Introduction to estimation theory Seoul Nat’l Univ.

36
Introduction to estimation theory C ontrol Information S ystem L ab. Seoul Nat’l Univ.

Transcript of Introduction to estimation theory Seoul Nat’l Univ.

Page 1: Introduction to estimation theory Seoul Nat’l Univ.

Introduction to estimation theory

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

Page 2: Introduction to estimation theory Seoul Nat’l Univ.

Contents

C o n tro l In fo rm a tio n S ys tem L a b .

What is estimator for signal models estimator application Signal models Design objectives Options of estimators Objectives and design procedure Options for estimator : smoothing, filtering, and predicting FIR structure Initial state dependency Performance criterion Extension to Control

Seoul Nat’l Univ.

Page 3: Introduction to estimation theory Seoul Nat’l Univ.

1.1 What is estimator for signal models (1/1)

1.Introduction

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

Parameter estimation

State estimationestimator: Parameter

: State

as small as possible

Page 4: Introduction to estimation theory Seoul Nat’l Univ.

Other methodology Fault detection

parameter estimation

state observer/estimation

signal separation

spectrum analysis

Output feedback control : state feedback control + estimator

C o n tro l In fo rm a tio n S ys tem L a b .

?

?)(

tx

1u2u

3u 4u

1y2y

3y

),,,,,,()(ˆ 3214321 yyyuuuuftx

1.2 estimator application (1/3)

1.Introduction

Seoul Nat’l Univ.

Page 5: Introduction to estimation theory Seoul Nat’l Univ.

C o n tro l In fo rm a tio n S ys tem L a b .

Control

Output feedback control = state feedback control + estimator

1.Introduction1.2 estimator application (2/3)

Seoul Nat’l Univ.

plant

estimator

Page 6: Introduction to estimation theory Seoul Nat’l Univ.

Practical areas Speech

- speech enhancement Image

- medical imaging- denoising

aerospace - target tracking- navigation- flight pass reconstruction

chemical process- distillation columns

mechanical system - motor system

biological area- cardiac arrhythmia detection

C o n tro l In fo rm a tio n S ys tem L a b .

1.Introduction1.2 estimator application ( 3/3)

Seoul Nat’l Univ.

Page 7: Introduction to estimation theory Seoul Nat’l Univ.

Modele

d

Unmodeled

State s

pace

Generi

c linea

r model

Linear

Nonlinea

r

Stochast

ic

Determ

inistic

Time i

nvarian

t

Time v

arying

Discret

e-tim

e

Continuous-t

ime

Categories of signal models

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

1.Introduction1.3 Signal models (1/3)

Page 8: Introduction to estimation theory Seoul Nat’l Univ.

State space signal model

In case of stochastic model :

In case of deterministic model :

and are random process

and are deterministic signal Choice of model is important for model-based signal processing

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

1.Introduction1.3 Signal models (2/3)

Page 9: Introduction to estimation theory Seoul Nat’l Univ.

Modelled vs unmodelled signal

velocity

VoltageInput :

velocityOutput :

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

1.Introduction1.3 Signal models (3/3)

Unmodeled signal

Model based signal

Page 10: Introduction to estimation theory Seoul Nat’l Univ.

Stability of the filter Estimation error ( often called performance )

unbiasedness : convergence :

efficiency : Robustness

estimation error w.r.t signal model uncertainties Computation load

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

1.Introduction1.4 Design objectives (1/1)

Page 11: Introduction to estimation theory Seoul Nat’l Univ.

Estimator structure

Performance

CriterionSignal

Models

IIR

(infinite horizon)

FIR

(receding horizon)

Initial state

dependent

stochastic

deterministicleast square

minimax

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

1.Introduction

Given OptionsInitial state

independent

Minimum

variance

NonlinearLinear

1.5 Options for estimators (1/1)

FilterSmoothing Prediction

generic linear

state space

receding horizon

infinite

horizon

Page 12: Introduction to estimation theory Seoul Nat’l Univ.

Signal models Optimal estimator Does it satisfy

Estimator structure

. . .

Performance criterion

. . .

desired properties

Desired properties

Stability

Robustness

Small error Yes

No

C o n tro l In fo rm a tio n S ys tem L a b .

1.Introduction

Seoul Nat’l Univ.

1.6 Objectives and design procedure (1/2)

Page 13: Introduction to estimation theory Seoul Nat’l Univ.

Stability FIR

1.Introduction

Small error

Robustness w.r.t uncertainties

w.r.t disturbance

Performance criterion

Objectives : Options

1.6 Objectives and design procedure (2/2)

Page 14: Introduction to estimation theory Seoul Nat’l Univ.

1.Introduction1.7 Options for estimator : smoothing, filtering, and predicting

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

Categories of estimators

Current time

Smoothing Filtering Predicting

Page 15: Introduction to estimation theory Seoul Nat’l Univ.

C o n tro l In fo rm a tio n S ys tem L a b .

Which one do

you think better ?

Case 1 (IIR)

Case 2 (FIR)

1.Introduction

Seoul Nat’l Univ.

1.8 FIR structure (1/ 9)

Page 16: Introduction to estimation theory Seoul Nat’l Univ.

C o n tro l In fo rm a tio n S ys tem L a b .

Case 1 (FIR)

Case 1 (IIR)

1.Introduction

Seoul Nat’l Univ.

1.8 FIR structure (2/9)

BIBO stability of FIR estimators

Page 17: Introduction to estimation theory Seoul Nat’l Univ.

0 100 200 300 400 500 600 700 800 900 1000-80

-70

-60

-50

-40

-30

-20

-10

0

10Real state Estimate state Diverged estimate state

Divergence of IIR filter (Kalman filter)

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

1.Introduction1.8 FIR structure (3/9)

Robustness to model uncertainty

Page 18: Introduction to estimation theory Seoul Nat’l Univ.

C o n tro l In fo rm a tio n S ys tem L a b .

Robustness to round off error : comparison of error covariance

Observation : Though rounding at the 4th digit are not serious, rounding of 3rd and 2 nd digit makes

difference between the FIR filter and IIR filter.

FIR filter Kalman Filter

4th digit 0.018184 0.02188

3rd digit 3.019853 12.3217

2nd digit 4.240283 15.47567

Round-off digitFilter Structure

5.0,5.0

01

1

1

1.0

1.0

9950.00998.0

0998.09950.01

RQ

vxy

wuxx

kkk

kkkk

Simulation environments We assume that the filter gain is previously known by off-line calculation Rounding off error is applied when updated Model

1.Introduction

Seoul Nat’l Univ.

1.8 FIR structure (4/9)

Page 19: Introduction to estimation theory Seoul Nat’l Univ.

1.Introduction

Seoul Nat’l Univ. C o n tro l In fo rm a tio n S ys tem L a b .

1. Stabilization the nominal system2. Stabilization the disturbed systems

In case of Control

Nominal systems

1. Be sure to be deadbeat using FIR structure for nominal systems.

2. Small error for noise or disturbance corrupted systems.

In case of Filter

1.8 FIR structure (5/9)

Require to be deadbeat using nominal systems Nominal systems = zero disturbance / noise system

Deadbeat property

Page 20: Introduction to estimation theory Seoul Nat’l Univ.

1.Introduction

Seoul Nat’l Univ. C o n tro l In fo rm a tio n S ys tem L a b .

1.8 FIR structure (6/9)

)(tx

)(ˆ tx

Exact filter (deadbeat phenomenon)

Noise

State & estim. trajectory

Horizon size

Deadbeat property

Page 21: Introduction to estimation theory Seoul Nat’l Univ.

C o n tro l In fo rm a tio n S ys tem L a b .

Original

Filtered

IIR filter

1.Introduction

Seoul Nat’l Univ.

1.8 FIR structure (7/9)

0 0.2 0.3 1-1

0

1Chebyshev-1 Lowpass Filter

frequency (pi units)

PH

AS

E

0 0.2 0.3 1-1

0

1FIR Lowpass Filter

frequency (pi units)

PH

AS

E

0 0.2 0.3 1

50

0

FIR Lowpass Filter

frequency (pi units)

Ma

gn

itu

de

|H

(w)|

in

dB

0 0.2 0.3 1

50

0.25 0

Chebyshev-1 Lowpass Filter

frequency (pi units)

Ma

gn

itu

de

|H

| in

dB

Magnitude

Phase

Time

Frequency

FIR filter

Heavy distortion of

phase at band gap

Page 22: Introduction to estimation theory Seoul Nat’l Univ.

C o n tro l In fo rm a tio n S ys tem L a b .

cf. Infinite impulse response(IIR) : Nonlinear phase Not always stable Easy to obtain from analog filter Suitable for sharp cutoff characteristic and high speed

1.Introduction

Seoul Nat’l Univ.

1.8 FIR structure (8/9) Advantage & disadvantage

• Advantage of FIR Use of DFT Robustness to round off error Linear phase Guaranteed stability Good for adaptive filter

• Disadvantage of FIR Computation load H/W complexity

Page 23: Introduction to estimation theory Seoul Nat’l Univ.

C o n tro l In fo rm a tio n S ys tem L a b .

F I RF I R I I R

1.Introduction

Seoul Nat’l Univ.

1.8 FIR structure (9/9)

Page 24: Introduction to estimation theory Seoul Nat’l Univ.

C o n tro l In fo rm a tio n S ys tem L a b .

Infinite impulse response (IIR) : dependent of

IIR Linear Initial state dependent

1.Introduction

Seoul Nat’l Univ.

1.9 Initial state dependency (1/2)

FIR Linear Initial state free

Finite impulse response (FIR) : Independent of

Page 25: Introduction to estimation theory Seoul Nat’l Univ.

Filter is to estimate stateThe initial state is also a state

It is not logical to assume the initial state

C o n tro l In fo rm a tio n S ys tem L a b .

1.Introduction

Seoul Nat’l Univ.

1.9 Initial state dependency (2/2)

Example : Try to guess who he is.

1. First case(our approach)

2. Second case(ex. Kalman filter) ,

Given, then guess

Given, then guess

Original picture

Page 26: Introduction to estimation theory Seoul Nat’l Univ.

Performance criterion

Minimum variance

Least square

Maximum Likelihood

C o n tro l In fo rm a tio n S ys tem L a b .

1.Introduction1.10 Performance criterion (1/3)

Seoul Nat’l Univ.

Page 27: Introduction to estimation theory Seoul Nat’l Univ.

Performance criterion for deterministic models- filter

- Minimax filter

- Least squares

H

C o n tro l In fo rm a tio n S ys tem L a b .

1.Introduction1.10 Performance criterion (2/3)

Seoul Nat’l Univ.

Performance criterion for Stochastic models- Minimum variance

- Minimax variance

- Minimum Entropy

Page 28: Introduction to estimation theory Seoul Nat’l Univ.

1.Introduction1.10 Performance criterion (3/3)

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

Stability FIR

Small error

Robustness w.r.t uncertainties

w.r.t disturbance

Minimization

Objectives : Options

Minimization of maxima

Page 29: Introduction to estimation theory Seoul Nat’l Univ.

1.Introduction1.11 Extension to control : receding horizon control

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

Which one do

you think better ?

What is the receding horizon control?

Page 30: Introduction to estimation theory Seoul Nat’l Univ.

1.Introduction

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

Stability of the closed-loop systems Small tracking error Robustness

stabilitytracking error

1.11 Extension to control : desired property

Page 31: Introduction to estimation theory Seoul Nat’l Univ.

Control structure

Performance

CriterionSignal

Models

infinite horizon

receding horizon

output feedback

stochastic

deterministic LQ

minimax

Given Optionsstate feedback

LQG

Finite memory control(including static control)

Dynamic(IIR control)

I/O model

state space

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

1.Introduction1.11 Extension to control : options for controls

Page 32: Introduction to estimation theory Seoul Nat’l Univ.

1.Introduction

Seoul Nat’l Univ. C o n tro l In fo rm a tio n S ys tem L a b .

Signal models Optimal control Does it satisfy

Control structure

Performance criterionLQG

LQ

Minimum entropy

……

desired properties

Desired properties

Stability

Robustness

Small tracking error Yes

No

State feedback control

Output feedback controlDynamic controlFinite memory control

……

1.11 Extension to control : objectives and design procedures

Page 33: Introduction to estimation theory Seoul Nat’l Univ.

1.Introduction

Seoul Nat’l Univ. C o n tro l In fo rm a tio n S ys tem L a b .

1.11 extension to control : performance criterion with receding horizon

LQ

LQG

Page 34: Introduction to estimation theory Seoul Nat’l Univ.

1.Introduction1.11 extension to control : receding horizon output feedback control

Seoul Nat’l Univ. C o n tro l In fo rm a tio n S ys tem L a b .

State feedback receding horizon controlLQC Control……

FilterKalman filter filterMixed filer……

+

Question : Is it optimal ?

FMC (finite memory control)

method 1

method 2 Global optimal output feedback control

cf) LQG

Page 35: Introduction to estimation theory Seoul Nat’l Univ.

1.Introduction

Seoul Nat’l Univ. C o n tro l In fo rm a tio n S ys tem L a b .

Computation

1.11 extension to control : receding horizon output feedback control

Page 36: Introduction to estimation theory Seoul Nat’l Univ.

Contents of standard textbook on optimal control and estimation

1.Introduction

C o n tro l In fo rm a tio n S ys tem L a b .Seoul Nat’l Univ.

1. LQ control Finite horizon Infinite horizon

2. Kalman filter

Finite horizon Infinite horizon

3. LQG control

Finite horizon Infinite horizon

4. Full information control Finite horizon Infinite horizon

5. filter

Finite horizon Infinite horizon

6. Output feedback control

Finite horizon Infinite horizon

Receding horizon

Receding horizon

Receding horizon

Receding horizon

Receding horizon

Receding horizon

Covered in this class