Inverse problems in functional brain...

70
Inverse problems in functional brain imaging Joint detection-estimation in fMRI Ph. Ciuciu 1,2 [email protected] www.lnao.fr 1: CEA/NeuroSpin/LNAO 2: IFR49 May 7, 2010 GDR -ISIS Spring school@Porquerolles

Transcript of Inverse problems in functional brain...

Page 1: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

Inverse problems in functional brain imaging

Joint detection-estimation in fMRI

Ph. Ciuciu1,2

[email protected] www.lnao.fr

1: CEA/NeuroSpin/LNAO 2: IFR49

May 7, 2010 GDR -ISIS Spring school@Porquerolles

Page 2: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

2/58

Outline

● Limits of the classical fMRI data analysis

● Within-parcel detection-estimation of brain activity

● Extension to whole brain 3D analysis

● Alternative on the cortical surface

● Conclusions and perspectives

Page 3: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

3/58

1. Detect and localise brain activationsEx: In SPM [Friston et al, 1994], the BOLD response is modelled with:

2. Estimate the dynamics of activation [Goutte et al, IEEE TMI 2000; Marrelec et al, HBM 2003]

or

Probe brain dynamics

HRF estimates

Compute statistical activation Maps

Time s

Classical fMRI analysis

Page 4: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

4/58

Classical fMRI analysis

● GLM limitations:

A single HRF shape is not physiologically appropriate

Studies report HRF variability:➢ within subject (between regions, sessions, conditions, trials)

– [Miezin et al., NIM 2000; Ciuciu et al., IEEE TMI 2003]–

➢ between subjects– [Handwerker et al., NIM 2004; Aguirre et al., NIM 1998]

➢ between groups (infants, patients,...) –

➢ …

Massive univariate analysis

Data spatially smoothed for SNR enhancement

[D'Esposito et al, NIM 1998, 2003; Richter and Richter, NIM 2003]

[Neumann et al, NIM 2003, 2006; Smith et al, NIM 2005]

Page 5: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

5/58

Detection of brain activation and estimation of brain dynamics are addressed separately

Any detection method supposes a given HRF shape

Any estimation algorithm provides relevant results in activated voxels or regions only

Two main issues in fMRITwo main issues in fMRIMotivations

[Makni et al., IEEE SP 2005, NeuroImage, 2008; Vincent et al, ICASSP'07, EMBC'07, IEEE MLSP 2009;Ciuciu et al, ISBI'08]

Address these two problems simultaneously in a joint detection-estimation (JDE) framework

Page 6: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

6/58

Outline

● Limits of the classical fMRI data analysis

● Within-parcel detection-estimation of brain activity

● Extension to whole brain 3D analysis

● Alternative on the cortical surface

● Conclusions and perspectives

Page 7: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

7/58

Spatial compromise

BOLD signal: low contrast-to-noise ratio

Not enough reproducibility in a single voxel

The HRF is nonetheless spatially variable

Consider hemodynamically homogeneous brain areas

A given parcel should be:

Big enough for reproducibilitySmall enough for homogeneity

Parcel-wise hemodynamic model

Page 8: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

8/58

Non-parametric HRF modelling

Explicit assumptions on the BOLD response

Hyp. 1: linearity Hyp 2: stationarity

+Convolution kernel

Hyp 3: additivity

TR 2TR3TR ...

Time in s

[Aguirre et al, 1998; McGonigle et al, 2000; Smith et al, 2005]

[Ciuciu et al, 2003; Marrelec et al, 2004]

Page 9: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

9/58

Parcel-based BOLD signal model

Temporal hypotheses: for standard ISIs➢ Hyp. 1: linearity Hyp 2: stationarity

+Convolution kernel

Hyp 3: additivity

TR 2TR3TR ...

Time in s

Stimulus-varying NRLs:

Page 10: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

10/58

Parcel-based BOLD signal modelSpatial hypotheses: functionally homogeneous ROI➢ Single HRF shape

➢ Voxel-dependent magnitudes of the BOLD response

Neural Response Levels

Page 11: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

11/58

Forward BOLD signal modelSpatial hypotheses: functionally homogeneous ROI➢ Single HRF shape

➢ Voxel-dependent magnitudes of the BOLD response

[Makni, Ciuciu et al., IEEE SP 2005; Makni et al, Ciuciu, NeuroImage, 2008]

Page 12: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

12/58

NRL in and for condition

Forward BOLD signal model

Orthonormal basisfor low frequency drift modelling

Known parameters

Unknown parameters

Noise statistics in voxel

BOLD signal measured in voxel

HRFDrift coefficients

Arrival time of stimulus

= ⊗ + += ⊗ + +

Page 13: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

13/58

Bayes’ rule

likelihood

How the data are generated from the parameters?

Forward modeling

Page 14: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

14/58

Main hypothesis: noise decorrelated in space

fMRI time series are statistically independent in space:

Temporal noise model: either white or serially correlated AR(1)

Likelihood definition

[Makni et al, Ciuciu , NeuroImage 2008]

Page 15: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

15/58

Bayes’ rule

Prior

What do we know about the parameters before the data are acquired?

Prior modeling

Page 16: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

16/58

HRF prior modeling

Information about the HRF shapenonparametric approachesAveraging: [Buckner et al, 1996]

Selective averaging: [Dale et al, HBM 1997]

FIR (Finite Impulse Response)Regularized FIR (smoothing prior):

[Marrelec, Ciuciu et al, IPMI’03; Ciuciu et al., IEEE TMI 2003]

Page 17: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

17/58

NRL prior modeling

Spatial information

Independence between conditions:

Spatial mixture model (SMM) for each

[Vincent, Ciuciu et al, ICASSP'07]

~~

~~

Hidden MarkovRandomField

Page 18: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

18/58

NRL prior modeling

~~

~~

Ising or Potts field:

~~~

~~~~

~ ~~~

~ ~~~

~

=0

=0.5

=2

0.25 0.25 0.25 0.25

0.46 0.28 0.16 0.100.46 0.28 0.16

0.0020.87 0.118 0.01 → adaptive estimation

Partition function:

Page 19: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

19/58

Typical instance: 2-class GSMM

Two-class Gaussian mixture [Vincent et al., ICASSP' 07]

Non-activating voxels:Activating voxels:

Influence of

Unknown hyper-parameters:

Page 20: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

20/58

Bayes’ rule

What do we know about the HRF, the NRLs and thehyper-parameters given the data?

Keystone of learning scheme:- Simulating realizations of using MCMC

- Approximating using variational EM

Page 21: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

21/58

Simulated datasets

Time in s.

Non-activating voxel

Activating voxel

BO

LD

fM

RI

data

BO

LD

fM

RI

data

[Vincent et al, IEEE TMI 2010]

Page 22: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

22/58

Simulation results

SMM SMM SMM

True activations True inactivations

SMM SMMSMM

Strong influence of regularization parameter

SMM

SMM

Page 23: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

23/58

Simulation results

SMM SMM=0.7 SMM

dash/continuous line: density of inactivating/activating voxels

SMM SMMSMM =0.7SMM =0.2

SMM =0.2

Page 24: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

24/58

Simulation results

SMM SMM SMM

True activations True inactivations

SMM SMMSMM

SMM

SMM

lower SNR for Best tuning: larger

Page 25: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

25/58

Simulation results

SMM SMM SMM

dash/continuous line: density of inactivating/activating voxels

SMM SMMSMMSMM

SMM

Page 26: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

26/58

Hyper-parameter inference

Random walk Metropolis-Hastings step for

Special case:

Alternative: mean-field approximation

[Forbes and Peyrard, IEEE PAMI 2003]

Page 27: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

27/58

Partition function estimation

RW Metropolis-Hastings step for sampling

Preliminary estimation of the partition function

Importance sampling identity:

Practical implementation: Tabulate over a fine grid

For ➢ Generate of (SW scheme)➢ Compute

[Meng and Rubin, Biometrika 1998]

Page 28: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

28/58

Supervised vs. unsupervised

SMM =0.7 USMMSMM

SMM =0.7 USMM

USMM

SMM

Interest of unsupervised spatial mixture models

Page 29: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

29/58

Supervised vs. unsupervised

SMM USMMSMM =1.1

SMM =1.1 USMMSMM =1.1

lower SNR for Best tuning: larger

Page 30: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

30/58

Area under R0C curves

Are

a u

nder

RO

C c

urv

e

Are

a u

nder

RO

C c

urv

e

nearly optimal unsupervised settings

Page 31: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

31/58

Robustness to SNR fluctuations

Are

a u

nder

RO

C c

urv

e

Are

a u

nder

RO

C c

urv

e

- - IMM– USMM

Improved robustness to noise level for USMM

- - IMM– USMM

Page 32: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

32/58

Impact of HRF modeling

Roi-based HRF modeling increases statistical sensitivity

HRF shape variability tested in two regions:Fixed HRF Single HRF estimateRegion-based HRF estimate

Time in s.Time in s.

%∆

BO

LD

sig

nal

%∆

BO

LD

sig

nal

ROI mask

Page 33: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

33/58

Extension to 3-color Potts modelSMM USMM

USMMSMM

Page 34: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

34/58

Extension to 3-color Potts modelSMM USMM

USMMSMM

Page 35: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

35/58

Real data sets

Experimental conditions under study: auditory and visual stimuli

Event-related paradigm :- Short stimuli duration- Inter-stimulus interval : ~3s to 10s- Randomised sequence

125 scans with TR = 2.4s, scanning at 3T

● Localizer fMRI experiment:

ROIs located in the primary auditory

cortices

Page 36: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

36/58

SPM vs. JDE

Auditory – Visual contrast:

Bilateral activation detected along the gray matterfrom raw data sets (spatially unsmoothed)

% Δ  B

OLD

 sig

nal

% Δ  B

OLD

 sig

nal

Time in s.

Time in s.

JDE SPM

Page 37: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

37/58

Outline

● Limits of the classical fMRI data analysis

● Within-parcel detection-estimation of brain activity

● Extension to whole brain 3D analysis

● Alternative on the cortical surface

● Conclusions and perspectives

Page 38: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

38/58

Whole brain analysis

First step:Segmentation of the gray/white matter interface from the T1 MRI

Second step : brain parcellation based upon functional similarities and spatial connectivty [Flandin et al, ISBI'02; Thirion et al, HBM 2006]

[Makni et al, NeuroImage 2008]

Page 39: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

39/58

Adaptive spatial regularization

Remarks:

Extrapolation methods required for ROI of variable sizeand shape

Parcel-dependent regularization factor

Page 40: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

40/58

Linear extrapolation of

Linear extrapolation technique: [Trillon et al, Eusipco 2008]

Reference parcels:

Linear regression (c= # neighbour voxels in the parcel):

Application of linear interpolation to non-reference parcels:

Strong limitations for small and irregular grids

Page 41: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

41/58

Bilinear dependence of

At a fixed number of , the larger the larger

c = # neighbour voxels in the parcels = # voxels in the parcel

[Risser et al, ICIP'09]

Page 42: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

42/58

Bilinear extension:

Bilinear regression:

Application of bilinear interpolation to test grid:

Still homogeneous reference set but applicable toirregular gridsMultiple PFs involved in the extrapolation process

Bilinear extrapolation of

[Risser et al, ICIP'09]

Page 43: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

43/58

Min/max extrapolation of

● Fast extrapolation technique:Reference grids:

Grid selection: Min/max approximation criterion

The form of guarantees that:

[Risser et al, MICCAI'09;Risser et al, JSPS 2010]

Page 44: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

44/58

Min/max extrapolation of Additional constraints

Remarks➢ Single PF estimate involved in the extrapolation➢ inhomogeneous reference grids are acceptable

x

Page 45: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

45/58

Half whole brain analysis

=0.8IMM SSMM USMM

Activations enhanced in the parietal cortex using U/SSMMCoherence with sulcal anatomy & literature

Normalized contrast: Audit. (Computation – Sentence)

[Vincent et al, IEEE TMI 2010]

Page 46: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

46/58

Adaptive spatial regularization

Auditory sentence Auditory computation

Time in s.

%∆

BO

LD

sig

nal

Page 47: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

47/58

Half whole brain analysis

=0.8IMM SSMM USMM

Activations enhanced in the parietal cortex using U/SSMMCoherent with sulcal anatomy

Normalized contrast: Audit. (Computation – Sentence)

Page 48: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

48/58

Half whole brain analysis

=0.8IMM SSMM USMM

Normalized contrast: right – left “auditory clicks”

Only USMM provides more sensitive activation in themotor cortex

Page 49: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

49/58

Adaptive spatial regularization

Left click Right click

Time in s.

%∆

BO

LD

sig

nal

Page 50: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

50/58

Outline

● Limits of the classical fMRI data analysis

● Within-parcel detection-estimation of brain activity

● Extension to whole brain 3D analysis

● Alternative on the cortical surface

● Conclusions and perspectives

Page 51: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

51/58

Cortical surface analysis

Segmentation of the gray/white matter interface from the T1 MRI

BOLD signal projection

Parcellation on the cortical surface

JDE on the cortical surface

[Operto et al, NeuroImage 2008]

Page 52: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

52/58

Surface analysis - localizer

Gyrii parcellation

Page 53: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

53/58

Surface analysis - localizer

Effect maps

Auditory sentence Vertical checker-board

[Ciuciu et al, SfS 2010]

Page 54: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

54/58

Surface analysis – detection maps

Audit. (Computation – Sentence)

Normalized contrast[Ciuciu et al, SfS 2010]

Page 55: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

55/58

Hemodynamic parameter maps

Estimated hemodynamic parameters

Time-to-peak

Full Width atHalf Maximum

[Ciuciu et al, SfS 2010]

Page 56: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

56/58

Outline

● Limits of the classical fMRI data analysis

● Within-parcel detection-estimation of brain activity

● Extension to whole brain 3D analysis

● Alternative on the cortical surface

● Conclusions and perspectives

Page 57: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

57/58

Summary The joint detection-estimation framework:

directly accounts for different sources of variability

provides both region-based HRF time courses and contrast maps

embeds unsupervised spatial regularization

avoids using spatial filtering of fMRI datasets

depends on an input parcellation: [Vincent et al, ISBI'08]

Second release of Pyhrf package (v 2.0)

downloadable at http://launchpad.net (nipy project)WIP: integration in the BrainVISA-fMRI toolbox

Page 58: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

58/58

Acknowlegdments

This work was partly supported by grants from Région Ile-de-France

Special thanks to:

Thomas VincentSalima Makni Anne-Laure FouqueLaurent RisserSolveig BadilloStéphane Sockeel

Jérôme IdierAlexis RocheSophie DonnetFlorence ForbesJean-François Giovannelli

Page 59: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

59/58

Forward model with habituation

15 t-scores5

L

R

­ Activation in response to the first sentence detected in the STS/G

[Rabrait et al, JMRI 2008]

[Ciuciu et al, ICASSP 2009]

Page 60: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

60/58

Habituation phenomenon● Response variation to a stimulus after repeated exposure

to that stimulus [Naccache et Dehaene, Science, 2001]

Causes : - Strategy, tiredness, attentional effects, learning...

- Repetition suppression effect...

Effects : - Decreased NRLs - Shorter response delays

Page 61: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

61/58

Introduction of habituation parameters

Forward model with habituation

We assume that for non-activating voxels

Page 62: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

62/58

Forward model with habituation

Stimulus trials Stimulus trials

BO

LD m

ag

nit

ud

e

Tim

e in s

.

Page 63: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

63/58

Main hypothesis: noise decorrelated in space

fMRI time series are statistically independent in space:

Temporal noise model: either white or serially correlated AR(1)

Likelihood definition

[Makni et al, NeuroImage 2008]

Page 64: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

64/58

Aguirre et al (1998). Neuroimage 8:360–369.Birn et al (2000). Neuroimage 14:817–826.Birn et al (2005). Neuroimage 27:70–82Boynton et al (1996). J Neurosci 16(13):4207–4221.Buckner et al (1996). Proc Natl Acad Sci U.S.A. 93:14878–14883.Buckner (1998). Hum Brain Mapp 6:373–377.Burock & Dale (2000). Hum Brain Mapp 11:249–260.Buxton et al (2004). Neuroimage 23:S220–S233.Chen et al (2004). Neurcomputing 61:395–400.Ciuciu et al (2003). IEEE Trans Medical Imag 22:1235–1251.

Donnet et al (2006). NeuroImage. 31:1169-1176.Deneux & Faugeras (2006). NeuroImage. 32(4): 1669-1689.D'Esposito et al (1999). Neuroimage 10:6–14.D'Esposito et al (2003). Nat Rev Neurosci 4:863–872.Ford et al (2005). Neuroimage 26:922–931Friston et al (1994). Hum Brain Mapp 1:153–171.Friston et al (1998). Neuroimage 7:30–40Friston et al (2000). Neuroimage 12:466–477.Genovese (2000). J Amer Statist Assoc 1995:691–719.Gibbons et al (2004). Neuroimage 22:804–814.Glover et al (1999). Neuroimage 9:416-429.Gössl et al (2001a). Biometrics 57:554–562.Gössl et al (2001b). Neuroimage 14:140–148.Goutte et al (2000). IEEE Trans Medical Imag 19:1188–1201.Handwerker et al (2004). Neuroimage 21:1639–1651.Hansen et al (2004). Neuroimage 23:233–241.Henson et al (2002). Neuroimage 15:83–97.

References

Page 65: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

65/58

ReferencesKershaw et al (1999). IEEE Trans Medical Imag 18:1138–1153.Kruggel & Von Cramon (1999a). Magn Reson Med 42:787–797.Kruggel & Von Cramon (1999b). Hum Brain Mapp 8:259–271.Kruggel et al (2000). Neuroimage 12:173–183.Liao et al (2002). Neuroimage 16:593–606.Logothetis (2003). J Neurosci 23:3963–3971.Logothetis et al (2001). Nature 412:150–157.Makni et al (2005). IEEE Trans Signal Process 53(9):3488–3502.Marrelec et al (2003) Hum Brain Mapp 19:1–17.Marrelec et al (2004). IEEE Trans Medical Imag 23:959–967.McGonigle et al (2000). Neuroimage 11:708–734.Miezin et al (2000). Neuroimage 11:735–759.Neumann et al (2003). Neuroimage 19:784–796.Neumann et al (2006). Neuroimage 32(3): 1185-1194.Penny et al (2003). NeuroImage. 19(3): 727-744.Penny et al (2005). NeuroImage. 24(2): 350-362.Rajapakse et al (1998). Hum Brain Mapp 6:283–300.Richter & Richter (2003). Neuroimage 20:1122–1131.Riera et al (2004). NeuroImage 21(2): 547--567.Saad et al (2001). Hum Brain Mapp 13:74–93.Smith et al (2005). Hum Brain Mapp 24:248–257.Vazquez et al (1998). Neuroimage 7:108–118.Woolrich et al (2004a). Neuroimage 21:1732–1747.Woolrich et al (2004b). Neuroimage 21:1748–1761.Woolrich et al (2004c). IEEE Trans Medical Imag 23:213–231.Woolrich et al (2005). IEEE Trans Medical Imag 24(1): 1-11Worsley & Friston (1995). Neuroimage 2:173–181.Worsley et al (2002). NeuroImage. :15(1): 1-15.

Page 66: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

66/58

Comparison of linear/bilinear

Mean approximation error over Regular & Irregular test fields.Errors given in percentage.

Improved performance with the bilinear approach for small and irregular fieldsApproximation accuracy depends on

Page 67: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

67/58

Other statistical parameters

Non-activating voxels

Noise parameters [Makni et al, ISBI'06]

Mixture parameters [Makni et al, NIM 2008]

Activating voxels

Mixture probabilities [Makni et al, NIM 2008]

2-class mixture(Jeffreys prior):

3-class mixture:

Page 68: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

68/58

Cortical surface analysis

Towards FMRI/EEG fusion

Asymmetric approach: EEG source reconstruction informed by fMRI analysis or fMRI informed by EEG events

Onsets given by interictal spikes Constraint on the variance/covariance matrix expressed from the estimated hemodynamic parameters estimated by JDE

Symmetric approach:

Model transient neuronal signal between stimulus onset signal and the hemodynamic response + generative models (DCM)

Spatio-temporal decoupling, identify a common spatial support

[Daunizeau et al 2007]

[Makni et al 2008b; Stephan et al, 2007/08/09/10]

[Daunizeau et al 2005; Mattout et al, 2006]

[M. Dojat, GIN]

Page 69: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

69/58

Ongoing works Neuro-dynamics models (habituation effect)

Inference of the parcellation in a variational framework

Validation at the group level

Model comparison and selection

Application to infants and epileptic patients

Page 70: Inverse problems in functional brain imagingporquerolles10.ens-lyon.fr/documents/NewDoc/PhilippeCiuciuIII.pdf · 45/58 Half whole brain analysis IMM SSMM =0.8 USMM Activations enhanced

70/58

Metropolis-Hastings step to sample PF estimate required

Unsupervised SMM