Introduction to Magnetic Resonance Imaging Bruno Quesson, CR1 CNRS.

41
Introduction to Magnetic Resonance Imaging Bruno Quesson, CR1 CNRS

Transcript of Introduction to Magnetic Resonance Imaging Bruno Quesson, CR1 CNRS.

Introduction to Magnetic Resonance Imaging

Bruno Quesson, CR1 CNRS

Important magnetic field (~1 Tesla)

General ElectricSiemensPhilips

MRI : Imaging of water and fat (soft tissues)

diagnostis

healthy pathological

brain

animal

breast

Fat suppression

Tunable contrasts

Multislices 2D / 3D

Any slice orientation is feasible

Functional Diagnosis

Tissue looks normal but its function is altererd– Cardiac arythmia – Perfusion : thrombosis, tissue is nomore feed with blood– Diffusion : stroke– lungs : He3 imaging– …

angiography perfusionLung, He3

Diffusion brain

Dynamic imaging (heart)

Spatial resolution can be adjusted

Embryo of mice

fMRI : functional imaging of the brain activity

signal changes with blood oxygenation– Task => use of oxygen– Indirect detection of the brain activity– Low signal variation (2%) => high filed

Dynamic imaging (kinetic) 3D imaging (cover the entire brain) Statistical analysis Associate PET (radioactivity) et EEG (electrical activity)

Interventional imaging

Definition : « guide a therapeutic procedure with the help of images»– Rapid acquisition -> real time– Real time reconstruction– Real time processing

Examples :

-to visualize catheter positioning – Substitution Xray to MRI

-to identify a lesion and to guide the puncture– Ex : breast, liver, brain tumours

Interventionnal imaging : thermometry

Pig liver

Human

temperature Thermal Dose Follow up T2 Follow up T1

HOW IS THIS POSSIBLE???

Nuclear Magnetic Resonance : NMR

Magnetic equilibrium : B0 static and intense

Perturbation of the equilibrium : Excitation B1 (energy transferred to the system)

Back to initial equilibrium state : Relaxation (energy transferred from the system)

B0 = 0

z

B0 ≠ 0

MacroscopicMagnetization M0y

x

z

y

x

zM0

zM0

zM0

B1

zM0

zM0

Emitted signal=

NMR signal

Modeling the NMR signal

Vector mathematical formalism

z

M

B0

y

x

Mz

Mx

My

Mx(t)=?

My(t)=?

Mz(t)=?

Solution of the Bloch differential equations :

Mx(t) = Mt(0).exp(-t/T2).cos(0 t)

My(t) = Mt(0).exp(-t/T2).sin(0 t)

Mz(t) = M0 – (M0 – Mz(0)).exp(-t/T1)

Transverse magnetization

Longitudinal magnetization

0 = B0

transverse magnetization : exponential decay

Helicoïdal motion

y

Mt

B0 x100

80

60

40

20

0

Mt

1.00.80.60.40.20.0

Time / s

Rotation around B0 Amplitude : exponential decay

Mt(t) = Mt(0).exp(-t/T2).exp(0 t)

Detectable signal

Longitudinal magnetization

z

B0 x

Mz

100

80

60

40

20

03.02.52.01.51.00.50.0

Mz

Time / s

Mz(t) = M0 – (M0 – Mz(0)).exp(-t/T1)

y

Typical NMR parameters at 1.5 Tesla

8550500breast

7055870cardiac muscle

951001800vitrous humor

7060775spleen

6060650kidney

6070600pancreas

7045500liver

8075934disk

951001200blood

4080830lung

10080252fat

4060400bone marrow

4060400Vertebral marrow

7045870SQuel Muscle

1001602400CSF

7090780WM

85100920GM

M0 (%)T2 / msT1 / msTissue

Longitudinal (T1) and Transverse (T2) relaxation times

M0(GM)

M0(WM)

100

80

60

40

20

0

Mz

3.02.52.01.51.00.50.0

GM WM

100

80

60

40

20

0

Mt

1.00.80.60.40.20.0

GM WM

Time / s

Difference = contrast

T1 contrast

T2 contrast

Proton Density

Acquisition sequence

Sequence = a number of events which occur at different instants

t

B1

TR

Te

S2 = M0.(1-exp(-TR/T1)).exp(-Te/T2). exp(i0t)

Te

S1 = M0.exp(-Te/T2).exp(i0t)

Which contrast ?

TR/T1

TE/T2

ContrastT1

ProtonDensity

ContrastT1 and T2

ContrastT2

0

Examples

But how a MR image is obtained???

MR image = map of magnetization

How can we separate signal coming from different locations????

B0

y

x

z

y

z

S1 = M0.exp(-Te/T2).exp(i0t)

S2 = M0.exp(-Te/T2).exp(i0t)

S3 = M0.exp(-Te/T2).exp(i0t)

S4 = M0.exp(-Te/T2).exp(i0t)

S total = S1+S2+S3+S4

So what??

t

t

t

t

t

Fourier Transformation

It is NOT possible to distinguish individual signals

Let us make B0 vary in space

B0

y

x

z

y

z

S1 = M0.exp(-Te/T2).exp(i1t)

S2 = M0.exp(-Te/T2).exp(i2t)

S3 = M0.exp(-Te/T2).exp(i3t)

S4 = M0.exp(-Te/T2).exp(i4t)

S total = S1+S2+S3+S4

z

B(z) = B0 + Gz.z (z) = 0 + .Gz.z

+

Gz

So what??

t

t

t

t

Fourier Transformation

It is possible to distinguish individual signals from their spectrum in 1 direction

Profile

Mathematical description

S(Gz,t) = MT(z).exp(-t/T2).exp(i[0 + .Gz.z].t) dz

S(Gz,t) = exp(-t/T2).exp(i0.t) MT(z). exp(i..Gz.z..t) dz

S(kz) = exp(-t/T2).exp(i0.t) MT(z). exp(i.kz.z.) dz

We substitute kz = .Gz.t

S(kz) = A MT(z). exp(i.kz.z.) dz = A. FT[ MT(z) ]

Back to the profile

MT(z) = FT-1 [ S(kz) ] / A

MT(z) = A-1 . S(kz). exp(-i.kz.z.) dkz

1-We have to measure the signal for different kz (= g.Gz.t) conditions

2-We have to Fourier Transform these data sets to retrieve the profile of the object

Comparison of measurements under different Gz conditions

z

Gz

z

Gz

z

Gz

Graphical representation

zkz

Gz

0

In 2D : We have to repeat this 2 orthogonal directions

z

kz

Gz

y

Gy

ky

Gz

Gy

When the complete map is acquired, we get the image

kz

2D Fourier Transformation

ky

ImageFourier space“k-space”

MRI acquisition sequence

t

t

t

t

B1

Gs

Gp

Gr

TR

Te

Gradient echo

Trajectory in the Fourier space

Contrast

Contrast manipulation

PreparationAcquisition (of Fourier space)

t

t

t

t

B1

Gs

Gp

Gr

TeTi

t

Ex: inversion recovery (IR)

Examples of signal modulation with Inversion -Recovery

Ti = 0 s

Ti = 66 ms

Ti = 174 ms

MT(t) = MT(0).exp(-t/T2)

MT(0) = M0(1 – 2.exp(-Ti/T1))

Signal :

with :

Contrast modulation

-100

-50

0

50

100

Mz

1.21.00.80.60.40.20.0

Time / s

fat liver

100

80

60

40

20

0

Mt

0.40.30.20.10.0

fat liver

60

50

40

30

20

10

0

Mt

0.40.30.20.10.0

fat liver

100

80

60

40

20

0

Mt

0.40.30.20.10.0

Time / s

fat liver

Selective perturbation

Ex : « black blood » (BB) for cardiac imaging

t

t

t

t

B1Gs

Gp

Gr

Ti (blood)

Acquisition

180°180°

BB prepulse

Acquisitionpreparationt

Resulting images

Without BB

With BB pulse

Double inversion-recovery

t

t

t

t

B1Gs

Gp

Gr

Acquisition

180°180°

Motif DI

Ti(1) Ti(2)

Gradient Echo sequence

t

t

t

t

B1

Gs

Gp

Gr

TR

Te

Gradient echo

Trajectory in the Fourier space

Contrast

Spin echo sequence

Refocuses all magnetizations

t

t

t

t

B1

Gs

Gp

Gr

TR

Te

Te/2Te/2

Spin echo

Summary

RF pulses– Variable angles– Frequency selective or not– Spatially selective or not

Gradients

A lot of possible combinaisons

Strategy of the acquisition depends on the application