f F r a c tu r e 1 0 3 ,

    243–258.

    R a hm a n , M . M. , R a hm a n, M . K. , R a hm a n, S . S. , 2 0 0 1. A n i n t eg r at e d

    model for multi-objective des ign optimization of hydraulic f ractur-

    i n g . J o u r n a l o f P e t r o l e u m S c i e n c e a n d E n g i n e e r i n g 3 1 ( 1 ) , 4 1–62.

    S a vi t sk i , A . , D e to u r na y, E . , D e to u r na y, C . , 2 0 00 . S tr e ss I n du ce d b y

    Production from a Fractured well in a Horizontal Reservoir Bounded by

    Impermeable Layers. Pacific Rocks, Balkema, ISBN: 90 5809 155 4.

    S ie b ri ts , E ., E lb e l, J .L ., D et ou r na y, E ., D et o ur n ay - Pi et t e, C .,

    C h ri s ti a ns o n, M . , R o b in s on , B . M. , D i ya s he v, I . R. , 1 9 98 . P a ra -

    m e t e r s a f f e c t i n g a z i m u t h a n d l e n g t h o f a s e c o n d a r y f r a c t u r e d u r i n g

    a r ef r ac tu re t re at me nt , p ap er S PE 4 89 28 . P ro c. S PE A nn ua lTe c h n i ca l C o n f e r en c e a n d E x h i b it i o n , N e w O r l e an s , L o u i si a n a ,

    27–3 0 S e p t , p p . 1 7–27.

    Va l k o , P. , E c o n o mi d e s, M . J ., 1 9 9 5 . H y d r au l i c F r a c tu r e M e c h an i c s .

    J o h n W i l e y a n d S o n s , C h i c h e s te r , E n g l a n d .

    Wa r p i n sk i , N . R . , B r a n a ga n , P. T. , 1 9 8 9 ( S e p t .) . A l t e re d - s tr e s s f r a c t u r-

    i n g . J o u r n a l o f P e t r ol e u m T e c h no l o g y 9 9 0–997.

    196   M . K . R a hm a n, A . H . J o a rd e r / J o u rn a l o f P e t ro l e um S c i e nc e a n d E n gi n e e ri n g 5 1 ( 2 00 6 ) 1 8 5 – 1 9 6