Introduction to Radar MIT L1

51
Introduction-1 AG 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Dr. Robert M. O’Donnell

Transcript of Introduction to Radar MIT L1

  • Introduction-1AG 6/18/02

    MIT Lincoln Laboratory

    Introduction to Radar Systems

    Dr. Robert M. ODonnell

  • MIT Lincoln LaboratoryIntroduction-2

    AG 6/18/02

    Disclaimer of Endorsement and Liability

    The video courseware and accompanying viewgraphs presented on this server were prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor the Massachusetts Institute of Technology and its Lincoln Laboratory, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, products, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors or the Massachusetts Institute of Technology and its Lincoln Laboratory.

    The views and opinions expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or any of their contractors or subcontractors

  • Introduction-3AG 6/18/02

    MIT Lincoln Laboratory

    Introduction to Radar Systems

    Introduction

  • MIT Lincoln LaboratoryIntroduction-4

    AG 6/18/02

    Acknowledgement

    Developers of Tutorial Material

    Dr. Eric D. Evans Dr. Andrew D. Gerber Dr. Robert M. ODonnell

    Dr. Robert G. Atkins Dr. Pamela R. Evans Dr. Robert J. Galejs Dr. Jeffrey S. Herd Dr. Claude F. Noiseux Dr. Philip K. W. Phu Dr. Nicholas B. Pulsone Dr. Katherine A. Rink Dr. James Ward Dr. Stephen D. Weiner And many others

  • MIT Lincoln LaboratoryIntroduction-5

    AG 6/18/02

    Background on the Course

    One of Many Radar Courses Presented at the Laboratory

    Relatively Short 10 lectures 40 to 60 minutes each

    Introductory in Scope Basic Radar Concepts Minimal Mathematical Formalism

    Prerequisite A College Degree Preferred in Engineering or Science, but not Required

    More Advanced Issues Dealt with in Other Laboratory Radar Courses

  • MIT Lincoln LaboratoryIntroduction-6

    AG 6/18/02

    Outline

    Why radar?

    The basics

    Course agenda

  • MIT Lincoln LaboratoryIntroduction-7

    AG 6/18/02

    What Means are Available for Lifting the Fog of War ?

    The Invasion of Normandy

    D-Day + 1

    D-Day

    Courtesy of National Archives.

  • MIT Lincoln LaboratoryIntroduction-8

    AG 6/18/02

    What Means are Available for Lifting the Fog of War ?

    Iwo Jima1945

    Courtesy of National Archives.Courtesy of National Archives.

    Courtesy of US Marine Corp, History Division.

  • MIT Lincoln LaboratoryIntroduction-9

    AG 6/18/02

    Military Means of Sensing

    Sonar Blast detection Troop movement

    detection

    Ground surveillance/ reconnaissance/ID

    Laser targeting Night vision Space surveillance Missile seekers

    Chem/Bio Radiological

    Surveillance Tracking Fire control Target ID/

    discrimination Ground surveillance/

    reconnaissance Ground mapping Moving target detection Air traffic control Missile seekers

    Optical/IR Radar Acoustic Other

    A

    p

    p

    l

    i

    c

    a

    t

    i

    o

    n

    s

    A

    t

    t

    r

    i

    b

    u

    t

    e

    s

    Long range All-weather Day/night 3-space target location Reasonably robust against

    countermeasures

  • MIT Lincoln LaboratoryIntroduction-10

    AG 6/18/02

    Early Days of Radar Chain Home Radar, Deployment Began 1936

    Chain Home Radar Coveragecirca 1940

    (21 Early Warning Radar Sites)

    Sept 2006 Photograph of Three Chain Home

    Transmit Towers, near Dover

    Courtesy of Robert Cromwell.Used with permission.

    DoverRadar Site

  • MIT Lincoln LaboratoryIntroduction-11

    AG 6/18/02

    Chain Home Radar System

    Frequency 20-30 MHz

    Wavelength 10-15 m

    Antenna Dipole Array on

    Transmit Crossed Dipoles on

    Receive Azimuth Beamwidth

    About 100o Peak Power

    350 kW Detection Range

    ~160 nmi on German Bomber

    Radar ParametersTypical Chain Home Radar Site

  • MIT Lincoln LaboratoryIntroduction-12

    AG 6/18/02

    Chain Home Transmit & Receive Antennas

    360'

    240'215'

    95'

    45'

    0'

    /2

    /2

    MainAntenna

    Gap FillerAntenna

    Two Transmitter Towers

    One Receiver Tower

    Transmit Antenna Receive Antenna

  • MIT Lincoln LaboratoryIntroduction-13

    AG 6/18/02

    Radar and The Battle of Britain

    The Chain Home Radar British Force Multiplier

    during the Battle of Britain Timely warning of direction

    and size of German aircraft attacks allowed British to

    Focus their limited numbers of interceptor aircraft

    Achieve numerical parity with the attacking German aircraft

    Effect on the War Germany was unable to

    achieve Air Superiority Invasion of Great Britain

    was postponed indefinitely

    Chain Home Radar Coveragecirca 1940

    (21 Early Warning Radar Sites)

  • MIT Lincoln LaboratoryIntroduction-14

    AG 6/18/02

    Surveillance and Fire Control Radars

    Courtesy of Raytheon. Used with permission.

    Courtesy of Raytheon. Used with permission.

    Courtesy of Raytheon. Used with permission.Courtesy of Raytheon.Used with permission.

    Courtesy of Raytheon.Used with permission.

    Photo courtesy Photo courtesy of ITT of ITT

    Corporation.Corporation.Used with Used with

    permission.permission.

    Courtesy of Global Security.Used with permission.

    Courtesy of US Navy.

  • MIT Lincoln LaboratoryIntroduction-15

    AG 6/18/02

    Airborne and Air Traffic Control Radars

    Courtesy Lincoln Laboratory.

    Courtesy of Northrop Grumman.Courtesy of Northrop Grumman.Used with permission.Used with permission.

    Courtesy of Boeing Used with permission

    Courtesy of US Navy. Courtesy of US Air Force.

    Courtesy of US Air Force. Courtesy of US Air Force.

    Courtesy of US Air Force.

  • MIT Lincoln LaboratoryIntroduction-16

    AG 6/18/02

    Instrumentation Radars

  • MIT Lincoln LaboratoryIntroduction-17

    AG 6/18/02

    Outline

    Why radar?

    The basics

    Course agenda

  • MIT Lincoln LaboratoryIntroduction-18

    AG 6/18/02

    RADAR RAdio Detection And Ranging

    Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging)

    Antenna

    TransmittedPulse

    TargetCross

    Section

    Propagation

    ReflectedPulse

    (echo)

  • MIT Lincoln LaboratoryIntroduction-19

    AG 6/18/02

    Electromagnetic Waves

    Radar Frequencies

    Courtesy Berkeley National Laboratory

  • MIT Lincoln LaboratoryIntroduction-20

    AG 6/18/02

    Properties of Waves Relationship Between Frequency and Wavelength

    Speed of light, cc = 3x108 m/sec

    = 300,000,000 m/sec

    Frequency (1/s) =Speed of light (m/s)Wavelength

    (m)

    Examples: Frequency Wavelength100 MHz 3 m

    1 GHz 30 cm3 GHz 10 cm

    10 GHz 3 cm

    1, 2, 3,

    Figure by MIT OCW.

  • MIT Lincoln LaboratoryIntroduction-21

    AG 6/18/02

    Properties of Waves Phase and Amplitude

    Amplitude (volts)

    )sin(A

    )sin(A o90

    Phase,

    90 phase offset

    A

    Amplitude (volts)

    Phase,

    A

  • MIT Lincoln LaboratoryIntroduction-22

    AG 6/18/02

    Properties of Waves Constructive vs. Destructive Addition

    Constructive(in phase)

    Destructive(180 out of phase)

    Partially Constructive(somewhat out of phase)

    Non-coherent signals(noise)

  • MIT Lincoln LaboratoryIntroduction-23

    AG 6/18/02

    Polarization

    x

    yElectric Field

    Magnetic Field

    Electromagnetic Wave

    x

    y

    zE

    Horizontal Polarization

    Electric Field

    Magnetic Field

    Electromagnetic Wave

    x

    y

    z

    E

    Vertical Polarization

  • MIT Lincoln LaboratoryIntroduction-24

    AG 6/18/02

    Radar Frequency Bands

    Frequency

    Wavelength 1 mm1 km 1 m 1 m 1 nm

    1 MHz 1 GHzIR UV

    109 Hz

    0 1 2 3 4 5 6 7 8 9 10 11 12

    30 20 10 8 6 5 4 39 7

    Allocated Frequency (GHz)

    Wavelength (cm)

    X-BandC-BandS-BandL-BandUHFVHF

    Visible

    1012 Hz

    KuKKa

    W

  • MIT Lincoln LaboratoryIntroduction-25

    AG 6/18/02

    IEEE Standard Radar Bands (Typical Use)

    HF 3 30 MHz

    VHF 30 MHz300 MHz

    UHF 300 MHz1 GHz

    L-Band 1 GHz2 GHz

    S-Band 2 GHz4 GHz

    C-Band 4 GHz8 GHz

    X-Band 8 GHz12 GHz

    Ku-Band 12 GHz18 GHz

    K-Band 18 GHz27 GHz

    Ka-Band 27 GHz40 GHz

    W-Band 40 GHz 100+ GHz

    SearchRadars

    Search &Track Radars

    Fire Control &Imaging Radars

    MissileSeekers

  • MIT Lincoln LaboratoryIntroduction-26

    AG 6/18/02

    Radar Block Diagram

    Transmitter

    PulseCompression

    Recording

    Receiver

    Tracking &ParameterEstimation

    Console /Display

    Antenna

    PropagationMedium

    TargetCross

    Section DopplerProcessingA / D

    WaveformGenerator

    Detection

    Signal Processor

    Main Computer

  • MIT Lincoln LaboratoryIntroduction-27

    AG 6/18/02

    Radar Range Equation

    R

    Transmitted Pulse

    Received Pulse

    Received SignalEnergy

    TransmitPower

    TransmitGain

    SpreadFactor

    TargetRCS

    SpreadFactor

    ReceiveAperture

    DwellTime

    Target Cross Section Antenna Aperture ATransmit Power PT

    PT4A2 4R2

    1 4R2

    1 A

    Losses

    L1

    =

    Figure by MIT OCW.

  • MIT Lincoln LaboratoryIntroduction-28

    AG 6/18/02

    Signal-to-Noise Ratio

    SNR = Received Signal Energy

    Noise Energy

    Received Signal

    Noise

  • MIT Lincoln LaboratoryIntroduction-29

    AG 6/18/02

    What the #@!*% is a dB?

    Signal-to-noise ratio (dB) = 10 log 10Signal PowerNoise Power

    ScientificFactor of: Notation dB

    10 101 10100 102 201000 103 30...

    1,000,000 106 60

    Example:

    The relative value of two things, measured on a logarithmic scale, is often expressed in deciBels (dB)

    0 dB = factor of 1 -10 dB = factor of 1/10-20 dB = factor of 1/100

    3 dB = factor of 2-3 dB = factor of 1/2

  • MIT Lincoln LaboratoryIntroduction-30

    AG 6/18/02

    Pulsed Radar Terminology and Concepts

    P

    o

    w

    e

    r

    Duty cycle =

    Average power = Peak power * Duty cycle

    P

    e

    a

    k

    p

    o

    w

    e

    r

    Time

    Pulse length

    Pulse repetition interval(PRI)

    Pulse lengthPulse repetition interval

    Pulse repetition frequency (PRF) = 1/(PRI)

    Continuous wave (CW) radar: Duty cycle = 100% (always on)

    TargetReturn

  • MIT Lincoln LaboratoryIntroduction-31

    AG 6/18/02

    Pulsed Radar Terminology and Concepts

    P

    o

    w

    e

    r

    Duty cycle =

    Average power = Peak power * Duty cycle

    P

    e

    a

    k

    p

    o

    w

    e

    r

    Time

    Pulse length

    Pulse repetition interval(PRI)

    Pulse lengthPulse repetition interval

    Pulse repetition frequency (PRF) = 1/(PRI)

    Continuous wave (CW) radar: Duty cycle = 100% (always on)

    TargetReturn

    1 MW

    100 kW

    10%

    100 sec

    1 msec

    1 kHz

    1 W

  • MIT Lincoln LaboratoryIntroduction-32

    AG 6/18/02

    Brief Mathematical Digression Scientific Notation and Greek Prefixes

    109 1,000,000,000 Giga GHz106 1,000,000 Mega MHz, MW103 1,000 kilo km101 10 - -100 1 - -10-3 0.001 milli msec10-6 0.000,001 micro sec

    ScientificNotation

    StandardNotation

    GreekPrefix

    RadarExamples

    MHz = MegahertzMW = Megawatt

  • MIT Lincoln LaboratoryIntroduction-33

    AG 6/18/02

    Radar Waveforms

    Waves?

    or Pulses?

    Waves, modulatedby on-off action of

    pulse envelope

    What do radars transmit?

  • MIT Lincoln LaboratoryIntroduction-34

    AG 6/18/02

    Radar Waveforms (contd.)

    Pulse at single frequency

    LinearFrequency-Modulated

    (LFM)Waveform

    Time

    F

    r

    e

    q

    u

    e

    n

    c

    y

    Pulse with changing frequency

    Time

    F

    r

    e

    q

    u

    e

    n

    c

    y

  • MIT Lincoln LaboratoryIntroduction-35

    AG 6/18/02

    Radar Range Measurement

    Transmi

    tted

    Pulse

    Reflecte

    d

    Pulse

    Range

    Target

    Target range = c2where c = speed of light

    = round trip timeCourtesy of Raytheon. Used with permission.

  • MIT Lincoln LaboratoryIntroduction-36

    AG 6/18/02

    Antenna Gain

    R

    Isotropic antenna

    G = antenna gain

    .

    Directional antenna

  • MIT Lincoln LaboratoryIntroduction-37

    AG 6/18/02

    Propagation Effects on Radar Performance

    Atmospheric attenuation

    Reflection off of earths surface

    Over-the-horizon diffraction

    Atmospheric refraction

    Radar beams can be attenuated, reflected and bent by the environment

    Radar beams can be attenuated, reflected and bent by the environment

  • MIT Lincoln LaboratoryIntroduction-38

    AG 6/18/02

    Radar Cross Section (RCS)

    Incident Power Density

    (Watts/m2)

    ReflectedPower(Watts)

    (m2)

    x =

    RCS

    Radar Cross Section (RCS, or s) is the effective cross-sectional area of the target as seen by the radar

    measured in m2, or dBm2

  • MIT Lincoln LaboratoryIntroduction-39

    AG 6/18/02

    Signal Processing Pulse Compression

    MatchedFilter

    1 msec c2

    x = 150 km

    Problem: Pulse can be very long; does not allow accurate range measurement

    Solution: Use pulse with changing frequency and signal process using matched filter

    Uncompressed pulse Compressed pulse

    ?Figure by MIT OCW.

  • MIT Lincoln LaboratoryIntroduction-40

    AG 6/18/02

    Bandwidth

    Time

    F

    r

    e

    q

    u

    e

    n

    c

    y

    Time

    F

    r

    e

    q

    u

    e

    n

    c

    y

    NarrowbandWaveform

    WidebandWaveform

    CompressedPulse

    LowRange

    ResolutionBandwidth

    Bandw

    idth

    HighRange

    Resolution

    c2BR =

    CompressedPulse

    Range

    Range

  • MIT Lincoln LaboratoryIntroduction-41

    AG 6/18/02

    Why Bandwidth is Important.

    Relative Range (m)

    High(X 10)

    Medium(X 3)

    Low

    P

    o

    w

    e

    r

    Very High (X 30)

    Bandwidth

    Wideband Target Profile

  • MIT Lincoln LaboratoryIntroduction-42

    AG 6/18/02

    Detection of Signals in Noise

    RMSNoiseLevel

    DetectionThreshold

    Detected Target

    FalseAlarm

    MissedTarget

    Range

    P

    o

    w

    e

    r

  • MIT Lincoln LaboratoryIntroduction-43

    AG 6/18/02

    Coherent Integration

    0

    V

    o

    l

    t

    a

    g

    e

    Signal buried in Noise

    (SNR < 0 dB)

    0

    P

    o

    w

    e

    r

    Signal integrated out of Noise

    (SNR increases by N)

    Pulse 1

    + Pulse 2

    + Pulse 3

    + Pulse N

    ...

    Signals are same each time; add coherently (N2)

    Noise is different each time; doesnt add coherently (N)

    |x|2

  • MIT Lincoln LaboratoryIntroduction-44

    AG 6/18/02

    Doppler Effect

    Figure by MIT OCW.

    Observer A Observer B

    Driver Hears

    Observer A Hears Observer B Hears

  • MIT Lincoln LaboratoryIntroduction-45

    AG 6/18/02

    Doppler Shift Concept

    c v

    = cfc v

    f = c

    c

    f = f

    (2v/) Dopplershift

  • MIT Lincoln LaboratoryIntroduction-46

    AG 6/18/02

    Why Doppler is Important

    Clutter returns are much larger than target returns

    Note: if youre moving too, you need to take that into account.

    however, targets move, clutter doesnt.

    Surface Radar Airborne Radar

    Doppler lets you separate things that are moving from things that arentDoppler lets you separate things that are moving from things that arent

  • MIT Lincoln LaboratoryIntroduction-47

    AG 6/18/02

    Clutter Doppler Spectra

    0 50 100 150 200

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    Land

    Velocity (m/s)

    R

    e

    l

    a

    t

    i

    v

    e

    P

    o

    w

    e

    r

    (

    d

    B

    )

    SeaRainChaffBirds

    Target

  • MIT Lincoln LaboratoryIntroduction-48

    AG 6/18/02

    Radar Block Diagram

    Transmitter

    PulseCompression

    Recording

    Receiver

    Tracking &ParameterEstimation

    Console /Display

    Antenna

    PropagationMedium

    TargetCross

    Section DopplerProcessingA / D

    WaveformGenerator

    Detection

    Signal Processor

    Main Computer

  • MIT Lincoln LaboratoryIntroduction-49

    AG 6/18/02

    Outline

    Why radar?

    The basics

    Course agenda

  • MIT Lincoln LaboratoryIntroduction-50

    AG 6/18/02

    Introduction to Radar Systems Tutorial Agenda

    Introduction Radar Equation Propagation Effects Target Radar Cross Section Detection of Signals in Noise & Pulse Compression Radar Antennas Radar Clutter and Chaff Signal Processing-MTI and Pulse Doppler Tracking and Parameter Estimation Transmitters and Receivers

  • MIT Lincoln LaboratoryIntroduction-51

    AG 6/18/02

    References

    Skolnik, M., Introduction to Radar Systems, New York, McGraw-Hill, 3rd Edition, 2001

    Nathanson, F. E., Radar Design Principles, New York, McGraw-Hill, 2nd Edition, 1991

    Toomay, J. C., Radar Principles for the Non-Specialist, New York, Van Nostrand Reinhold, 1989

    Buderi R., The Invention That Changed the World, New York, Simon and Schuster, 1996

    Introduction to Radar Systems Disclaimer of Endorsement and LiabilityIntroduction to Radar Systems IntroductionAcknowledgementBackground on the CourseOutlineWhat Means are Available for Lifting the Fog of War ?What Means are Available for Lifting the Fog of War ? Military Means of SensingEarly Days of RadarChain Home Radar, Deployment Began 1936Chain Home Radar SystemChain Home Transmit & Receive AntennasRadar and The Battle of BritainSlide Number 14Slide Number 15Slide Number 16OutlineRADARRAdio Detection And RangingElectromagnetic WavesProperties of WavesRelationship Between Frequency and WavelengthProperties of WavesPhase and AmplitudeProperties of WavesConstructive vs. Destructive AdditionPolarizationRadar Frequency Bands IEEE Standard Radar Bands (Typical Use)Radar Block DiagramRadar Range EquationSignal-to-Noise RatioWhat the #@!*% is a dB?Pulsed RadarTerminology and ConceptsPulsed RadarTerminology and ConceptsBrief Mathematical DigressionScientific Notation and Greek PrefixesRadar WaveformsRadar Waveforms (contd.)Radar Range MeasurementAntenna GainPropagation Effects on Radar PerformanceRadar Cross Section (RCS)Signal ProcessingPulse CompressionBandwidthWhy Bandwidth is ImportantDetection of Signals in NoiseCoherent IntegrationDoppler EffectDoppler Shift ConceptWhy Doppler is ImportantClutter Doppler SpectraRadar Block DiagramOutlineIntroduction to Radar Systems TutorialAgendaReferences