Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y...

39
Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Transcript of Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y...

Page 1: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Invariants to convolution

I(f) = I(f*h) for any admissible h

g( x, y ) = ( f * h )( x, y ) + n( x, y )

Page 2: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )
Page 3: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Motivation

Page 4: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Two approaches

Traditional approach: Image restoration (blind deconvolution)

Proposed approach: Invariants to convolution

Page 5: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

f(x,y) … image function

h(x,y) … shift invariant PSF of a linear imaging system

g(x,y) … blurred image g(x,y) = (f h) (x,y)

The moments under convolution

*

Page 6: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Our assumption: PSF is centrosymmetric

Assumptions on the PSF

Page 7: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Invariants to convolution

• PSF is centrosymmetric

where (p + q) is odd

Page 8: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Invariants to convolution

• PSF is centrosymmetric

where (p + q) is odd

• PSF is circularly symmetric

where p > q

Page 9: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

3.7 3.4

1.8 71.0 173.1

4.2 4.3 98 688

Page 10: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Face recognition – simulated example

Page 11: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Template matching

Page 12: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )
Page 13: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

• Our assumption: PSF has N-fold rotation symmetry, N > 1

The set of invariants depends on N.

The bigger N, the more invariants.

• Parametric shape of the PSF.

Other assumptions on the PSF

Page 14: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

;

Combined moment invariants

Invariants to convolution and rotation

I(f) = I(R(f*h)) for any admissible h and rotation R

Page 15: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Robustness of the invariants

Page 16: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Satellite image registration by moment invariants

Page 17: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

( v11, v21, v31, …

)

( v12, v22, v32, …

)

min distance(( v1k, v2k, v3k, … ) , ( v1m, v2m, v3m, … ))k,m

Control points

Page 18: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Point matching

Page 19: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Registration result

Page 20: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Camera motion estimation

Page 21: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Camera motion estimation

Page 22: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Combined blur-affine invariants

• Let I(μ00,…, μPQ) be an affine moment invariant. Then I(C(0,0),…,C(P,Q)), where C(p,q) are blur invariants, is a combined blur-affine invariant.

Page 23: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Examples

1400

223

23214

332

3234114233241

0523241

214

2410523

24114

22350

21432500523325005144150

205

2502

/)32484876

1291612

16410(

I

0011210230201232

001130202141

00203050

/)63()2,3(

/)23(2)1,4(

/10)0,5(

C

C

C

1000

212

22103

321

3123003122130

203

2301 /)3446( I

21

30

)1,2(

)0,3(

C

C

Page 24: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Digit Recognition by Combined Invariants

Page 25: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

AMI [%] Comb [%]

49.6 100

Page 26: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

AMI [%] Comb [%]

43.2 100

Page 27: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

AMI [%] Comb [%]

42.3 89

Page 28: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

AMI [%] Comb [%]

79.8 100

Page 29: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

noise AMI [%] Comb [%]

σ=0.1 45.4 77.4

σ=0.025 49.1 99.3

Page 30: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Combined blur-affine invariants

Page 31: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Affine invariants

Page 32: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Real Data

Page 33: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )
Page 34: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )
Page 35: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Invariants to convolution

• PSF is centrosymmetric

where (p + q) is odd

The more we know about the PSF, the more invariants and the higher discriminability we get

Page 36: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Discrimination power

• The null-space of the blur invariants

• Intuitive meaning of the invariants

• The number of the invariants

• Uniqueness theorem

Page 37: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Convolution invariants in FT domain

Page 38: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Convolution invariants in FT domain

Page 39: Invariants to convolution I(f) = I(f*h) for any admissible h g( x, y ) = ( f * h )( x, y ) + n( x, y )

Relationship between FT and moment invariants