INTRODUCTION TO SINGULAR NONLINEAR OPTICS · Opt. Letters 35, 3417 (2010) Solitons in external...

49
INTRODUCTION TO SINGULAR NONLINEAR OPTICS FSU-Jena, Abbe School of Photonics’2011 LECTURE 1: Linear vs. nonlinear optics. Optical solitons. LECTURE 2: Singular optical beams. Dark optical solitons – physics and applications. LECTURE 3: Interactions between optical solitons. LECTURE 4: Polychromatic spatial solitons.

Transcript of INTRODUCTION TO SINGULAR NONLINEAR OPTICS · Opt. Letters 35, 3417 (2010) Solitons in external...

  • INTRODUCTION TO SINGULAR NONLINEAR OPTICS

    FSU-Jena, Abbe School of Photonics’2011

    LECTURE 1: Linear vs. nonlinear optics. Optical solitons.

    LECTURE 2: Singular optical beams. Dark optical solitons– physics and applications.

    LECTURE 3: Interactions between optical solitons.

    LECTURE 4: Polychromatic spatial solitons.

  • INTRODUCTION TO SINGULAR NONLINEAR OPTICS

    Polychromatic spatial solitons.

    FSU-Jena, Abbe School of Photonics’2011

  • Polychromatic spatial solitons.

    1. White light generation basics.2. Discrete diffraction and discrete polychromatic solitons.3. Polychromatic OVSs in photorefractive media.

    4. White light optical vortices.5. Applications of optical vortices and concluding remarks.

    FSU-Jena, Abbe School of Photonics’2011

  • FSU-Jena, Abbe School of Photonics’2011

    1. White light generation basics.

  • FSU-Jena, Abbe School of Photonics’2011

    Phys. Rev. Lett. 80, 4406 (1998).

    General characteristics:* The spectral width depends on the NLM;* The polarization remains unchanged;* The Anti-Stokes broadening dominates

    * The threshold is the same as for the self-focusing:

    Physical mechanisms behind the WLC generation:* Self-phase modulation in space and time* Group-velocity dispersion* Parametric four-photon mixing* Raman and Brillouin scattering* Shock-wave formation* Ionization (stabilizing mechanism for the filaments)

    1a. WL generation in a bulk medium (normal GVD)

    20

    0 2

    3.778

    GausscritP n n

    λπ

    =

    ( )2 20 0

    2(1/ 2) 4 | | 1 ;SPM n ILQ Q Q

    cωω τ±Δ = + ± − =

    ( )2

    2 20

    2( 1) 0eeo e

    e Nnn m

    πω υ

    Δ = − <+

  • FSU-Jena, Abbe School of Photonics’2011

    Phys. Rev. Lett. 80, 4406 (1998).

    1a. WL generation in a bulk medium (normal GVD)

  • FSU-Jena, Abbe School of Photonics’2011

    Nature 424, (2003).

    1b. WL generation in photonic crystal fibers (anomalous GVD)

  • FSU-Jena, Abbe School of Photonics’2011

  • FSU-Jena, Abbe School of Photonics’2011

  • FSU-Jena, Abbe School of Photonics’2011

    500 600 700 800

    101

    102

    103

    104 supercontinuum incandescent lamp

    I(λ),

    arb.

    uni

    tsλ, nm

    1b. WL generation in photonic crystal fibers (anomalous GVD)

  • FSU-Jena, Abbe School of Photonics’2011

    Phys. Rev. Lett. 88, 173901 (2002).

    1b. WL generation in photonic crystal fibers (anomalous GVD)

  • FSU-Jena, Abbe School of Photonics’2011

    J. Lightwave Technol. 12, 3770 (2007).

    1b. WL generation in photonic crystal fibers (anomalous GVD)

  • FSU-Jena, Abbe School of Photonics’2011

    Opt. Lett. 25, 1049 (2000).

    1c. Coherence of the WLC

  • FSU-Jena, Abbe School of Photonics’2011

    Phys. Rev. Lett. 81, 3383 (1988).

    2. Discrete diffraction and discrete polychromatic solitons.

    Discrete diffraction - diffraction of light in the course of propagation light along periodic structure of strongly-coupled waveguides.

  • FSU-Jena, Abbe School of Photonics’2011

    Phys. Rev. Lett. 81, 3383 (1988).Optics and Photonics News, p. 41, December 2007.

  • FSU-Jena, Abbe School of Photonics’2011

    Optics and Photonics News, p. 41, December 2007.

    2. Discrete diffraction and discrete polychromatic solitons.

    Description by a system of coupled discrete NLSEs

    21 1( ) 0n n n n n n

    dai a C a a a adz

    β γ+ −+ + + + =

    β – propagation constant

    C – coupling constant

    0 2

    eff

    ncAωγ =

  • FSU-Jena, Abbe School of Photonics’2011

    Optics and Photonics News, p. 41, December 2007.

    2. Discrete diffraction and discrete polychromatic solitons.

    Description by a system of coupled NLSEs ν(x) – effective refr. index

    σ – rel. photosensitivity

    0 2

    eff

    ncAωγ =

    22

    2 210

    2 ( ) ( ) | | 04

    Mm m s m s

    m m mms m

    A z A zi v x A Az n x x M

    λ π γ σ λπ λ =

    ∂ ∂ ⎧ ⎫+ + + =⎨ ⎬∂ ∂ ⎩ ⎭

  • FSU-Jena, Abbe School of Photonics’2011

    2. Discrete diffraction and discrete polychromatic solitons.

  • FSU-Jena, Abbe School of Photonics’2011

    2. Discrete diffraction and discrete polychromatic solitons.

  • FSU-Jena, Abbe School of Photonics’2011

    Motivation

    1 2 3 4 5 6, , , , ,λ λ λ λ λ λ1 3 5, ,λ λ λ

    2 4 6, ,λ λ λ

  • FSU-Jena, Abbe School of Photonics’2011

    2. Discrete polychromatic solitons.

    cw laser -Nd:YVO4 / SHG

    fs Ti:S-laser -Mira 900-F, Coherent,

    0.5W / 76 MHz

    PCF - 2m / 2 μmsolid core / 740 nm

    zero GVD

    LiNbO3 - 5.5cm / Ti indiffusion;

    negative photorefractive

    nonlinearity

  • FSU-Jena, Abbe School of Photonics’2011

    2. Discrete polychromatic solitons.

  • FSU-Jena, Abbe School of Photonics’2011

    2. Discrete polychromatic solitons.

    Phys. Rev. Lett. 99, 123901 (2007).

    Linear

    Nonlinear

    RGB

  • FSU-Jena, Abbe School of Photonics’2011

    2. Discrete polychromatic solitons.Linear

    Nonlinear

    RGB

  • FSU-Jena, Abbe School of Photonics’2011

    2. Discrete polychromatic solitons.

  • FSU-Jena, Abbe School of Photonics’2011

    2. Discrete polychromatic solitons.

    Phys. Rev. Lett. 99, 123901 (2007).

    Linear Nonlinear

  • FSU-Jena, Abbe School of Photonics’2011

    2. Discrete polychromatic solitons.

    Phys. Rev. Lett. 99, 123901 (2007).

  • FSU-Jena, Abbe School of Photonics’2011

    2. Discrete polychromatic surface solitons.

    Optics Express 16, 5991 (2008).

  • FSU-Jena, Abbe School of Photonics’2011

    3. Polychromatic OVSs in photorefractive media.

    Opt. Lett. 33 , 1851 (2008).

  • FSU-Jena, Abbe School of Photonics’2011

    3. Polychromatic OVSs in photorefractive media.

    Opt. Lett. 33 , 1851 (2008).

    OVS (m=1) → Δλ~70nm

  • FSU-Jena, Abbe School of Photonics’2011

    3. Polychromatic OVSs in photorefractive media.

    Opt. Lett. 33 , 1851 (2008).

    OVS (m=2) → Δλ~180nm

  • FSU-Jena, Abbe School of Photonics’2011

    4. White light optical vortices.4.1. Experimental results in CaF2

    CGH – d=80μmCaF2 - Egap=10.2 eV

    Clark-MXR - 150-fs / 15 MW

    This is the first experimental study of supercontinuum generation with beams of complex spatial and phase structure.

    Optics Express 18, 18368 (2010).

  • FSU-Jena, Abbe School of Photonics’2011

    4.1. Experimental results in CaF2

    Optics Express 18, 18368 (2010).

    Low intensity

    High intensity

  • FSU-Jena, Abbe School of Photonics’2011

    4.1. Experimental results in CaF2

    Optics Express 18, 18368 (2010).

  • FSU-Jena, Abbe School of Photonics’2011

    4.1. Numerical results in CaF2

    Journal of Optics 13, 064015 (2011).

    NLM exit | / 1.125Diffz L =

    Time-integrated energy-density OV beam profiles for 12 and 4 azimuthal modulation periods.

  • FSU-Jena, Abbe School of Photonics’2011

    4.2. Experimental results in Argon

    Running experiment

    50 fs / 1 kHz / 2.1 W / λc=795 nmAr pressure - 0.8 - 2.3 bar

    Vortex lens – 16 steps

  • FSU-Jena, Abbe School of Photonics’2011

    4.2. Experimental results in Argon

    Running experiment

    400 500 600 700 800 900

    102

    103

    104

    input output

    Inte

    nsity

    (arb

    . uni

    ts)

    Wavelength (nm)

  • FSU-Jena, Abbe School of Photonics’2011

    Running experiment

    TC transformation: → ; →211 2 ωωω −=s 122 2 ωωω −=s11121 =−×=sm 1122 1=−×=sm

    500 nm

    800 nm >900 nm

    650 nm

  • FSU-Jena, Abbe School of Photonics’2011

    Running experiment

    TC transformation: → ; →211 2 ωωω −=s 122 2 ωωω −=s11121 =−×=sm 11122 =−×=sm

  • FSU-Jena, Abbe School of Photonics’2011

    Running experiment

    4.2. Experimental results in Argon

  • FSU-Jena, Abbe School of Photonics’2011

    Running simulations

    4.2. Comparative numerical results

    02)(2)( 22 =

    ⎭⎬⎫

    ⎩⎨⎧

    +++Δ++∂∂ ∑

    ≠⊥ m

    mnmnmmm

    m

    mmmDiff

    m HAAAAAnnAkL

    zAi γ

    λλλλ

    ω

    ωω

    )exp()exp(2 2*2

    1*

    δωωω

    δωωδωδω DiffDiff zLkiAAzLkiAAAH Δ+Δ= +++−)exp()exp(2)exp(2 5

    *2

    242

    *3

    * ωδωδω

    ωδωδωδω

    ωδωδωωω DiffDiffDiff zLkiAAzLkiAAAzLkiAAAH Δ+Δ+Δ= ++−++−+

    )exp()exp(2)exp(2 8*2

    72*

    62ω

    δωωω

    ωδωδωω

    δωδωωδω DiffDiffDiff zLkiAAzLkiAAAzLkiAAAH Δ+Δ+Δ= −++−++)exp()exp(2 10

    *29

    *2

    ωωδω

    ωδωωδωδω DiffDiff zLkiAAzLkiAAAH Δ+Δ= ++−+

    δωδωδωω −++ −−+=Δ kkkkk 21 2δωδωω −+ −−=Δ kkkk 22ωδωδω kkkk 23 −+=Δ −+

    ωδωδωδω kkkkk −−+=Δ +−+24ωδωδω kkkk −−=Δ ++ 25 2

    δωωδωδω +−+ −−+=Δ kkkkk 26δωωδω ++ −+=Δ kkkk 227

    δωδωω +− −−=Δ kkkk 28δωδωδωω 29 +−+ −−+=Δ kkkkk

    δωωδω 210 2 ++ −−=Δ kkkk

  • FSU-Jena, Abbe School of Photonics’2011

    Running simulations

    4.2. Comparative numerical results

  • FSU-Jena, Abbe School of Photonics’2011

    Running simulations

    4.2. Comparative numerical results

    Topological charge transfer of vortex beams to white-light supercontinuum vortex beam trough nonlinear frequency conversion predicted and experimentally

    demonstrated.

  • FSU-Jena, Abbe School of Photonics’2011

    5. Applications of optical vortices and concluding remarks.

    Vortex coronograph

    The relative contrast between a low-level near-axis light source and a high-intensity on-axis coherent source can be enhanced by many orders of magnitude.

    This occurs because the on-axis coherent light under-goes destructive interfe-rence creating a dark vortex core, while the off-axis light from other sources diffracts into the core. Opt. Lett. 26, 497 (2001);

    Optics Express 16, 10207 (2008)

  • FSU-Jena, Abbe School of Photonics’2011

    5. Applications of optical vortices and concluding remarks.

    IEEE J. Quant. Sel. Topics in Quant. Electron. 6, 841 (2000);

    Nature 424, 810 (2003).

    A single colloidal particle trapped in the optical vortex travels around its circumference, driven by the orbital angular momentum of the helical beam.

    (11 stages at 1/6 s intervals).

    Optical tweezers

    Intensity gradients in the converging beam draw small objects,such as a colloidal particle, toward the focus, whereas the radiation pressure of the beam tends to blow them down the optical axis.

    Under conditions where the gradient force dominates, a particle can be trapped.

  • FSU-Jena, Abbe School of Photonics’2011

    5. Applications of optical vortices and concluding remarks.

    Appl. Optics 46, 676 (2007).

    Optica Applicata 39, 91 (2009).

    Optical vortices interferometer

    In the position changes of the optical vortices there is hidden information which makes possible to measure small rotation angles (from 10 arcsec to 2 degrees) of a small surface (~50×50 μm).

  • FSU-Jena, Abbe School of Photonics’2011

    5. Concluding remarks.

    All-optical waveguidingOpt. Lett. 25, 55 (2000)Opt. Lett. 25, 660 (2000)

    Material processingOpt. Letters 35, 3417 (2010)

    Solitons in external potentials BECsPhys. Rev. Lett. 83, 2498 (1999)Physics Today 52, 37 (1999)

    Spectroscopy – revision of the selection rulesNew J. of Physics 12, 083053 (2010)Optics Express 18, 3660 (2010)

    Quantum information – generation of photons entangled in OAMNature Physics 3, 305 (2007)

    MicromechanicsAppl. Phys. Lett. 78, 249 (2001)

    MicrofluidicsOptics Express 12, 1144 (2004)

  • FSU-Jena, Abbe School of Photonics’2011

    Acknowledgements

    Alexander von Humboldt Foundation Australian Research Council

    Max Planck Society National Science Fund (Bulgaria)

    Sofia University MPI for Quantum Optics

    D. Neshev G. G. Paulus

    J. Veltchev F. Lindner

    K. Bezuhanov H. Walther

    G. Maleshkov

    The Australian National University Friedrich-Schiller-University, IOQ

    Yu. Kivshar G. G. Paulus

    W. Krolikowski P. Hansinger

    D. Neshev

  • There are so many open questions …

    Thank you for your attention!

    INTRODUCTION TO SINGULAR NONLINEAR OPTICSINTRODUCTION TO SINGULAR NONLINEAR OPTICS